1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE MultiWayIf #-}
-- | Functions for inferring (and simplifying) the context for derived instances.
module GHC.Tc.Deriv.Infer
( inferConstraints
, simplifyInstanceContexts
)
where
import GHC.Prelude
import GHC.Tc.Deriv.Utils
import GHC.Tc.Utils.Env
import GHC.Tc.Deriv.Generate
import GHC.Tc.Deriv.Functor
import GHC.Tc.Deriv.Generics
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Monad
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Tc.Utils.TcType
import GHC.Tc.Solver
import GHC.Tc.Solver.Monad ( runTcS )
import GHC.Tc.Validity (validDerivPred)
import GHC.Tc.Utils.Unify (buildImplicationFor)
import GHC.Core.Class
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Core.TyCo.Ppr (pprTyVars)
import GHC.Core.Type
import GHC.Core.Predicate
import GHC.Core.Unify (tcUnifyTy)
import GHC.Data.Pair
import GHC.Builtin.Names
import GHC.Builtin.Types (typeToTypeKind)
import GHC.Utils.Error
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Types.Basic
import GHC.Types.Var
import GHC.Data.Bag
import Control.Monad
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Reader (ask)
import Data.Function (on)
import Data.Functor.Classes (liftEq)
import Data.List (sortBy)
import Data.Maybe
----------------------
inferConstraints :: DerivSpecMechanism
-> DerivM (ThetaSpec, [TyVar], [TcType], DerivSpecMechanism)
-- inferConstraints figures out the constraints needed for the
-- instance declaration generated by a 'deriving' clause on a
-- data type declaration. It also returns the new in-scope type
-- variables and instance types, in case they were changed due to
-- the presence of functor-like constraints.
-- See Note [Inferring the instance context]
-- e.g. inferConstraints
-- C Int (T [a]) -- Class and inst_tys
-- :RTList a -- Rep tycon and its arg tys
-- where T [a] ~R :RTList a
--
-- Generate a sufficiently large set of constraints that typechecking the
-- generated method definitions should succeed. This set will be simplified
-- before being used in the instance declaration
inferConstraints mechanism
= do { DerivEnv { denv_tvs = tvs
, denv_cls = main_cls
, denv_inst_tys = inst_tys } <- ask
; wildcard <- isStandaloneWildcardDeriv
; let infer_constraints :: DerivM (ThetaSpec, [TyVar], [TcType], DerivSpecMechanism)
infer_constraints =
case mechanism of
DerivSpecStock{dsm_stock_dit = dit}
-> do (thetas, tvs, inst_tys, dit') <- inferConstraintsStock dit
pure ( thetas, tvs, inst_tys
, mechanism{dsm_stock_dit = dit'} )
DerivSpecAnyClass
-> infer_constraints_simple inferConstraintsAnyclass
DerivSpecNewtype { dsm_newtype_dit =
DerivInstTys{dit_cls_tys = cls_tys}
, dsm_newtype_rep_ty = rep_ty }
-> infer_constraints_simple $
inferConstraintsCoerceBased cls_tys rep_ty
DerivSpecVia { dsm_via_cls_tys = cls_tys
, dsm_via_ty = via_ty }
-> infer_constraints_simple $
inferConstraintsCoerceBased cls_tys via_ty
-- Most deriving strategies do not need to do anything special to
-- the type variables and arguments to the class in the derived
-- instance, so they can pass through unchanged. The exception to
-- this rule is stock deriving. See
-- Note [Inferring the instance context].
infer_constraints_simple
:: DerivM ThetaSpec
-> DerivM (ThetaSpec, [TyVar], [TcType], DerivSpecMechanism)
infer_constraints_simple infer_thetas = do
thetas <- infer_thetas
pure (thetas, tvs, inst_tys, mechanism)
-- Constraints arising from superclasses
-- See Note [Superclasses of derived instance]
cls_tvs = classTyVars main_cls
sc_constraints = assertPpr (equalLength cls_tvs inst_tys)
(ppr main_cls <+> ppr inst_tys) $
mkDirectThetaSpec
(mkDerivOrigin wildcard) TypeLevel
(substTheta cls_subst (classSCTheta main_cls))
cls_subst = assert (equalLength cls_tvs inst_tys) $
zipTvSubst cls_tvs inst_tys
; (inferred_constraints, tvs', inst_tys', mechanism')
<- infer_constraints
; lift $ traceTc "inferConstraints" $ vcat
[ ppr main_cls <+> ppr inst_tys'
, ppr inferred_constraints
]
; return ( sc_constraints ++ inferred_constraints
, tvs', inst_tys', mechanism' ) }
-- | Like 'inferConstraints', but used only in the case of the @stock@ deriving
-- strategy. The constraints are inferred by inspecting the fields of each data
-- constructor. In this example:
--
-- > data Foo = MkFoo Int Char deriving Show
--
-- We would infer the following constraints ('ThetaSpec's):
--
-- > (Show Int, Show Char)
--
-- Note that this function also returns the type variables ('TyVar's) and
-- class arguments ('TcType's) for the resulting instance. This is because
-- when deriving 'Functor'-like classes, we must sometimes perform kind
-- substitutions to ensure the resulting instance is well kinded, which may
-- affect the type variables and class arguments. In this example:
--
-- > newtype Compose (f :: k -> Type) (g :: Type -> k) (a :: Type) =
-- > Compose (f (g a)) deriving stock Functor
--
-- We must unify @k@ with @Type@ in order for the resulting 'Functor' instance
-- to be well kinded, so we return @[]@/@[Type, f, g]@ for the
-- 'TyVar's/'TcType's, /not/ @[k]@/@[k, f, g]@.
