1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
|
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE ParallelListComp #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Tc.Errors(
reportUnsolved, reportAllUnsolved, warnAllUnsolved,
warnDefaulting,
-- * GHC API helper functions
solverReportMsg_ExpectedActuals,
) where
import GHC.Prelude
import GHC.Driver.Env (hsc_units)
import GHC.Driver.Session
import GHC.Driver.Ppr
import GHC.Driver.Config.Diagnostic
import GHC.Rename.Unbound
import GHC.Tc.Types
import GHC.Tc.Utils.Monad
import GHC.Tc.Errors.Types
import GHC.Tc.Errors.Ppr
import GHC.Tc.Types.Constraint
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Env( tcInitTidyEnv )
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Unify ( checkTyVarEq )
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.EvTerm
import GHC.Tc.Instance.Family
import GHC.Tc.Utils.Instantiate
import {-# SOURCE #-} GHC.Tc.Errors.Hole ( findValidHoleFits, getHoleFitDispConfig, pprHoleFit )
import GHC.Types.Name
import GHC.Types.Name.Reader ( lookupGRE_Name, GlobalRdrEnv, mkRdrUnqual
, emptyLocalRdrEnv, lookupGlobalRdrEnv , lookupLocalRdrOcc )
import GHC.Types.Id
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Name.Env
import GHC.Types.SrcLoc
import GHC.Types.Basic
import GHC.Types.Error
import qualified GHC.Types.Unique.Map as UM
--import GHC.Rename.Unbound ( unknownNameSuggestions, WhatLooking(..) )
import GHC.Unit.Module
import qualified GHC.LanguageExtensions as LangExt
import GHC.Core.Predicate
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.TyCo.Ppr ( pprTyVars )
import GHC.Core.InstEnv
import GHC.Core.TyCon
import GHC.Core.DataCon
import GHC.Utils.Error (diagReasonSeverity, pprLocMsgEnvelope )
import GHC.Utils.Misc
import GHC.Utils.Outputable as O
import GHC.Utils.Panic
import GHC.Utils.FV ( fvVarList, unionFV )
import GHC.Data.Bag
import GHC.Data.List.SetOps ( equivClasses, nubOrdBy )
import GHC.Data.Maybe
import qualified GHC.Data.Strict as Strict
import Control.Monad ( unless, when, foldM, forM_ )
import Data.Foldable ( toList )
import Data.Function ( on )
import Data.List ( partition, sort, sortBy )
import Data.List.NonEmpty ( NonEmpty(..), nonEmpty )
import qualified Data.List.NonEmpty as NE
import Data.Ord ( comparing )
import qualified Data.Semigroup as S
{-
************************************************************************
* *
\section{Errors and contexts}
* *
************************************************************************
ToDo: for these error messages, should we note the location as coming
from the insts, or just whatever seems to be around in the monad just
now?
Note [Deferring coercion errors to runtime]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
While developing, sometimes it is desirable to allow compilation to succeed even
if there are type errors in the code. Consider the following case:
module Main where
a :: Int
a = 'a'
main = print "b"
Even though `a` is ill-typed, it is not used in the end, so if all that we're
interested in is `main` it is handy to be able to ignore the problems in `a`.
Since we treat type equalities as evidence, this is relatively simple. Whenever
we run into a type mismatch in GHC.Tc.Utils.Unify, we normally just emit an error. But it
is always safe to defer the mismatch to the main constraint solver. If we do
that, `a` will get transformed into
co :: Int ~ Char
co = ...
a :: Int
a = 'a' `cast` co
The constraint solver would realize that `co` is an insoluble constraint, and
emit an error with `reportUnsolved`. But we can also replace the right-hand side
of `co` with `error "Deferred type error: Int ~ Char"`. This allows the program
to compile, and it will run fine unless we evaluate `a`. This is what
`deferErrorsToRuntime` does.
It does this by keeping track of which errors correspond to which coercion
in GHC.Tc.Errors. GHC.Tc.Errors.reportTidyWanteds does not print the errors
and does not fail if -fdefer-type-errors is on, so that we can continue
compilation. The errors are turned into warnings in `reportUnsolved`.
-}
-- | Report unsolved goals as errors or warnings. We may also turn some into
-- deferred run-time errors if `-fdefer-type-errors` is on.
reportUnsolved :: WantedConstraints -> TcM (Bag EvBind)
reportUnsolved wanted
= do { binds_var <- newTcEvBinds
; defer_errors <- goptM Opt_DeferTypeErrors
; let type_errors | not defer_errors = ErrorWithoutFlag
| otherwise = WarningWithFlag Opt_WarnDeferredTypeErrors
; defer_holes <- goptM Opt_DeferTypedHoles
; let expr_holes | not defer_holes = ErrorWithoutFlag
| otherwise = WarningWithFlag Opt_WarnTypedHoles
; partial_sigs <- xoptM LangExt.PartialTypeSignatures
; let type_holes | not partial_sigs
= ErrorWithoutFlag
| otherwise
= WarningWithFlag Opt_WarnPartialTypeSignatures
; defer_out_of_scope <- goptM Opt_DeferOutOfScopeVariables
; let out_of_scope_holes | not defer_out_of_scope
= ErrorWithoutFlag
| otherwise
= WarningWithFlag Opt_WarnDeferredOutOfScopeVariables
; report_unsolved type_errors expr_holes
type_holes out_of_scope_holes
binds_var wanted
; ev_binds <- getTcEvBindsMap binds_var
; return (evBindMapBinds ev_binds)}
-- | Report *all* unsolved goals as errors, even if -fdefer-type-errors is on
-- However, do not make any evidence bindings, because we don't
-- have any convenient place to put them.
-- NB: Type-level holes are OK, because there are no bindings.
-- See Note [Deferring coercion errors to runtime]
-- Used by solveEqualities for kind equalities
-- (see Note [Failure in local type signatures] in GHC.Tc.Solver)
reportAllUnsolved :: WantedConstraints -> TcM ()
reportAllUnsolved wanted
= do { ev_binds <- newNoTcEvBinds
; partial_sigs <- xoptM LangExt.PartialTypeSignatures
; let type_holes | not partial_sigs = ErrorWithoutFlag
| otherwise = WarningWithFlag Opt_WarnPartialTypeSignatures
; report_unsolved ErrorWithoutFlag
ErrorWithoutFlag type_holes ErrorWithoutFlag
ev_binds wanted }
-- | Report all unsolved goals as warnings (but without deferring any errors to
-- run-time). See Note [Safe Haskell Overlapping Instances Implementation] in
-- "GHC.Tc.Solver"
warnAllUnsolved :: WantedConstraints -> TcM ()
warnAllUnsolved wanted
= do { ev_binds <- newTcEvBinds
; report_unsolved WarningWithoutFlag
WarningWithoutFlag
WarningWithoutFlag
WarningWithoutFlag
ev_binds wanted }
-- | Report unsolved goals as errors or warnings.
report_unsolved :: DiagnosticReason -- Deferred type errors
-> DiagnosticReason -- Expression holes
-> DiagnosticReason -- Type holes
-> DiagnosticReason -- Out of scope holes
-> EvBindsVar -- cec_binds
-> WantedConstraints -> TcM ()
report_unsolved type_errors expr_holes
type_holes out_of_scope_holes binds_var wanted
| isEmptyWC wanted
= return ()
| otherwise
= do { traceTc "reportUnsolved {" $
vcat [ text "type errors:" <+> ppr type_errors
, text "expr holes:" <+> ppr expr_holes
, text "type holes:" <+> ppr type_holes
, text "scope holes:" <+> ppr out_of_scope_holes ]
; traceTc "reportUnsolved (before zonking and tidying)" (ppr wanted)
; wanted <- zonkWC wanted -- Zonk to reveal all information
; let tidy_env = tidyFreeTyCoVars emptyTidyEnv free_tvs
free_tvs = filterOut isCoVar $
tyCoVarsOfWCList wanted
-- tyCoVarsOfWC returns free coercion *holes*, even though
-- they are "bound" by other wanted constraints. They in
-- turn may mention variables bound further in, which makes
-- no sense. Really we should not return those holes at all;
-- for now we just filter them out.
; traceTc "reportUnsolved (after zonking):" $
vcat [ text "Free tyvars:" <+> pprTyVars free_tvs
, text "Tidy env:" <+> ppr tidy_env
, text "Wanted:" <+> ppr wanted ]
; warn_redundant <- woptM Opt_WarnRedundantConstraints
; exp_syns <- goptM Opt_PrintExpandedSynonyms
; let err_ctxt = CEC { cec_encl = []
, cec_tidy = tidy_env
, cec_defer_type_errors = type_errors
, cec_expr_holes = expr_holes
, cec_type_holes = type_holes
, cec_out_of_scope_holes = out_of_scope_holes
, cec_suppress = insolubleWC wanted
-- See Note [Suppressing error messages]
-- Suppress low-priority errors if there
-- are insoluble errors anywhere;
-- See #15539 and c.f. setting ic_status
-- in GHC.Tc.Solver.setImplicationStatus
, cec_warn_redundant = warn_redundant
, cec_expand_syns = exp_syns
, cec_binds = binds_var }
; tc_lvl <- getTcLevel
; reportWanteds err_ctxt tc_lvl wanted
; traceTc "reportUnsolved }" empty }
--------------------------------------------
-- Internal functions
--------------------------------------------
-- | Make a report from a single 'TcSolverReportMsg'.
important :: SolverReportErrCtxt -> TcSolverReportMsg -> SolverReport
important ctxt doc
= SolverReport { sr_important_msg = SolverReportWithCtxt ctxt doc
, sr_supplementary = []
, sr_hints = [] }
add_relevant_bindings :: RelevantBindings -> SolverReport -> SolverReport
add_relevant_bindings binds report@(SolverReport { sr_supplementary = supp })
= report { sr_supplementary = SupplementaryBindings binds : supp }
add_report_hints :: [GhcHint] -> SolverReport -> SolverReport
add_report_hints hints report@(SolverReport { sr_hints = prev_hints })
= report { sr_hints = prev_hints ++ hints }
-- | Returns True <=> the SolverReportErrCtxt indicates that something is deferred
deferringAnyBindings :: SolverReportErrCtxt -> Bool
-- Don't check cec_type_holes, as these don't cause bindings to be deferred
deferringAnyBindings (CEC { cec_defer_type_errors = ErrorWithoutFlag
, cec_expr_holes = ErrorWithoutFlag
, cec_out_of_scope_holes = ErrorWithoutFlag }) = False
deferringAnyBindings _ = True
maybeSwitchOffDefer :: EvBindsVar -> SolverReportErrCtxt -> SolverReportErrCtxt
-- Switch off defer-type-errors inside CoEvBindsVar
-- See Note [Failing equalities with no evidence bindings]
maybeSwitchOffDefer evb ctxt
| CoEvBindsVar{} <- evb
= ctxt { cec_defer_type_errors = ErrorWithoutFlag
, cec_expr_holes = ErrorWithoutFlag
, cec_out_of_scope_holes = ErrorWithoutFlag }
| otherwise
= ctxt
{- Note [Failing equalities with no evidence bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we go inside an implication that has no term evidence
(e.g. unifying under a forall), we can't defer type errors. You could
imagine using the /enclosing/ bindings (in cec_binds), but that may
not have enough stuff in scope for the bindings to be well typed. So
we just switch off deferred type errors altogether. See #14605.
This is done by maybeSwitchOffDefer. It's also useful in one other
place: see Note [Wrapping failing kind equalities] in GHC.Tc.Solver.
Note [Suppressing error messages]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The cec_suppress flag says "don't report any errors". Instead, just create
evidence bindings (as usual). It's used when more important errors have occurred.
Specifically (see reportWanteds)
* If there are insoluble Givens, then we are in unreachable code and all bets
are off. So don't report any further errors.
* If there are any insolubles (eg Int~Bool), here or in a nested implication,
then suppress errors from the simple constraints here. Sometimes the
simple-constraint errors are a knock-on effect of the insolubles.
This suppression behaviour is controlled by the Bool flag in
ReportErrorSpec, as used in reportWanteds.
But we need to take care: flags can turn errors into warnings, and we
don't want those warnings to suppress subsequent errors (including
suppressing the essential addTcEvBind for them: #15152). So in
tryReporter we use askNoErrs to see if any error messages were
/actually/ produced; if not, we don't switch on suppression.
A consequence is that warnings never suppress warnings, so turning an
error into a warning may allow subsequent warnings to appear that were
previously suppressed. (e.g. partial-sigs/should_fail/T14584)
-}
reportImplic :: SolverReportErrCtxt -> Implication -> TcM ()
reportImplic ctxt implic@(Implic { ic_skols = tvs
, ic_given = given
, ic_wanted = wanted, ic_binds = evb
, ic_status = status, ic_info = info
, ic_env = tcl_env
, ic_tclvl = tc_lvl })
| BracketSkol <- info
, not insoluble
= return () -- For Template Haskell brackets report only
-- definite errors. The whole thing will be re-checked
-- later when we plug it in, and meanwhile there may
-- certainly be un-satisfied constraints
| otherwise
= do { traceTc "reportImplic" $ vcat
[ text "tidy env:" <+> ppr (cec_tidy ctxt)
, text "skols: " <+> pprTyVars tvs
, text "tidy skols:" <+> pprTyVars tvs' ]
; when bad_telescope $ reportBadTelescope ctxt tcl_env info tvs
-- Do /not/ use the tidied tvs because then are in the
-- wrong order, so tidying will rename things wrongly
; reportWanteds ctxt' tc_lvl wanted
; when (cec_warn_redundant ctxt) $
warnRedundantConstraints ctxt' tcl_env info' dead_givens }
where
insoluble = isInsolubleStatus status
(env1, tvs') = tidyVarBndrs (cec_tidy ctxt) $
scopedSort tvs
-- scopedSort: the ic_skols may not be in dependency order
-- (see Note [Skolems in an implication] in GHC.Tc.Types.Constraint)
-- but tidying goes wrong on out-of-order constraints;
-- so we sort them here before tidying
info' = tidySkolemInfoAnon env1 info
implic' = implic { ic_skols = tvs'
, ic_given = map (tidyEvVar env1) given
, ic_info = info' }
ctxt1 = maybeSwitchOffDefer evb ctxt
ctxt' = ctxt1 { cec_tidy = env1
, cec_encl = implic' : cec_encl ctxt
, cec_suppress = insoluble || cec_suppress ctxt
-- Suppress inessential errors if there
-- are insolubles anywhere in the
-- tree rooted here, or we've come across
-- a suppress-worthy constraint higher up (#11541)
, cec_binds = evb }
dead_givens = case status of
IC_Solved { ics_dead = dead } -> dead
_ -> []
bad_telescope = case status of
IC_BadTelescope -> True
_ -> False
warnRedundantConstraints :: SolverReportErrCtxt -> TcLclEnv -> SkolemInfoAnon -> [EvVar] -> TcM ()
-- See Note [Tracking redundant constraints] in GHC.Tc.Solver
warnRedundantConstraints ctxt env info redundant_evs
| null redundant_evs
= return ()
| SigSkol user_ctxt _ _ <- info
-- When dealing with a user-written type signature,
-- we want to add "In the type signature for f".
= restoreLclEnv env $
setSrcSpan (redundantConstraintsSpan user_ctxt) $
report_redundant_msg True
-- ^^^^ add "In the type signature..."
| otherwise
-- But for InstSkol there already *is* a surrounding
-- "In the instance declaration for Eq [a]" context
-- and we don't want to say it twice. Seems a bit ad-hoc
= restoreLclEnv env
$ report_redundant_msg False
-- ^^^^^ don't add "In the type signature..."
where
report_redundant_msg :: Bool -- whether to add "In the type signature..." to the diagnostic
-> TcRn ()
report_redundant_msg show_info
= do { lcl_env <- getLclEnv
; msg <-
mkErrorReport
lcl_env
(TcRnRedundantConstraints redundant_evs (info, show_info))
(Just ctxt)
[]
; reportDiagnostic msg }
reportBadTelescope :: SolverReportErrCtxt -> TcLclEnv -> SkolemInfoAnon -> [TcTyVar] -> TcM ()
reportBadTelescope ctxt env (ForAllSkol telescope) skols
= do { msg <- mkErrorReport
env
(TcRnSolverReport report ErrorWithoutFlag noHints)
(Just ctxt)
[]
; reportDiagnostic msg }
where
report = SolverReportWithCtxt ctxt $ BadTelescope telescope skols
reportBadTelescope _ _ skol_info skols
= pprPanic "reportBadTelescope" (ppr skol_info $$ ppr skols)
-- | Should we completely ignore this constraint in error reporting?
-- It *must* be the case that any constraint for which this returns True
-- somehow causes an error to be reported elsewhere.