-- See Note [Inferring the instance context].
inferConstraintsStock :: DerivInstTys
-> DerivM (ThetaSpec, [TyVar], [TcType], DerivInstTys)
inferConstraintsStock dit@(DerivInstTys { dit_cls_tys = cls_tys
, dit_tc = tc
, dit_tc_args = tc_args
, dit_rep_tc = rep_tc
, dit_rep_tc_args = rep_tc_args })
= do DerivEnv { denv_tvs = tvs
, denv_cls = main_cls
, denv_inst_tys = inst_tys } <- ask
wildcard <- isStandaloneWildcardDeriv
let inst_ty = mkTyConApp tc tc_args
tc_binders = tyConBinders rep_tc
choose_level bndr
| isNamedTyConBinder bndr = KindLevel
| otherwise = TypeLevel
t_or_ks = map choose_level tc_binders ++ repeat TypeLevel
-- want to report *kind* errors when possible
-- Constraints arising from the arguments of each constructor
con_arg_constraints
:: ([TyVar] -> CtOrigin
-> TypeOrKind
-> Type
-> [(ThetaSpec, Maybe Subst)])
-> (ThetaSpec, [TyVar], [TcType], DerivInstTys)
con_arg_constraints get_arg_constraints
= let -- Constraints from the fields of each data constructor.
(predss, mbSubsts) = unzip
[ preds_and_mbSubst
| data_con <- tyConDataCons rep_tc
, (arg_n, arg_t_or_k, arg_ty)
<- zip3 [1..] t_or_ks $
derivDataConInstArgTys data_con dit
-- No constraints for unlifted types
-- See Note [Deriving and unboxed types]
, not (isUnliftedType arg_ty)
, let orig = DerivOriginDC data_con arg_n wildcard
, preds_and_mbSubst
<- get_arg_constraints (dataConUnivTyVars data_con)
orig arg_t_or_k arg_ty
]
-- Stupid constraints from DatatypeContexts. Note that we
-- must gather these constraints from the data constructors,
-- not from the parent type constructor, as the latter could
-- lead to redundant constraints due to thinning.
-- See Note [The stupid context] in GHC.Core.DataCon.
stupid_theta =
[ substTyWith (dataConUnivTyVars data_con)
(dataConInstUnivs data_con rep_tc_args)
stupid_pred
| data_con <- tyConDataCons rep_tc
, stupid_pred <- dataConStupidTheta data_con
]
preds = concat predss
-- If the constraints require a subtype to be of kind
-- (* -> *) (which is the case for functor-like
-- constraints), then we explicitly unify the subtype's
-- kinds with (* -> *).
-- See Note [Inferring the instance context]
subst = foldl' composeTCvSubst
emptySubst (catMaybes mbSubsts)
unmapped_tvs = filter (\v -> v `notElemSubst` subst
&& not (v `isInScope` subst)) tvs
(subst', _) = substTyVarBndrs subst unmapped_tvs
stupid_theta_origin = mkDirectThetaSpec
deriv_origin TypeLevel
(substTheta subst' stupid_theta)
preds' = map (substPredSpec subst') preds
inst_tys' = substTys subst' inst_tys
dit' = substDerivInstTys subst' dit
tvs' = tyCoVarsOfTypesWellScoped inst_tys'
in ( stupid_theta_origin ++ preds'
, tvs', inst_tys', dit' )
is_generic = main_cls `hasKey` genClassKey
is_generic1 = main_cls `hasKey` gen1ClassKey
-- is_functor_like: see Note [Inferring the instance context]
is_functor_like = typeKind inst_ty `tcEqKind` typeToTypeKind
|| is_generic1
get_gen1_constraints ::
Class
-> [TyVar] -- The universally quantified type variables for the
-- data constructor
-> CtOrigin -> TypeOrKind -> Type
-> [(ThetaSpec, Maybe Subst)]
get_gen1_constraints functor_cls dc_univs orig t_or_k ty
= mk_functor_like_constraints orig t_or_k functor_cls $
get_gen1_constrained_tys last_dc_univ ty
where
-- If we are deriving an instance of 'Generic1' and have made
-- it this far, then there should be at least one universal type
-- variable, making this use of 'last' safe.