-- See Note [Constraints to ignore].
ignoreConstraint :: Ct -> Bool
ignoreConstraint ct
| AssocFamPatOrigin <- ctOrigin ct
= True
| otherwise
= False
-- | Makes an error item from a constraint, calculating whether or not
-- the item should be suppressed. See Note [Wanteds rewrite Wanteds]
-- in GHC.Tc.Types.Constraint. Returns Nothing if we should just ignore
-- a constraint. See Note [Constraints to ignore].
mkErrorItem :: Ct -> TcM (Maybe ErrorItem)
mkErrorItem ct
| ignoreConstraint ct
= do { traceTc "Ignoring constraint:" (ppr ct)
; return Nothing } -- See Note [Constraints to ignore]
| otherwise
= do { let loc = ctLoc ct
flav = ctFlavour ct
; (suppress, m_evdest) <- case ctEvidence ct of
CtGiven {} -> return (False, Nothing)
CtWanted { ctev_rewriters = rewriters, ctev_dest = dest }
-> do { supp <- anyUnfilledCoercionHoles rewriters
; return (supp, Just dest) }
; let m_reason = case ct of CIrredCan { cc_reason = reason } -> Just reason
_ -> Nothing
; return $ Just $ EI { ei_pred = ctPred ct
, ei_evdest = m_evdest
, ei_flavour = flav
, ei_loc = loc
, ei_m_reason = m_reason
, ei_suppress = suppress }}
----------------------------------------------------------------
reportWanteds :: SolverReportErrCtxt -> TcLevel -> WantedConstraints -> TcM ()
reportWanteds ctxt tc_lvl wc@(WC { wc_simple = simples, wc_impl = implics
, wc_errors = errs })
| isEmptyWC wc = traceTc "reportWanteds empty WC" empty
| otherwise
= do { tidy_items <- mapMaybeM mkErrorItem tidy_cts
; traceTc "reportWanteds 1" (vcat [ text "Simples =" <+> ppr simples
, text "Suppress =" <+> ppr (cec_suppress ctxt)
, text "tidy_cts =" <+> ppr tidy_cts
, text "tidy_items =" <+> ppr tidy_items
, text "tidy_errs =" <+> ppr tidy_errs ])
-- This check makes sure that we aren't suppressing the only error that will
-- actually stop compilation
; assertPprM
( do { errs_already <- ifErrsM (return True) (return False)
; return $
errs_already || -- we already reported an error (perhaps from an outer implication)
null simples || -- no errors to report here
any ignoreConstraint simples || -- one error is ignorable (is reported elsewhere)
not (all ei_suppress tidy_items) -- not all errors are suppressed
} )
(vcat [text "reportWanteds is suppressing all errors"])
-- First, deal with any out-of-scope errors:
; let (out_of_scope, other_holes, not_conc_errs) = partition_errors tidy_errs
-- don't suppress out-of-scope errors
ctxt_for_scope_errs = ctxt { cec_suppress = False }
; (_, no_out_of_scope) <- askNoErrs $
reportHoles tidy_items ctxt_for_scope_errs out_of_scope
-- Next, deal with things that are utterly wrong
-- Like Int ~ Bool (incl nullary TyCons)
-- or Int ~ t a (AppTy on one side)
-- These /ones/ are not suppressed by the incoming context
-- (but will be by out-of-scope errors)
; let ctxt_for_insols = ctxt { cec_suppress = not no_out_of_scope }
; reportHoles tidy_items ctxt_for_insols other_holes
-- holes never suppress
; reportNotConcreteErrs ctxt_for_insols not_conc_errs
-- See Note [Suppressing confusing errors]
; let (suppressed_items, items0) = partition suppress tidy_items
; traceTc "reportWanteds suppressed:" (ppr suppressed_items)
; (ctxt1, items1) <- tryReporters ctxt_for_insols report1 items0
-- Now all the other constraints. We suppress errors here if
-- any of the first batch failed, or if the enclosing context
-- says to suppress
; let ctxt2 = ctxt1 { cec_suppress = cec_suppress ctxt || cec_suppress ctxt1 }
; (ctxt3, leftovers) <- tryReporters ctxt2 report2 items1
; massertPpr (null leftovers)
(text "The following unsolved Wanted constraints \
\have not been reported to the user:"
$$ ppr leftovers)
; mapBagM_ (reportImplic ctxt2) implics
-- NB ctxt2: don't suppress inner insolubles if there's only a
-- wanted insoluble here; but do suppress inner insolubles
-- if there's a *given* insoluble here (= inaccessible code)
-- Only now, if there are no errors, do we report suppressed ones
-- See Note [Suppressing confusing errors]
-- We don't need to update the context further because of the
-- whenNoErrs guard
; whenNoErrs $
do { (_, more_leftovers) <- tryReporters ctxt3 report3 suppressed_items
; massertPpr (null more_leftovers) (ppr more_leftovers) } }
where
env = cec_tidy ctxt
tidy_cts = bagToList (mapBag (tidyCt env) simples)
tidy_errs = bagToList (mapBag (tidyDelayedError env) errs)
partition_errors :: [DelayedError] -> ([Hole], [Hole], [NotConcreteError])
partition_errors = go [] [] []
where
go out_of_scope other_holes syn_eqs []
= (out_of_scope, other_holes, syn_eqs)
go es1 es2 es3 (err:errs)
| (es1, es2, es3) <- go es1 es2 es3 errs
= case err of
DE_Hole hole
| isOutOfScopeHole hole
-> (hole : es1, es2, es3)
| otherwise
-> (es1, hole : es2, es3)
DE_NotConcrete err
-> (es1, es2, err : es3)
-- See Note [Suppressing confusing errors]
suppress :: ErrorItem -> Bool
suppress item
| Wanted <- ei_flavour item
= is_ww_fundep_item item
| otherwise
= False
-- report1: ones that should *not* be suppressed by
-- an insoluble somewhere else in the tree
-- It's crucial that anything that is considered insoluble
-- (see GHC.Tc.Utils.insolublWantedCt) is caught here, otherwise
-- we might suppress its error message, and proceed on past
-- type checking to get a Lint error later
report1 = [ ("custom_error", is_user_type_error, True, mkUserTypeErrorReporter)
, given_eq_spec
, ("insoluble2", utterly_wrong, True, mkGroupReporter mkEqErr)
, ("skolem eq1", very_wrong, True, mkSkolReporter)
, ("FixedRuntimeRep", is_FRR, True, mkGroupReporter mkFRRErr)
, ("skolem eq2", skolem_eq, True, mkSkolReporter)
, ("non-tv eq", non_tv_eq, True, mkSkolReporter)
-- The only remaining equalities are alpha ~ ty,
-- where alpha is untouchable; and representational equalities
-- Prefer homogeneous equalities over hetero, because the
-- former might be holding up the latter.
-- See Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Canonical
, ("Homo eqs", is_homo_equality, True, mkGroupReporter mkEqErr)
, ("Other eqs", is_equality, True, mkGroupReporter mkEqErr)
]
-- report2: we suppress these if there are insolubles elsewhere in the tree
report2 = [ ("Implicit params", is_ip, False, mkGroupReporter mkIPErr)
, ("Irreds", is_irred, False, mkGroupReporter mkIrredErr)
, ("Dicts", is_dict, False, mkGroupReporter mkDictErr) ]
-- report3: suppressed errors should be reported as categorized by either report1
-- or report2. Keep this in sync with the suppress function above
report3 = [ ("wanted/wanted fundeps", is_ww_fundep, True, mkGroupReporter mkEqErr)
]
-- rigid_nom_eq, rigid_nom_tv_eq,
is_dict, is_equality, is_ip, is_FRR, is_irred :: ErrorItem -> Pred -> Bool
is_given_eq item pred
| Given <- ei_flavour item
, EqPred {} <- pred = True
| otherwise = False
-- I think all given residuals are equalities
-- Things like (Int ~N Bool)
utterly_wrong _ (EqPred NomEq ty1 ty2) = isRigidTy ty1 && isRigidTy ty2
utterly_wrong _ _ = False
-- Things like (a ~N Int)
very_wrong _ (EqPred NomEq ty1 ty2) = isSkolemTy tc_lvl ty1 && isRigidTy ty2
very_wrong _ _ = False
-- Representation-polymorphism errors, to be reported using mkFRRErr.
is_FRR item _ = isJust $ fixedRuntimeRepOrigin_maybe item
-- Things like (a ~N b) or (a ~N F Bool)
skolem_eq _ (EqPred NomEq ty1 _) = isSkolemTy tc_lvl ty1
skolem_eq _ _ = False
-- Things like (F a ~N Int)
non_tv_eq _ (EqPred NomEq ty1 _) = not (isTyVarTy ty1)
non_tv_eq _ _ = False
is_user_type_error item _ = isUserTypeError (errorItemPred item)
is_homo_equality _ (EqPred _ ty1 ty2)
= typeKind ty1 `tcEqType` typeKind ty2
is_homo_equality _ _
= False
is_equality _(EqPred {}) = True
is_equality _ _ = False
is_dict _ (ClassPred {}) = True
is_dict _ _ = False
is_ip _ (ClassPred cls _) = isIPClass cls
is_ip _ _ = False
is_irred _ (IrredPred {}) = True
is_irred _ _ = False
-- See situation (1) of Note [Suppressing confusing errors]
is_ww_fundep item _ = is_ww_fundep_item item
is_ww_fundep_item = isWantedWantedFunDepOrigin . errorItemOrigin
given_eq_spec -- See Note [Given errors]
| has_gadt_match_here
= ("insoluble1a", is_given_eq, True, mkGivenErrorReporter)
| otherwise
= ("insoluble1b", is_given_eq, False, ignoreErrorReporter)
-- False means don't suppress subsequent errors
-- Reason: we don't report all given errors
-- (see mkGivenErrorReporter), and we should only suppress
-- subsequent errors if we actually report this one!