last_dc_univ = assert (not (null dc_univs)) $
last dc_univs
get_std_constrained_tys ::
[TyVar] -- The universally quantified type variables for the
-- data constructor
-> CtOrigin -> TypeOrKind -> Type
-> [(ThetaSpec, Maybe Subst)]
get_std_constrained_tys dc_univs orig t_or_k ty
| is_functor_like
= mk_functor_like_constraints orig t_or_k main_cls $
deepSubtypesContaining last_dc_univ ty
| otherwise
= [( [mk_cls_pred orig t_or_k main_cls ty]
, Nothing )]
where
-- If 'is_functor_like' holds, then there should be at least one
-- universal type variable, making this use of 'last' safe.
last_dc_univ = assert (not (null dc_univs)) $
last dc_univs
mk_functor_like_constraints :: CtOrigin -> TypeOrKind
-> Class -> [Type]
-> [(ThetaSpec, Maybe Subst)]
-- 'cls' is usually main_cls (Functor or Traversable etc), but if
-- main_cls = Generic1, then 'cls' can be Functor; see
-- get_gen1_constraints
--
-- For each type, generate two constraints,
-- [cls ty, kind(ty) ~ (*->*)], and a kind substitution that results
-- from unifying kind(ty) with * -> *. If the unification is
-- successful, it will ensure that the resulting instance is well
-- kinded. If not, the second constraint will result in an error
-- message which points out the kind mismatch.
-- See Note [Inferring the instance context]
mk_functor_like_constraints orig t_or_k cls
= map $ \ty -> let ki = typeKind ty in
( [ mk_cls_pred orig t_or_k cls ty
, SimplePredSpec
{ sps_pred = mkPrimEqPred ki typeToTypeKind
, sps_origin = orig
, sps_type_or_kind = KindLevel
}
]
, tcUnifyTy ki typeToTypeKind
)
-- Extra Data constraints
-- The Data class (only) requires that for
-- instance (...) => Data (T t1 t2)
-- IF t1:*, t2:*
-- THEN (Data t1, Data t2) are among the (...) constraints
-- Reason: when the IF holds, we generate a method
-- dataCast2 f = gcast2 f
-- and we need the Data constraints to typecheck the method
extra_constraints
| main_cls `hasKey` dataClassKey
, all (isLiftedTypeKind . typeKind) rep_tc_args
= [ mk_cls_pred deriv_origin t_or_k main_cls ty
| (t_or_k, ty) <- zip t_or_ks rep_tc_args]
| otherwise
= []
mk_cls_pred orig t_or_k cls ty
-- Don't forget to apply to cls_tys' too
= SimplePredSpec
{ sps_pred = mkClassPred cls (cls_tys' ++ [ty])
, sps_origin = orig
, sps_type_or_kind = t_or_k
}
cls_tys' | is_generic1 = []
-- In the awkward Generic1 case, cls_tys' should be
-- empty, since we are applying the class Functor.
| otherwise = cls_tys
deriv_origin = mkDerivOrigin wildcard
if -- Generic constraints are easy
| is_generic
-> return ([], tvs, inst_tys, dit)
-- Generic1 needs Functor
-- See Note [Getting base classes]
| is_generic1
-> assert (tyConTyVars rep_tc `lengthExceeds` 0) $
-- Generic1 has a single kind variable
assert (cls_tys `lengthIs` 1) $
do { functorClass <- lift $ tcLookupClass functorClassName
; pure $ con_arg_constraints
$ get_gen1_constraints functorClass }
-- The others are a bit more complicated
| otherwise
-> do { let (arg_constraints, tvs', inst_tys', dit')
= con_arg_constraints get_std_constrained_tys
; lift $ traceTc "inferConstraintsStock" $ vcat
[ ppr main_cls <+> ppr inst_tys'
, ppr arg_constraints
]
; return ( extra_constraints ++ arg_constraints
, tvs', inst_tys', dit' ) }
-- | Like 'inferConstraints', but used only in the case of @DeriveAnyClass@,
-- which gathers its constraints based on the type signatures of the class's
-- methods instead of the types of the data constructor's field.