-- #13446 is an example
-- See Note [Given errors]
has_gadt_match_here = has_gadt_match (cec_encl ctxt)
has_gadt_match [] = False
has_gadt_match (implic : implics)
| PatSkol {} <- ic_info implic
, ic_given_eqs implic /= NoGivenEqs
, ic_warn_inaccessible implic
-- Don't bother doing this if -Winaccessible-code isn't enabled.
-- See Note [Avoid -Winaccessible-code when deriving] in GHC.Tc.TyCl.Instance.
= True
| otherwise
= has_gadt_match implics
---------------
isSkolemTy :: TcLevel -> Type -> Bool
-- The type is a skolem tyvar
isSkolemTy tc_lvl ty
| Just tv <- getTyVar_maybe ty
= isSkolemTyVar tv
|| (isTyVarTyVar tv && isTouchableMetaTyVar tc_lvl tv)
-- The last case is for touchable TyVarTvs
-- we postpone untouchables to a latter test (too obscure)
| otherwise
= False
isTyFun_maybe :: Type -> Maybe TyCon
isTyFun_maybe ty = case tcSplitTyConApp_maybe ty of
Just (tc,_) | isTypeFamilyTyCon tc -> Just tc
_ -> Nothing
{- Note [Suppressing confusing errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Certain errors we might encounter are potentially confusing to users.
If there are any other errors to report, at all, we want to suppress these.
Which errors (only 1 case right now):
1) Errors which arise from the interaction of two Wanted fun-dep constraints.
Example:
class C a b | a -> b where
op :: a -> b -> b
foo _ = op True Nothing
bar _ = op False []
Here, we could infer
foo :: C Bool (Maybe a) => p -> Maybe a
bar :: C Bool [a] => p -> [a]
(The unused arguments suppress the monomorphism restriction.) The problem
is that these types can't both be correct, as they violate the functional
dependency. Yet reporting an error here is awkward: we must
non-deterministically choose either foo or bar to reject. We thus want
to report this problem only when there is nothing else to report.
See typecheck/should_fail/T13506 for an example of when to suppress
the error. The case above is actually accepted, because foo and bar
are checked separately, and thus the two fundep constraints never
encounter each other. It is test case typecheck/should_compile/FunDepOrigin1.
This case applies only when both fundeps are *Wanted* fundeps; when
both are givens, the error represents unreachable code. For
a Given/Wanted case, see #9612.
Mechanism:
We use the `suppress` function within reportWanteds to filter out these two
cases, then report all other errors. Lastly, we return to these suppressed
ones and report them only if there have been no errors so far.
Note [Constraints to ignore]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some constraints are meant only to aid the solver by unification; a failure
to solve them is not necessarily an error to report to the user. It is critical
that compilation is aborted elsewhere if there are any ignored constraints here;
they will remain unfilled, and might have been used to rewrite another constraint.
Currently, the constraints to ignore are:
1) Constraints generated in order to unify associated type instance parameters
with class parameters. Here are two illustrative examples:
class C (a :: k) where
type F (b :: k)
instance C True where
type F a = Int
instance C Left where
type F (Left :: a -> Either a b) = Bool
In the first instance, we want to infer that `a` has type Bool. So we emit
a constraint unifying kappa (the guessed type of `a`) with Bool. All is well.
In the second instance, we process the associated type instance only
after fixing the quantified type variables of the class instance. We thus
have skolems a1 and b1 such that the class instance is for (Left :: a1 -> Either a1 b1).
Unifying a1 and b1 with a and b in the type instance will fail, but harmlessly so.
checkConsistentFamInst checks for this, and will fail if anything has gone
awry. Really the equality constraints emitted are just meant as an aid, not
a requirement. This is test case T13972.
We detect this case by looking for an origin of AssocFamPatOrigin; constraints
with this origin are dropped entirely during error message reporting.
If there is any trouble, checkValidFamInst bleats, aborting compilation.
-}
--------------------------------------------
-- Reporters
--------------------------------------------
type Reporter
= SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM ()
type ReporterSpec
= ( String -- Name
, ErrorItem -> Pred -> Bool -- Pick these ones
, Bool -- True <=> suppress subsequent reporters
, Reporter) -- The reporter itself
mkSkolReporter :: Reporter
-- Suppress duplicates with either the same LHS, or same location
-- Pre-condition: all items are equalities
mkSkolReporter ctxt items
= mapM_ (reportGroup mkEqErr ctxt) (group (toList items))
where
group [] = []
group (item:items) = (item :| yeses) : group noes
where
(yeses, noes) = partition (group_with item) items
group_with item1 item2
| EQ <- cmp_loc item1 item2 = True
| eq_lhs_type item1 item2 = True
| otherwise = False
reportHoles :: [ErrorItem] -- other (tidied) constraints
-> SolverReportErrCtxt -> [Hole] -> TcM ()
reportHoles tidy_items ctxt holes
= do
diag_opts <- initDiagOpts <$> getDynFlags
let severity = diagReasonSeverity diag_opts (cec_type_holes ctxt)
holes' = filter (keepThisHole severity) holes
-- Zonk and tidy all the TcLclEnvs before calling `mkHoleError`
-- because otherwise types will be zonked and tidied many times over.
(tidy_env', lcl_name_cache) <- zonkTidyTcLclEnvs (cec_tidy ctxt) (map (ctl_env . hole_loc) holes')
let ctxt' = ctxt { cec_tidy = tidy_env' }
forM_ holes' $ \hole -> do { msg <- mkHoleError lcl_name_cache tidy_items ctxt' hole
; reportDiagnostic msg }
keepThisHole :: Severity -> Hole -> Bool
-- See Note [Skip type holes rapidly]
keepThisHole sev hole
= case hole_sort hole of
ExprHole {} -> True
TypeHole -> keep_type_hole
ConstraintHole -> keep_type_hole
where
keep_type_hole = case sev of
SevIgnore -> False
_ -> True
-- | zonkTidyTcLclEnvs takes a bunch of 'TcLclEnv's, each from a Hole.
-- It returns a ('Name' :-> 'Type') mapping which gives the zonked, tidied
-- type for each Id in any of the binder stacks in the 'TcLclEnv's.
-- Since there is a huge overlap between these stacks, is is much,
-- much faster to do them all at once, avoiding duplication.
zonkTidyTcLclEnvs :: TidyEnv -> [TcLclEnv] -> TcM (TidyEnv, NameEnv Type)
zonkTidyTcLclEnvs tidy_env lcls = foldM go (tidy_env, emptyNameEnv) (concatMap tcl_bndrs lcls)
where
go envs tc_bndr = case tc_bndr of
TcTvBndr {} -> return envs
TcIdBndr id _top_lvl -> go_one (idName id) (idType id) envs
TcIdBndr_ExpType name et _top_lvl ->
do { mb_ty <- readExpType_maybe et
-- et really should be filled in by now. But there's a chance
-- it hasn't, if, say, we're reporting a kind error en route to
-- checking a term. See test indexed-types/should_fail/T8129
-- Or we are reporting errors from the ambiguity check on
-- a local type signature
; case mb_ty of
Just ty -> go_one name ty envs
Nothing -> return envs
}
go_one name ty (tidy_env, name_env) = do
if name `elemNameEnv` name_env
then return (tidy_env, name_env)
else do
(tidy_env', tidy_ty) <- zonkTidyTcType tidy_env ty
return (tidy_env', extendNameEnv name_env name tidy_ty)
reportNotConcreteErrs :: SolverReportErrCtxt -> [NotConcreteError] -> TcM ()
reportNotConcreteErrs _ [] = return ()
reportNotConcreteErrs ctxt errs@(err0:_)
= do { msg <- mkErrorReport (ctLocEnv (nce_loc err0)) diag (Just ctxt) []
; reportDiagnostic msg }
where
frr_origins = acc_errors errs
diag = TcRnSolverReport
(SolverReportWithCtxt ctxt (FixedRuntimeRepError frr_origins))
ErrorWithoutFlag noHints
-- Accumulate the different kind of errors arising from syntactic equality.
-- (Only SynEq_FRR origin for the moment.)
acc_errors = go []
where
go frr_errs [] = frr_errs
go frr_errs (err:errs)
| frr_errs <- go frr_errs errs
= case err of
NCE_FRR
{ nce_frr_origin = frr_orig
, nce_reasons = _not_conc } ->
FRR_Info
{ frr_info_origin = frr_orig
, frr_info_not_concrete = Nothing }
: frr_errs
{- Note [Skip type holes rapidly]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have module with a /lot/ of partial type signatures, and we
compile it while suppressing partial-type-signature warnings. Then
we don't want to spend ages constructing error messages and lists of
relevant bindings that we never display! This happened in #14766, in
which partial type signatures in a Happy-generated parser cause a huge
increase in compile time.
The function ignoreThisHole short-circuits the error/warning generation
machinery, in cases where it is definitely going to be a no-op.
-}
mkUserTypeErrorReporter :: Reporter
mkUserTypeErrorReporter ctxt
= mapM_ $ \item -> do { let err = important ctxt $ mkUserTypeError item
; maybeReportError ctxt (item :| []) err
; addDeferredBinding ctxt err item }
mkUserTypeError :: ErrorItem -> TcSolverReportMsg
mkUserTypeError item =
case getUserTypeErrorMsg (errorItemPred item) of
Just msg -> UserTypeError msg
Nothing -> pprPanic "mkUserTypeError" (ppr item)
mkGivenErrorReporter :: Reporter
-- See Note [Given errors]
mkGivenErrorReporter ctxt (item:|_)
= do { (ctxt, relevant_binds, item) <- relevantBindings True ctxt item
; let (implic:_) = cec_encl ctxt
-- Always non-empty when mkGivenErrorReporter is called
loc' = setCtLocEnv (ei_loc item) (ic_env implic)
item' = item { ei_loc = loc' }
-- For given constraints we overwrite the env (and hence src-loc)
-- with one from the immediately-enclosing implication.
-- See Note [Inaccessible code]
; (eq_err_msg, _hints) <- mkEqErr_help ctxt item' ty1 ty2
-- The hints wouldn't help in this situation, so we discard them.
; let supplementary = [ SupplementaryBindings relevant_binds ]
msg = TcRnInaccessibleCode implic (SolverReportWithCtxt ctxt eq_err_msg)
; msg <- mkErrorReport (ctLocEnv loc') msg (Just ctxt) supplementary
; reportDiagnostic msg }
where
(ty1, ty2) = getEqPredTys (errorItemPred item)
ignoreErrorReporter :: Reporter
-- Discard Given errors that don't come from
-- a pattern match; maybe we should warn instead?
ignoreErrorReporter ctxt items
= do { traceTc "mkGivenErrorReporter no" (ppr items $$ ppr (cec_encl ctxt))
; return () }
{- Note [Given errors]
~~~~~~~~~~~~~~~~~~~~~~
Given constraints represent things for which we have (or will have)
evidence, so they aren't errors. But if a Given constraint is
insoluble, this code is inaccessible, and we might want to at least
warn about that. A classic case is
data T a where
T1 :: T Int
T2 :: T a
T3 :: T Bool
f :: T Int -> Bool
f T1 = ...
f T2 = ...
f T3 = ... -- We want to report this case as inaccessible
We'd like to point out that the T3 match is inaccessible. It
will have a Given constraint [G] Int ~ Bool.
But we don't want to report ALL insoluble Given constraints. See Trac
#12466 for a long discussion. For example, if we aren't careful
we'll complain about
f :: ((Int ~ Bool) => a -> a) -> Int
which arguably is OK. It's more debatable for
g :: (Int ~ Bool) => Int -> Int
but it's tricky to distinguish these cases so we don't report
either.
The bottom line is this: has_gadt_match looks for an enclosing
pattern match which binds some equality constraints. If we
find one, we report the insoluble Given.
-}
mkGroupReporter :: (SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport)
-- Make error message for a group
-> Reporter -- Deal with lots of constraints
-- Group together errors from same location,
-- and report only the first (to avoid a cascade)
mkGroupReporter mk_err ctxt items
= mapM_ (reportGroup mk_err ctxt) (equivClasses cmp_loc (toList items))
eq_lhs_type :: ErrorItem -> ErrorItem -> Bool
eq_lhs_type item1 item2
= case (classifyPredType (errorItemPred item1), classifyPredType (errorItemPred item2)) of
(EqPred eq_rel1 ty1 _, EqPred eq_rel2 ty2 _) ->
(eq_rel1 == eq_rel2) && (ty1 `eqType` ty2)
_ -> pprPanic "mkSkolReporter" (ppr item1 $$ ppr item2)
cmp_loc :: ErrorItem -> ErrorItem -> Ordering
cmp_loc item1 item2 = get item1 `compare` get item2
where
get ei = realSrcSpanStart (ctLocSpan (errorItemCtLoc ei))
-- Reduce duplication by reporting only one error from each
-- /starting/ location even if the end location differs
reportGroup :: (SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport) -> Reporter
reportGroup mk_err ctxt items
= do { err <- mk_err ctxt items
; traceTc "About to maybeReportErr" $
vcat [ text "Constraint:" <+> ppr items
, text "cec_suppress =" <+> ppr (cec_suppress ctxt)
, text "cec_defer_type_errors =" <+> ppr (cec_defer_type_errors ctxt) ]
; maybeReportError ctxt items err
-- But see Note [Always warn with -fdefer-type-errors]
; traceTc "reportGroup" (ppr items)
; mapM_ (addDeferredBinding ctxt err) items }
-- Add deferred bindings for all
-- Redundant if we are going to abort compilation,
-- but that's hard to know for sure, and if we don't
-- abort, we need bindings for all (e.g. #12156)
-- See Note [No deferring for multiplicity errors]
nonDeferrableOrigin :: CtOrigin -> Bool
nonDeferrableOrigin NonLinearPatternOrigin = True
nonDeferrableOrigin (UsageEnvironmentOf {}) = True
nonDeferrableOrigin (FRROrigin {}) = True
nonDeferrableOrigin _ = False
maybeReportError :: SolverReportErrCtxt
-> NonEmpty ErrorItem -- items covered by the Report
-> SolverReport -> TcM ()
maybeReportError ctxt items@(item1:|_) (SolverReport { sr_important_msg = important
, sr_supplementary = supp
, sr_hints = hints })
= unless (cec_suppress ctxt -- Some worse error has occurred, so suppress this diagnostic
|| all ei_suppress items) $
-- if they're all to be suppressed, report nothing
-- if at least one is not suppressed, do report:
-- the function that generates the error message
-- should look for an unsuppressed error item
do let reason | any (nonDeferrableOrigin . errorItemOrigin) items = ErrorWithoutFlag
| otherwise = cec_defer_type_errors ctxt
-- See Note [No deferring for multiplicity errors]
diag = TcRnSolverReport important reason hints
msg <- mkErrorReport (ctLocEnv (errorItemCtLoc item1)) diag (Just ctxt) supp
reportDiagnostic msg
addDeferredBinding :: SolverReportErrCtxt -> SolverReport -> ErrorItem -> TcM ()
-- See Note [Deferring coercion errors to runtime]
addDeferredBinding ctxt err (EI { ei_evdest = Just dest, ei_pred = item_ty
, ei_loc = loc })
-- if evdest is Just, then the constraint was from a wanted
| deferringAnyBindings ctxt
= do { err_tm <- mkErrorTerm ctxt loc item_ty err
; let ev_binds_var = cec_binds ctxt
; case dest of
EvVarDest evar
-> addTcEvBind ev_binds_var $ mkWantedEvBind evar IsCoherent err_tm
HoleDest hole
-> do { -- See Note [Deferred errors for coercion holes]
let co_var = coHoleCoVar hole
; addTcEvBind ev_binds_var $ mkWantedEvBind co_var IsCoherent err_tm
; fillCoercionHole hole (mkCoVarCo co_var) } }
addDeferredBinding _ _ _ = return () -- Do not set any evidence for Given
mkErrorTerm :: SolverReportErrCtxt -> CtLoc -> Type -- of the error term
-> SolverReport -> TcM EvTerm
mkErrorTerm ctxt ct_loc ty (SolverReport { sr_important_msg = important, sr_supplementary = supp })
= do { msg <- mkErrorReport
(ctLocEnv ct_loc)
(TcRnSolverReport important ErrorWithoutFlag noHints) (Just ctxt) supp
-- This will be reported at runtime, so we always want "error:" in the report, never "warning:"
; dflags <- getDynFlags
; let err_msg = pprLocMsgEnvelope (initTcMessageOpts dflags) msg
err_str = showSDoc dflags $
err_msg $$ text "(deferred type error)"
; return $ evDelayedError ty err_str }
tryReporters :: SolverReportErrCtxt -> [ReporterSpec] -> [ErrorItem] -> TcM (SolverReportErrCtxt, [ErrorItem])
-- Use the first reporter in the list whose predicate says True
tryReporters ctxt reporters items
= do { let (vis_items, invis_items)
= partition (isVisibleOrigin . errorItemOrigin) items
; traceTc "tryReporters {" (ppr vis_items $$ ppr invis_items)
; (ctxt', items') <- go ctxt reporters vis_items invis_items
; traceTc "tryReporters }" (ppr items')
; return (ctxt', items') }
where
go ctxt [] vis_items invis_items
= return (ctxt, vis_items ++ invis_items)
go ctxt (r : rs) vis_items invis_items
-- always look at *visible* Origins before invisible ones
-- this is the whole point of isVisibleOrigin
= do { (ctxt', vis_items') <- tryReporter ctxt r vis_items
; (ctxt'', invis_items') <- tryReporter ctxt' r invis_items
; go ctxt'' rs vis_items' invis_items' }
-- Carry on with the rest, because we must make
-- deferred bindings for them if we have -fdefer-type-errors
-- But suppress their error messages
tryReporter :: SolverReportErrCtxt -> ReporterSpec -> [ErrorItem] -> TcM (SolverReportErrCtxt, [ErrorItem])
tryReporter ctxt (str, keep_me, suppress_after, reporter) items = case nonEmpty yeses of
Nothing -> pure (ctxt, items)
Just yeses -> do
{ traceTc "tryReporter{ " (text str <+> ppr yeses)
; (_, no_errs) <- askNoErrs (reporter ctxt yeses)
; let suppress_now = not no_errs && suppress_after
-- See Note [Suppressing error messages]
ctxt' = ctxt { cec_suppress = suppress_now || cec_suppress ctxt }
; traceTc "tryReporter end }" (text str <+> ppr (cec_suppress ctxt) <+> ppr suppress_after)
; return (ctxt', nos) }
where
(yeses, nos) = partition keep items
keep item = keep_me item (classifyPredType (errorItemPred item))
-- | Wrap an input 'TcRnMessage' with additional contextual information,
-- such as relevant bindings or valid hole fits.