--
-- See Note [Gathering and simplifying constraints for DeriveAnyClass]
-- for an explanation of how these constraints are used to determine the
-- derived instance context.
inferConstraintsAnyclass :: DerivM ThetaSpec
inferConstraintsAnyclass
= do { DerivEnv { denv_cls = cls
, denv_inst_tys = inst_tys } <- ask
; let gen_dms = [ (sel_id, dm_ty)
| (sel_id, Just (_, GenericDM dm_ty)) <- classOpItems cls ]
; wildcard <- isStandaloneWildcardDeriv
; let meth_pred :: (Id, Type) -> PredSpec
-- (Id,Type) are the selector Id and the generic default method type
-- NB: the latter is /not/ quantified over the class variables
-- See Note [Gathering and simplifying constraints for DeriveAnyClass]
meth_pred (sel_id, gen_dm_ty)
= let (sel_tvs, _cls_pred, meth_ty) = tcSplitMethodTy (varType sel_id)
meth_ty' = substTyWith sel_tvs inst_tys meth_ty
gen_dm_ty' = substTyWith sel_tvs inst_tys gen_dm_ty in
-- This is the only place where a SubTypePredSpec is
-- constructed instead of a SimplePredSpec. See
-- Note [Gathering and simplifying constraints for DeriveAnyClass]
-- for a more in-depth explanation.
SubTypePredSpec { stps_ty_actual = gen_dm_ty'
, stps_ty_expected = meth_ty'
, stps_origin = mkDerivOrigin wildcard
}
; pure $ map meth_pred gen_dms }
-- Like 'inferConstraints', but used only for @GeneralizedNewtypeDeriving@ and
-- @DerivingVia@. Since both strategies generate code involving 'coerce', the
-- inferred constraints set up the scaffolding needed to typecheck those uses
-- of 'coerce'. In this example:
--
-- > newtype Age = MkAge Int deriving newtype Num
--
-- We would infer the following constraints ('ThetaSpec'):
--
-- > (Num Int, Coercible Age Int)
inferConstraintsCoerceBased :: [Type] -> Type
-> DerivM ThetaSpec
inferConstraintsCoerceBased cls_tys rep_ty = do
DerivEnv { denv_tvs = tvs
, denv_cls = cls
, denv_inst_tys = inst_tys } <- ask
sa_wildcard <- isStandaloneWildcardDeriv
let -- The following functions are polymorphic over the representation
-- type, since we might either give it the underlying type of a
-- newtype (for GeneralizedNewtypeDeriving) or a @via@ type
-- (for DerivingVia).
rep_tys ty = cls_tys ++ [ty]
rep_pred ty = mkClassPred cls (rep_tys ty)
rep_pred_o ty = SimplePredSpec { sps_pred = rep_pred ty
, sps_origin = deriv_origin
, sps_type_or_kind = TypeLevel
}
-- rep_pred is the representation dictionary, from where
-- we are going to get all the methods for the final
-- dictionary
deriv_origin = mkDerivOrigin sa_wildcard
-- Next we collect constraints for the class methods
-- If there are no methods, we don't need any constraints
-- Otherwise we need (C rep_ty), for the representation methods,
-- and constraints to coerce each individual method
meth_preds :: Type -> ThetaSpec
meth_preds ty
| null meths = [] -- No methods => no constraints
-- (#12814)
| otherwise = rep_pred_o ty : coercible_constraints ty
meths = classMethods cls
coercible_constraints ty
= [ SimplePredSpec
{ sps_pred = mkReprPrimEqPred t1 t2
, sps_origin = DerivOriginCoerce meth t1 t2 sa_wildcard
, sps_type_or_kind = TypeLevel
}
| meth <- meths
, let (Pair t1 t2) = mkCoerceClassMethEqn cls tvs
inst_tys ty meth ]
pure (meth_preds rep_ty)
{- Note [Inferring the instance context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are two sorts of 'deriving', as represented by the two constructors
for DerivContext:
* InferContext mb_wildcard: This can either be:
- The deriving clause for a data type.
(e.g, data T a = T1 a deriving( Eq ))
In this case, mb_wildcard = Nothing.
- A standalone declaration with an extra-constraints wildcard
(e.g., deriving instance _ => Eq (Foo a))
In this case, mb_wildcard = Just loc, where loc is the location
of the extra-constraints wildcard.
Here we must infer an instance context,
and generate instance declaration
instance Eq a => Eq (T a) where ...
* SupplyContext theta: standalone deriving
deriving instance Eq a => Eq (T a)
Here we only need to fill in the bindings;
the instance context (theta) is user-supplied
For the InferContext case, we must figure out the
instance context (inferConstraintsStock). Suppose we are inferring
the instance context for
C t1 .. tn (T s1 .. sm)
There are two cases
* (T s1 .. sm) :: * (the normal case)
Then we behave like Eq and guess (C t1 .. tn t)
for each data constructor arg of type t. More
details below.
* (T s1 .. sm) :: * -> * (the functor-like case)
Then we behave like Functor.
In both cases we produce a bunch of un-simplified constraints
and them simplify them in simplifyInstanceContexts; see
Note [Simplifying the instance context].
In the functor-like case, we may need to unify some kind variables with * in
order for the generated instance to be well-kinded. An example from #10524:
newtype Compose (f :: k2 -> *) (g :: k1 -> k2) (a :: k1)
= Compose (f (g a)) deriving Functor
Earlier in the deriving pipeline, GHC unifies the kind of Compose f g
(k1 -> *) with the kind of Functor's argument (* -> *), so k1 := *. But this
alone isn't enough, since k2 wasn't unified with *:
instance (Functor (f :: k2 -> *), Functor (g :: * -> k2)) =>
Functor (Compose f g) where ...