mkErrorReport :: TcLclEnv
-> TcRnMessage
-- ^ The main payload of the message.
-> Maybe SolverReportErrCtxt
-- ^ The context to add, after the main diagnostic
-- but before the supplementary information.
-- Nothing <=> don't add any context.
-> [SolverReportSupplementary]
-- ^ Supplementary information, to be added at the end of the message.
-> TcM (MsgEnvelope TcRnMessage)
mkErrorReport tcl_env msg mb_ctxt supplementary
= do { mb_context <- traverse (\ ctxt -> mkErrInfo (cec_tidy ctxt) (tcl_ctxt tcl_env)) mb_ctxt
; unit_state <- hsc_units <$> getTopEnv
; hfdc <- getHoleFitDispConfig
; let
err_info =
ErrInfo
(fromMaybe empty mb_context)
(vcat $ map (pprSolverReportSupplementary hfdc) supplementary)
; let detailed_msg = mkDetailedMessage err_info msg
; mkTcRnMessage
(RealSrcSpan (tcl_loc tcl_env) Strict.Nothing)
(TcRnMessageWithInfo unit_state $ detailed_msg) }
-- | Pretty-print supplementary information, to add to an error report.
pprSolverReportSupplementary :: HoleFitDispConfig -> SolverReportSupplementary -> SDoc
-- This function should be in "GHC.Tc.Errors.Ppr",
-- but we need it here because 'TcRnMessageDetails' needs an 'SDoc'.
pprSolverReportSupplementary hfdc = \case
SupplementaryBindings binds -> pprRelevantBindings binds
SupplementaryHoleFits fits -> pprValidHoleFits hfdc fits
SupplementaryCts cts -> pprConstraintsInclude cts
-- | Display a collection of valid hole fits.
pprValidHoleFits :: HoleFitDispConfig -> ValidHoleFits -> SDoc
-- This function should be in "GHC.Tc.Errors.Ppr",
-- but we need it here because 'TcRnMessageDetails' needs an 'SDoc'.
pprValidHoleFits hfdc (ValidHoleFits (Fits fits discarded_fits) (Fits refs discarded_refs))
= fits_msg $$ refs_msg
where
fits_msg, refs_msg, fits_discard_msg, refs_discard_msg :: SDoc
fits_msg = ppUnless (null fits) $
hang (text "Valid hole fits include") 2 $
vcat (map (pprHoleFit hfdc) fits)
$$ ppWhen discarded_fits fits_discard_msg
refs_msg = ppUnless (null refs) $
hang (text "Valid refinement hole fits include") 2 $
vcat (map (pprHoleFit hfdc) refs)
$$ ppWhen discarded_refs refs_discard_msg
fits_discard_msg =
text "(Some hole fits suppressed;" <+>
text "use -fmax-valid-hole-fits=N" <+>
text "or -fno-max-valid-hole-fits)"
refs_discard_msg =
text "(Some refinement hole fits suppressed;" <+>
text "use -fmax-refinement-hole-fits=N" <+>
text "or -fno-max-refinement-hole-fits)"
-- | Add a "Constraints include..." message.
--
-- See Note [Constraints include ...]
pprConstraintsInclude :: [(PredType, RealSrcSpan)] -> SDoc
-- This function should be in "GHC.Tc.Errors.Ppr",
-- but we need it here because 'TcRnMessageDetails' needs an 'SDoc'.
pprConstraintsInclude cts
= ppUnless (null cts) $
hang (text "Constraints include")
2 (vcat $ map pprConstraint cts)
where
pprConstraint (constraint, loc) =
ppr constraint <+> nest 2 (parens (text "from" <+> ppr loc))
{- Note [Always warn with -fdefer-type-errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When -fdefer-type-errors is on we warn about *all* type errors, even
if cec_suppress is on. This can lead to a lot more warnings than you
would get errors without -fdefer-type-errors, but if we suppress any of
them you might get a runtime error that wasn't warned about at compile
time.
To be consistent, we should also report multiple warnings from a single
location in mkGroupReporter, when -fdefer-type-errors is on. But that
is perhaps a bit *over*-consistent!
With #10283, you can now opt out of deferred type error warnings.
Note [No deferring for multiplicity errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As explained in Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify,
linear types do not support casts and any nontrivial coercion will raise
an error during desugaring.
This means that even if we defer a multiplicity mismatch during typechecking,
the desugarer will refuse to compile anyway. Worse: the error raised
by the desugarer would shadow the type mismatch warnings (#20083).
As a solution, we refuse to defer submultiplicity constraints. Test: T20083.
To determine whether a constraint arose from a submultiplicity check, we
look at the CtOrigin. All calls to tcSubMult use one of two origins,
UsageEnvironmentOf and NonLinearPatternOrigin. Those origins are not
used outside of linear types.
In the future, we should compile 'WpMultCoercion' to a runtime error with
-fdefer-type-errors, but the current implementation does not always
place the wrapper in the right place and the resulting program can fail Lint.
This plan is tracked in #20083.
Note [Deferred errors for coercion holes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we need to defer a type error where the destination for the evidence
is a coercion hole. We can't just put the error in the hole, because we can't
make an erroneous coercion. (Remember that coercions are erased for runtime.)
Instead, we invent a new EvVar, bind it to an error and then make a coercion
from that EvVar, filling the hole with that coercion. Because coercions'
types are unlifted, the error is guaranteed to be hit before we get to the
coercion.
************************************************************************
* *
Irreducible predicate errors
* *
************************************************************************
-}
mkIrredErr :: SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport
mkIrredErr ctxt items
= do { (ctxt, binds, item1) <- relevantBindings True ctxt item1
; let msg = important ctxt $ mkPlainMismatchMsg $
CouldNotDeduce (getUserGivens ctxt) (item1 :| others) Nothing
; return $ add_relevant_bindings binds msg }
where
item1:|others = tryFilter (not . ei_suppress) items
{- Note [Constructing Hole Errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Whether or not 'mkHoleError' returns an error is not influenced by cec_suppress. In other terms,
these "hole" errors are /not/ suppressed by cec_suppress. We want to see them!
There are two cases to consider:
1. For out-of-scope variables we always report an error, unless -fdefer-out-of-scope-variables is on,
in which case the messages are discarded. See also #12170 and #12406. If deferring, report a warning
only if -Wout-of-scope-variables is on.
2. For the general case, when -XPartialTypeSignatures is on, warnings (instead of errors) are generated
for holes in partial type signatures, unless -Wpartial-type-signatures is not on, in which case
the messages are discarded. If deferring, report a warning only if -Wtyped-holes is on.
The above can be summarised into the following table:
| Hole Type | Active Flags | Outcome |
|--------------|----------------------------------------------------------|------------------|
| out-of-scope | None | Error |
| out-of-scope | -fdefer-out-of-scope-variables, -Wout-of-scope-variables | Warning |
| out-of-scope | -fdefer-out-of-scope-variables | Ignore (discard) |
| type | None | Error |
| type | -XPartialTypeSignatures, -Wpartial-type-signatures | Warning |
| type | -XPartialTypeSignatures | Ignore (discard) |
| expression | None | Error |
| expression | -Wdefer-typed-holes, -Wtyped-holes | Warning |
| expression | -Wdefer-typed-holes | Ignore (discard) |
See also 'reportUnsolved'.
-}
----------------
-- | Constructs a new hole error, unless this is deferred. See Note [Constructing Hole Errors].
mkHoleError :: NameEnv Type -> [ErrorItem] -> SolverReportErrCtxt -> Hole -> TcM (MsgEnvelope TcRnMessage)
mkHoleError _ _tidy_simples ctxt hole@(Hole { hole_occ = occ, hole_loc = ct_loc })
| isOutOfScopeHole hole
= do { dflags <- getDynFlags
; rdr_env <- getGlobalRdrEnv
; imp_info <- getImports
; curr_mod <- getModule
; hpt <- getHpt
; let (imp_errs, hints)
= unknownNameSuggestions WL_Anything
dflags hpt curr_mod rdr_env
(tcl_rdr lcl_env) imp_info occ
err = SolverReportWithCtxt ctxt (ReportHoleError hole $ OutOfScopeHole imp_errs)
report = SolverReport err [] hints
; maybeAddDeferredBindings ctxt hole report
; mkErrorReport lcl_env (TcRnSolverReport err (cec_out_of_scope_holes ctxt) hints) Nothing []
-- Pass the value 'Nothing' for the context, as it's generally not helpful
-- to include the context here.
}
where
lcl_env = ctLocEnv ct_loc
-- general case: not an out-of-scope error
mkHoleError lcl_name_cache tidy_simples ctxt
hole@(Hole { hole_ty = hole_ty
, hole_sort = sort
, hole_loc = ct_loc })
= do { rel_binds
<- relevant_bindings False lcl_env lcl_name_cache (tyCoVarsOfType hole_ty)
-- The 'False' means "don't filter the bindings"; see #8191
; show_hole_constraints <- goptM Opt_ShowHoleConstraints
; let relevant_cts
| ExprHole _ <- sort, show_hole_constraints
= givenConstraints ctxt
| otherwise
= []
; show_valid_hole_fits <- goptM Opt_ShowValidHoleFits
; (ctxt, hole_fits) <- if show_valid_hole_fits
then validHoleFits ctxt tidy_simples hole
else return (ctxt, noValidHoleFits)
; (grouped_skvs, other_tvs) <- zonkAndGroupSkolTvs hole_ty
; let reason | ExprHole _ <- sort = cec_expr_holes ctxt
| otherwise = cec_type_holes ctxt
err = SolverReportWithCtxt ctxt $ ReportHoleError hole $ HoleError sort other_tvs grouped_skvs
supp = [ SupplementaryBindings rel_binds
, SupplementaryCts relevant_cts
, SupplementaryHoleFits hole_fits ]
; maybeAddDeferredBindings ctxt hole (SolverReport err supp [])
; mkErrorReport lcl_env (TcRnSolverReport err reason noHints) (Just ctxt) supp
}
where
lcl_env = ctLocEnv ct_loc
-- | For all the skolem type variables in a type, zonk the skolem info and group together
-- all the type variables with the same origin.
zonkAndGroupSkolTvs :: Type -> TcM ([(SkolemInfoAnon, [TcTyVar])], [TcTyVar])
zonkAndGroupSkolTvs hole_ty = do
zonked_info <- mapM (\(sk, tv) -> (,) <$> (zonkSkolemInfoAnon . getSkolemInfo $ sk) <*> pure (fst <$> tv)) skolem_list
return (zonked_info, other_tvs)
where
tvs = tyCoVarsOfTypeList hole_ty
(skol_tvs, other_tvs) = partition (\tv -> isTcTyVar tv && isSkolemTyVar tv) tvs
group_skolems :: UM.UniqMap SkolemInfo ([(TcTyVar, Int)])
group_skolems = bagToList <$> UM.listToUniqMap_C unionBags [(skolemSkolInfo tv, unitBag (tv, n)) | tv <- skol_tvs | n <- [0..]]
skolem_list = sortBy (comparing (sort . map snd . snd)) (UM.nonDetEltsUniqMap group_skolems)
{- Note [Adding deferred bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When working with typed holes we have to deal with the case where
we want holes to be reported as warnings to users during compile time but
as errors during runtime. Therefore, we have to call 'maybeAddDeferredBindings'
so that the correct 'Severity' can be computed out of that later on.
-}
-- | Adds deferred bindings (as errors).
-- See Note [Adding deferred bindings].
maybeAddDeferredBindings :: SolverReportErrCtxt
-> Hole
-> SolverReport
-> TcM ()
maybeAddDeferredBindings ctxt hole report = do
case hole_sort hole of
ExprHole (HER ref ref_ty _) -> do
-- Only add bindings for holes in expressions
-- not for holes in partial type signatures
-- cf. addDeferredBinding
when (deferringAnyBindings ctxt) $ do
err_tm <- mkErrorTerm ctxt (hole_loc hole) ref_ty report
-- NB: ref_ty, not hole_ty. hole_ty might be rewritten.
-- See Note [Holes] in GHC.Tc.Types.Constraint
writeMutVar ref err_tm
_ -> pure ()
-- We unwrap the SolverReportErrCtxt here, to avoid introducing a loop in module
-- imports
validHoleFits :: SolverReportErrCtxt -- ^ The context we're in, i.e. the
-- implications and the tidy environment
-> [ErrorItem] -- ^ Unsolved simple constraints
-> Hole -- ^ The hole
-> TcM (SolverReportErrCtxt, ValidHoleFits)
-- ^ We return the new context
-- with a possibly updated
-- tidy environment, and
-- the valid hole fits.
validHoleFits ctxt@(CEC { cec_encl = implics
, cec_tidy = lcl_env}) simps hole
= do { (tidy_env, fits) <- findValidHoleFits lcl_env implics (map mk_wanted simps) hole
; return (ctxt {cec_tidy = tidy_env}, fits) }
where
mk_wanted :: ErrorItem -> CtEvidence
mk_wanted (EI { ei_pred = pred, ei_evdest = Just dest, ei_loc = loc })
= CtWanted { ctev_pred = pred
, ctev_dest = dest
, ctev_loc = loc
, ctev_rewriters = emptyRewriterSet }
mk_wanted item = pprPanic "validHoleFits no evdest" (ppr item)
-- See Note [Constraints include ...]
givenConstraints :: SolverReportErrCtxt -> [(Type, RealSrcSpan)]
givenConstraints ctxt
= do { implic@Implic{ ic_given = given } <- cec_encl ctxt
; constraint <- given
; return (varType constraint, tcl_loc (ic_env implic)) }
----------------
mkIPErr :: SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport
-- What would happen if an item is suppressed because of
-- Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint? Very unclear
-- what's best. Let's not worry about this.
mkIPErr ctxt (item1:|others)
= do { (ctxt, binds, item1) <- relevantBindings True ctxt item1
; let msg = important ctxt $ UnboundImplicitParams (item1 :| others)
; return $ add_relevant_bindings binds msg }
----------------
-- | Report a representation-polymorphism error to the user:
-- a type is required to have a fixed runtime representation,
-- but doesn't.
--
-- See Note [Reporting representation-polymorphism errors] in GHC.Tc.Types.Origin.
mkFRRErr :: HasDebugCallStack => SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport
mkFRRErr ctxt items
= do { -- Process the error items.
; (_tidy_env, frr_infos) <-
zonkTidyFRRInfos (cec_tidy ctxt) $
-- Zonk/tidy to show useful variable names.
nubOrdBy (nonDetCmpType `on` (frr_type . frr_info_origin)) $
-- Remove duplicates: only one representation-polymorphism error per type.
map (expectJust "mkFRRErr" . fixedRuntimeRepOrigin_maybe) $
toList items
; return $ important ctxt $ FixedRuntimeRepError frr_infos }
-- | Whether to report something using the @FixedRuntimeRep@ mechanism.
fixedRuntimeRepOrigin_maybe :: HasDebugCallStack => ErrorItem -> Maybe FixedRuntimeRepErrorInfo
fixedRuntimeRepOrigin_maybe item
-- An error that arose directly from a representation-polymorphism check.
| FRROrigin frr_orig <- errorItemOrigin item
= Just $ FRR_Info { frr_info_origin = frr_orig
, frr_info_not_concrete = Nothing }
-- Unsolved nominal equalities involving a concrete type variable,
-- such as @alpha[conc] ~# rr[sk]@ or @beta[conc] ~# RR@ for a
-- type family application @RR@, are handled by 'mkTyVarEqErr''.
| otherwise
= Nothing
{-
Note [Constraints include ...]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'givenConstraintsMsg' returns the "Constraints include ..." message enabled by
-fshow-hole-constraints. For example, the following hole:
foo :: (Eq a, Show a) => a -> String
foo x = _
would generate the message:
Constraints include
Eq a (from foo.hs:1:1-36)
Show a (from foo.hs:1:1-36)
Constraints are displayed in order from innermost (closest to the hole) to
outermost. There's currently no filtering or elimination of duplicates.