The two Functor constraints are ill-kinded. To ensure this doesn't happen, we:
1. Collect all of a datatype's subtypes which require functor-like
constraints.
2. For each subtype, create a substitution by unifying the subtype's kind
with (* -> *).
3. Compose all the substitutions into one, then apply that substitution to
all of the in-scope type variables and the instance types.
Note [Getting base classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functor and Typeable are defined in package 'base', and that is not available
when compiling 'ghc-prim'. So we must be careful that 'deriving' for stuff in
ghc-prim does not use Functor or Typeable implicitly via these lookups.
Note [Deriving and unboxed types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have some special hacks to support things like
data T = MkT Int# deriving ( Show )
Specifically, we use GHC.Tc.Deriv.Generate.box to box the Int# into an Int
(which we know how to show), and append a '#'. Parentheses are not required
for unboxed values (`MkT -3#` is a valid expression).
Note [Superclasses of derived instance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, a derived instance decl needs the superclasses of the derived
class too. So if we have
data T a = ...deriving( Ord )
then the initial context for Ord (T a) should include Eq (T a). Often this is
redundant; we'll also generate an Ord constraint for each constructor argument,
and that will probably generate enough constraints to make the Eq (T a) constraint
be satisfied too. But not always; consider:
data S a = S
instance Eq (S a)
instance Ord (S a)
data T a = MkT (S a) deriving( Ord )
instance Num a => Eq (T a)
The derived instance for (Ord (T a)) must have a (Num a) constraint!
Similarly consider:
data T a = MkT deriving( Data )
Here there *is* no argument field, but we must nevertheless generate
a context for the Data instances:
instance Typeable a => Data (T a) where ...
************************************************************************
* *
Finding the fixed point of deriving equations
* *
************************************************************************
Note [Simplifying the instance context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T a b = C1 (Foo a) (Bar b)
| C2 Int (T b a)
| C3 (T a a)
deriving (Eq)
We want to come up with an instance declaration of the form
instance (Ping a, Pong b, ...) => Eq (T a b) where
x == y = ...
It is pretty easy, albeit tedious, to fill in the code "...". The
trick is to figure out what the context for the instance decl is,
namely Ping, Pong and friends.
Let's call the context reqd for the T instance of class C at types
(a,b, ...) C (T a b). Thus:
Eq (T a b) = (Ping a, Pong b, ...)
Now we can get a (recursive) equation from the data decl. This part
is done by inferConstraintsStock.
Eq (T a b) = Eq (Foo a) u Eq (Bar b) -- From C1
u Eq (T b a) u Eq Int -- From C2
u Eq (T a a) -- From C3
Foo and Bar may have explicit instances for Eq, in which case we can
just substitute for them. Alternatively, either or both may have
their Eq instances given by deriving clauses, in which case they
form part of the system of equations.
Now all we need do is simplify and solve the equations, iterating to
find the least fixpoint. This is done by simplifyInstanceConstraints.
Notice that the order of the arguments can
switch around, as here in the recursive calls to T.
Let's suppose Eq (Foo a) = Eq a, and Eq (Bar b) = Ping b.
We start with:
Eq (T a b) = {} -- The empty set
Next iteration:
Eq (T a b) = Eq (Foo a) u Eq (Bar b) -- From C1
u Eq (T b a) u Eq Int -- From C2
u Eq (T a a) -- From C3
After simplification:
= Eq a u Ping b u {} u {} u {}
= Eq a u Ping b
Next iteration:
Eq (T a b) = Eq (Foo a) u Eq (Bar b) -- From C1
u Eq (T b a) u Eq Int -- From C2
u Eq (T a a) -- From C3
After simplification:
= Eq a u Ping b
u (Eq b u Ping a)
u (Eq a u Ping a)
= Eq a u Ping b u Eq b u Ping a
The next iteration gives the same result, so this is the fixpoint. We
need to make a canonical form of the RHS to ensure convergence. We do
this by simplifying the RHS to a form in which
- the classes constrain only tyvars
- the list is sorted by tyvar (major key) and then class (minor key)
- no duplicates, of course
Note [Deterministic simplifyInstanceContexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Canonicalisation uses nonDetCmpType which is nondeterministic. Sorting
with nonDetCmpType puts the returned lists in a nondeterministic order.
If we were to return them, we'd get class constraints in
nondeterministic order.
Consider:
data ADT a b = Z a b deriving Eq
The generated code could be either:
instance (Eq a, Eq b) => Eq (Z a b) where
Or:
instance (Eq b, Eq a) => Eq (Z a b) where
To prevent the order from being nondeterministic we only
canonicalize when comparing and return them in the same order as
simplifyDeriv returned them.
See also Note [nonDetCmpType nondeterminism]
-}
simplifyInstanceContexts :: [DerivSpec ThetaSpec]
-> TcM [DerivSpec ThetaType]
-- Used only for deriving clauses or standalone deriving with an
-- extra-constraints wildcard (InferContext)
-- See Note [Simplifying the instance context]
simplifyInstanceContexts [] = return []
simplifyInstanceContexts infer_specs
= do { traceTc "simplifyInstanceContexts" $ vcat (map pprDerivSpec infer_specs)
; final_specs <- iterate_deriv 1 initial_solutions
-- After simplification finishes, zonk the TcTyVars as described
-- in Note [Overlap and deriving].
; traverse zonkDerivSpec final_specs }
where
------------------------------------------------------------------
-- The initial solutions for the equations claim that each
-- instance has an empty context; this solution is certainly
-- in canonical form.
initial_solutions :: [ThetaType]
initial_solutions = [ [] | _ <- infer_specs ]
------------------------------------------------------------------
-- iterate_deriv calculates the next batch of solutions,
-- compares it with the current one; finishes if they are the
-- same, otherwise recurses with the new solutions.
-- It fails if any iteration fails
iterate_deriv :: Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
iterate_deriv n current_solns
| n > 20 -- Looks as if we are in an infinite loop
-- This can happen if we have -XUndecidableInstances
-- (See GHC.Tc.Solver.tcSimplifyDeriv.)
= pprPanic "solveDerivEqns: probable loop"
(vcat (map pprDerivSpec infer_specs) $$ ppr current_solns)
| otherwise
= do { -- Extend the inst info from the explicit instance decls
-- with the current set of solutions, and simplify each RHS
inst_specs <- zipWithM (\soln -> newDerivClsInst . setDerivSpecTheta soln)
current_solns infer_specs
; new_solns <- checkNoErrs $
extendLocalInstEnv inst_specs $
mapM simplifyDeriv infer_specs
; if (current_solns `eqSolution` new_solns) then
return [ setDerivSpecTheta soln spec
| (spec, soln) <- zip infer_specs current_solns ]
else
iterate_deriv (n+1) new_solns }
eqSolution = (liftEq . liftEq) eqType `on` canSolution
-- Canonicalise for comparison
-- See Note [Deterministic simplifyInstanceContexts]
canSolution = map (sortBy nonDetCmpType)
derivInstCtxt :: PredType -> SDoc
derivInstCtxt pred
= text "When deriving the instance for" <+> parens (ppr pred)
{-
***********************************************************************************
* *
* Simplify derived constraints
* *
***********************************************************************************
-}
-- | Given @instance (wanted) => C inst_ty@, simplify 'wanted' as much
-- as possible. Fail if not possible.
simplifyDeriv :: DerivSpec ThetaSpec
-> TcM ThetaType -- ^ Needed constraints (after simplification),
-- i.e. @['PredType']@.
simplifyDeriv (DS { ds_loc = loc, ds_tvs = tvs
, ds_cls = clas, ds_tys = inst_tys, ds_theta = deriv_rhs
, ds_skol_info = skol_info, ds_user_ctxt = user_ctxt })
= setSrcSpan loc $
addErrCtxt (derivInstCtxt (mkClassPred clas inst_tys)) $
do {
-- See [STEP DAC BUILD]
-- Generate the implication constraints, one for each method, to solve
-- with the skolemized variables. Start "one level down" because
-- we are going to wrap the result in an implication with tvs,
-- in step [DAC RESIDUAL]
; (tc_lvl, wanteds) <- captureThetaSpecConstraints user_ctxt deriv_rhs
; traceTc "simplifyDeriv inputs" $
vcat [ pprTyVars tvs $$ ppr deriv_rhs $$ ppr wanteds, ppr skol_info ]
-- See [STEP DAC SOLVE]
-- Simplify the constraints, starting at the same level at which
-- they are generated (c.f. the call to runTcSWithEvBinds in
-- simplifyInfer)
; (solved_wanteds, _) <- setTcLevel tc_lvl $
runTcS $
solveWanteds wanteds
-- It's not yet zonked! Obviously zonk it before peering at it
; solved_wanteds <- zonkWC solved_wanteds
-- See [STEP DAC HOIST]
-- From the simplified constraints extract a subset 'good' that will
-- become the context 'min_theta' for the derived instance.
; let residual_simple = approximateWC True solved_wanteds
head_size = pSizeClassPred clas inst_tys
good = mapMaybeBag get_good residual_simple
-- Returns @Just p@ (where @p@ is the type of the Ct) if a Ct is
-- suitable to be inferred in the context of a derived instance.
-- Returns @Nothing@ if the Ct is too exotic.
-- See (VD2) in Note [Valid 'deriving' predicate] in
-- GHC.Tc.Validity for what constitutes an exotic constraint.
get_good :: Ct -> Maybe PredType
get_good ct | validDerivPred head_size p = Just p
| otherwise = Nothing
where p = ctPred ct
; traceTc "simplifyDeriv outputs" $
vcat [ ppr tvs, ppr residual_simple, ppr good ]
-- Return the good unsolved constraints (unskolemizing on the way out.)
; let min_theta = mkMinimalBySCs id (bagToList good)
-- An important property of mkMinimalBySCs (used above) is that in
-- addition to removing constraints that are made redundant by
-- superclass relationships, it also removes _duplicate_
-- constraints.
-- See Note [Gathering and simplifying constraints for
-- DeriveAnyClass]
-- See [STEP DAC RESIDUAL]
-- Ensure that min_theta is enough to solve /all/ the constraints in
-- solved_wanteds, by solving the implication constraint
--
-- forall tvs. min_theta => solved_wanteds
; min_theta_vars <- mapM newEvVar min_theta
; (leftover_implic, _)
<- buildImplicationFor tc_lvl (getSkolemInfo skol_info) tvs
min_theta_vars solved_wanteds
-- This call to simplifyTop is purely for error reporting
-- See Note [Error reporting for deriving clauses]
-- See also Note [Valid 'deriving' predicate] in GHC.Tc.Validity, as this
-- line of code catches "exotic" constraints like the ones described in
-- (VD2) of that Note.
; simplifyTopImplic leftover_implic
; traceTc "GHC.Tc.Deriv" (ppr deriv_rhs $$ ppr min_theta)
-- Claim: the result instance declaration is guaranteed valid
-- Hence no need to call:
-- checkValidInstance tyvars theta clas inst_tys
-- See Note [Valid 'deriving' predicate] in GHC.Tc.Validity
; return min_theta }
{-
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
instance Show a => Show [a] where ..
instance Show [Char] where ...
Now a data type with deriving:
data T a = MkT [a] deriving( Show )
We want to get the derived instance
instance Show [a] => Show (T a) where...
and NOT
instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing
It's very like the situation when we're inferring the type
of a function
f x = show [x]
and we want to infer
f :: Show [a] => a -> String
As a result, we use vanilla, non-overlappable skolems when inferring the
context for the derived instances. Hence, we instantiate the type variables
using tcInstSkolTyVars, not tcInstSuperSkolTyVars.
We do this skolemisation in GHC.Tc.Deriv.mkEqnHelp, a function which occurs
very early in the deriving pipeline, so that by the time GHC needs to infer the
instance context, all of the types in the computed DerivSpec have been
skolemised appropriately. After the instance context inference has completed,
GHC zonks the TcTyVars in the DerivSpec to ensure that types like
a[sk:1] do not appear in -ddump-deriv output.
All of this is only needed when inferring an instance context, i.e., the
InferContext case. For the SupplyContext case, we don't bother skolemising
at all.
Note [Gathering and simplifying constraints for DeriveAnyClass]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DeriveAnyClass works quite differently from stock and newtype deriving in
the way it gathers and simplifies constraints to be used in a derived
instance's context. Stock and newtype deriving gather constraints by looking
at the data constructors of the data type for which we are deriving an
instance. But DeriveAnyClass doesn't need to know about a data type's
definition at all!
To see why, consider this example of DeriveAnyClass:
class Foo a where
bar :: forall b. Ix b => a -> b -> String
default bar :: (Show a, Ix c) => a -> c -> String
bar x y = show x ++ show (range (y,y))
baz :: Eq a => a -> a -> Bool
default baz :: (Ord a, Show a) => a -> a -> Bool
baz x y = compare x y == EQ
Because 'bar' and 'baz' have default signatures, this generates a top-level
definition for these generic default methods
$gdm_bar :: forall a. Foo a
=> forall c. (Show a, Ix c)
=> a -> c -> String
$gdm_bar x y = show x ++ show (range (y,y))
(and similarly for baz). Now consider a 'deriving' clause
data Maybe s = ... deriving anyclass Foo
This derives an instance of the form:
instance (CX) => Foo (Maybe s) where
bar = $gdm_bar
baz = $gdm_baz
Now it is GHC's job to fill in a suitable instance context (CX). If
GHC were typechecking the binding
bar = $gdm_bar
it would
* skolemise the expected type of bar
* instantiate the type of $gdm_bar with meta-type variables
* build an implication constraint
[STEP DAC BUILD]
So that's what we do. Fortunately, there is already functionality within GHC
to that does all of the above—namely, tcSubTypeSigma. In the example above,
we want to use tcSubTypeSigma to check the following subtyping relation:
forall c. (Show a, Ix c) => Maybe s -> c -> String -- actual type
<= forall b. (Ix b) => Maybe s -> b -> String -- expected type
That is, we check that the type of $gdm_bar (the actual type) is more
polymorphic than the type of bar (the expected type). We use SubTypePredSpec,
a special form of PredSpec that is only used by DeriveAnyClass, to store
the actual and expected types.
(Aside: having a separate SubTypePredSpec is not strictly necessary, as we
could theoretically construct this implication constraint by hand and store it
in a SimplePredSpec. In fact, GHC used to do this. However, this is easier
said than done, and there were numerous subtle bugs that resulted from getting
this step wrong, such as #20719. Ultimately, we decided that special-casing a
PredSpec specifically for DeriveAnyClass was worth it.)
tcSubTypeSigma will ultimately spit out an implication constraint, which will
look something like this (call it C1):
forall[2] b. Ix b => (Show (Maybe s), Ix cc,
Maybe s -> b -> String
~ Maybe s -> cc -> String)
Here:
* The level of this forall constraint is forall[2], because we are later
going to wrap it in a forall[1] in [STEP DAC RESIDUAL]
* The 'b' comes from the quantified type variable in the expected type
of bar. The 'cc' is a unification variable that comes from instantiating the
quantified type variable 'c' in $gdm_bar's type. The finer details of
skolemisation and metavariable instantiation are handled behind the scenes
by tcSubTypeSigma.
* It is important that `b` be distinct from `cc`. In this example, this is
clearly the case, but it is not always so obvious when the type variables are
hidden behind type synonyms. Suppose the example were written like this,
for example:
type Method a = forall b. Ix b => a -> b -> String
class Foo a where
bar :: Method a
default bar :: Show a => Method a
bar = ...
Both method signatures quantify a `b` once the `Method` type synonym is
expanded. To ensure that GHC doesn't confuse the two `b`s during
typechecking, tcSubTypeSigma instantiates the `b` in the original signature
with a fresh skolem and the `b` in the default signature with a fresh
unification variable. Doing so prevents #20719 from happening.
* The (Ix b) constraint comes from the context of bar's type. The
(Show (Maybe s)) and (Ix cc) constraints come from the context of $gdm_bar's
type.
* The equality constraint (Maybe s -> b -> String) ~ (Maybe s -> cc -> String)
comes from marrying up the instantiated type of $gdm_bar with the specified
type of bar. Notice that the type variables from the instance, 's' in this
case, are global to this constraint.
Note that it is vital that we instantiate the `c` in $gdm_bar's type with a new
unification variable for each iteration of simplifyDeriv. If we re-use the same
unification variable across multiple iterations, then bad things can happen,
such as #14933.
Similarly for 'baz', tcSubTypeSigma gives the constraint C2
forall[2]. Eq (Maybe s) => (Ord a, Show a,
Maybe s -> Maybe s -> Bool
~ Maybe s -> Maybe s -> Bool)
In this case baz has no local quantification, so the implication
constraint has no local skolems and there are no unification
variables.
[STEP DAC SOLVE]
We can combine these two implication constraints into a single
constraint (C1, C2), and simplify, unifying cc:=b, to get:
forall[2] b. Ix b => Show a
/\
forall[2]. Eq (Maybe s) => (Ord a, Show a)
[STEP DAC HOIST]
Let's call that (C1', C2'). Now we need to hoist the unsolved
constraints out of the implications to become our candidate for
(CX). That is done by approximateWC, which will return:
(Show a, Ord a, Show a)
Now we can use mkMinimalBySCs to remove superclasses and duplicates, giving
(Show a, Ord a)
And that's what GHC uses for CX.
[STEP DAC RESIDUAL]
In this case we have solved all the leftover constraints, but what if
we don't? Simple! We just form the final residual constraint
forall[1] s. CX => (C1',C2')
and simplify that. In simple cases it'll succeed easily, because CX
literally contains the constraints in C1', C2', but if there is anything
more complicated it will be reported in a civilised way.
Note [Error reporting for deriving clauses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A surprisingly tricky aspect of deriving to get right is reporting sensible
error messages. In particular, if simplifyDeriv reaches a constraint that it
cannot solve, which might include:
1. Insoluble constraints
2. "Exotic" constraints (See Note [Valid 'deriving' predicate] in
GHC.Tc.Validity)
Then we report an error immediately in simplifyDeriv.
Another possible choice is to punt and let another part of the typechecker
(e.g., simplifyInstanceContexts) catch the errors. But this tends to lead
to worse error messages, so we do it directly in simplifyDeriv.
simplifyDeriv checks for errors in a clever way. If the deriving machinery
infers the context (Foo a)--that is, if this instance is to be generated:
instance Foo a => ...
Then we form an implication of the form:
forall a. Foo a => <residual_wanted_constraints>
And pass it to the simplifier. If the context (Foo a) is enough to discharge
all the constraints in <residual_wanted_constraints>, then everything is
hunky-dory. But if <residual_wanted_constraints> contains, say, an insoluble
constraint, then (Foo a) won't be able to solve it, causing GHC to error.
-}
|