************************************************************************
* *
Equality errors
* *
************************************************************************
Note [Inaccessible code]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T a where
T1 :: T a
T2 :: T Bool
f :: (a ~ Int) => T a -> Int
f T1 = 3
f T2 = 4 -- Unreachable code
Here the second equation is unreachable. The original constraint
(a~Int) from the signature gets rewritten by the pattern-match to
(Bool~Int), so the danger is that we report the error as coming from
the *signature* (#7293). So, for Given errors we replace the
env (and hence src-loc) on its CtLoc with that from the immediately
enclosing implication.
Note [Error messages for untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#9109)
data G a where { GBool :: G Bool }
foo x = case x of GBool -> True
Here we can't solve (t ~ Bool), where t is the untouchable result
meta-var 't', because of the (a ~ Bool) from the pattern match.
So we infer the type
f :: forall a t. G a -> t
making the meta-var 't' into a skolem. So when we come to report
the unsolved (t ~ Bool), t won't look like an untouchable meta-var
any more. So we don't assert that it is.
-}
-- Don't have multiple equality errors from the same location
-- E.g. (Int,Bool) ~ (Bool,Int) one error will do!
mkEqErr :: SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport
mkEqErr ctxt items@(item:|_)
| item:_ <- filter (not . ei_suppress) (toList items)
= mkEqErr1 ctxt item
| otherwise -- they're all suppressed. still need an error message
-- for -fdefer-type-errors though
= mkEqErr1 ctxt item
mkEqErr1 :: SolverReportErrCtxt -> ErrorItem -> TcM SolverReport
mkEqErr1 ctxt item -- Wanted only
-- givens handled in mkGivenErrorReporter
= do { (ctxt, binds, item) <- relevantBindings True ctxt item
; traceTc "mkEqErr1" (ppr item $$ pprCtOrigin (errorItemOrigin item))
; (err_msg, hints) <- mkEqErr_help ctxt item ty1 ty2
; let
report = add_relevant_bindings binds
$ add_report_hints hints
$ important ctxt err_msg
; return report }
where
(ty1, ty2) = getEqPredTys (errorItemPred item)
-- | This function tries to reconstruct why a "Coercible ty1 ty2" constraint
-- is left over.
mkCoercibleExplanation :: GlobalRdrEnv -> FamInstEnvs
-> TcType -> TcType -> Maybe CoercibleMsg
mkCoercibleExplanation rdr_env fam_envs ty1 ty2
| Just (tc, tys) <- tcSplitTyConApp_maybe ty1
, (rep_tc, _, _) <- tcLookupDataFamInst fam_envs tc tys
, Just msg <- coercible_msg_for_tycon rep_tc
= Just msg
| Just (tc, tys) <- splitTyConApp_maybe ty2
, (rep_tc, _, _) <- tcLookupDataFamInst fam_envs tc tys
, Just msg <- coercible_msg_for_tycon rep_tc
= Just msg
| Just (s1, _) <- tcSplitAppTy_maybe ty1
, Just (s2, _) <- tcSplitAppTy_maybe ty2
, s1 `eqType` s2
, has_unknown_roles s1
= Just $ UnknownRoles s1
| otherwise
= Nothing
where
coercible_msg_for_tycon tc
| isAbstractTyCon tc
= Just $ TyConIsAbstract tc
| isNewTyCon tc
, [data_con] <- tyConDataCons tc
, let dc_name = dataConName data_con
, isNothing (lookupGRE_Name rdr_env dc_name)
= Just $ OutOfScopeNewtypeConstructor tc data_con
| otherwise = Nothing
has_unknown_roles ty
| Just (tc, tys) <- tcSplitTyConApp_maybe ty
= tys `lengthAtLeast` tyConArity tc -- oversaturated tycon
| Just (s, _) <- tcSplitAppTy_maybe ty
= has_unknown_roles s
| isTyVarTy ty
= True
| otherwise
= False
mkEqErr_help :: SolverReportErrCtxt
-> ErrorItem
-> TcType -> TcType -> TcM (TcSolverReportMsg, [GhcHint])
mkEqErr_help ctxt item ty1 ty2
| Just casted_tv1 <- getCastedTyVar_maybe ty1
= mkTyVarEqErr ctxt item casted_tv1 ty2
| Just casted_tv2 <- getCastedTyVar_maybe ty2
= mkTyVarEqErr ctxt item casted_tv2 ty1
| otherwise
= do
err <- reportEqErr ctxt item ty1 ty2
return (err, noHints)
reportEqErr :: SolverReportErrCtxt
-> ErrorItem
-> TcType -> TcType
-> TcM TcSolverReportMsg
reportEqErr ctxt item ty1 ty2
= do
mb_coercible_info <-
if errorItemEqRel item == ReprEq
then coercible_msg ty1 ty2
else return Nothing
return $
Mismatch
{ mismatchMsg = mismatch
, mismatchTyVarInfo = Nothing
, mismatchAmbiguityInfo = eqInfos
, mismatchCoercibleInfo = mb_coercible_info }
where
mismatch = misMatchOrCND False ctxt item ty1 ty2
eqInfos = eqInfoMsgs ty1 ty2
coercible_msg :: TcType -> TcType -> TcM (Maybe CoercibleMsg)
coercible_msg ty1 ty2
= do
rdr_env <- getGlobalRdrEnv
fam_envs <- tcGetFamInstEnvs
return $ mkCoercibleExplanation rdr_env fam_envs ty1 ty2
mkTyVarEqErr :: SolverReportErrCtxt -> ErrorItem
-> (TcTyVar, TcCoercionN) -> TcType -> TcM (TcSolverReportMsg, [GhcHint])
-- tv1 and ty2 are already tidied
mkTyVarEqErr ctxt item casted_tv1 ty2
= do { traceTc "mkTyVarEqErr" (ppr item $$ ppr casted_tv1 $$ ppr ty2)
; mkTyVarEqErr' ctxt item casted_tv1 ty2 }
mkTyVarEqErr' :: SolverReportErrCtxt -> ErrorItem
-> (TcTyVar, TcCoercionN) -> TcType -> TcM (TcSolverReportMsg, [GhcHint])
mkTyVarEqErr' ctxt item (tv1, co1) ty2
-- Is this a representation-polymorphism error, e.g.
-- alpha[conc] ~# rr[sk] ? If so, handle that first.
| Just frr_info <- mb_concrete_reason
= do
(_, infos) <- zonkTidyFRRInfos (cec_tidy ctxt) [frr_info]
return (FixedRuntimeRepError infos, [])
-- Impredicativity is a simple error to understand; try it before
-- anything more complicated.
| check_eq_result `cterHasProblem` cteImpredicative
= do
tyvar_eq_info <- extraTyVarEqInfo (tv1, Nothing) ty2
let
poly_msg = CannotUnifyWithPolytype item tv1 ty2 mb_tv_info
mb_tv_info
| isSkolemTyVar tv1
= Just tyvar_eq_info
| otherwise
= Nothing
main_msg =
CannotUnifyVariable
{ mismatchMsg = headline_msg
, cannotUnifyReason = poly_msg }
-- Unlike the other reports, this discards the old 'report_important'
-- instead of augmenting it. This is because the details are not likely
-- to be helpful since this is just an unimplemented feature.
return (main_msg, [])
| isSkolemTyVar tv1 -- ty2 won't be a meta-tyvar; we would have
-- swapped in Solver.Canonical.canEqTyVarHomo
|| isTyVarTyVar tv1 && not (isTyVarTy ty2)
|| errorItemEqRel item == ReprEq
-- The cases below don't really apply to ReprEq (except occurs check)
= do
tv_extra <- extraTyVarEqInfo (tv1, Nothing) ty2
reason <-
if errorItemEqRel item == ReprEq
then RepresentationalEq tv_extra <$> coercible_msg ty1 ty2
else return $ DifferentTyVars tv_extra
let main_msg =
CannotUnifyVariable
{ mismatchMsg = headline_msg
, cannotUnifyReason = reason }
return (main_msg, add_sig)
| cterHasOccursCheck check_eq_result
-- We report an "occurs check" even for a ~ F t a, where F is a type
-- function; it's not insoluble (because in principle F could reduce)
-- but we have certainly been unable to solve it
= let ambiguity_infos = eqInfoMsgs ty1 ty2
interesting_tyvars = filter (not . noFreeVarsOfType . tyVarKind) $
filter isTyVar $
fvVarList $
tyCoFVsOfType ty1 `unionFV` tyCoFVsOfType ty2
occurs_err =
OccursCheck
{ occursCheckInterestingTyVars = interesting_tyvars
, occursCheckAmbiguityInfos = ambiguity_infos }
main_msg =
CannotUnifyVariable
{ mismatchMsg = headline_msg
, cannotUnifyReason = occurs_err }
in return (main_msg, [])
-- This is wrinkle (4) in Note [Equalities with incompatible kinds] in
-- GHC.Tc.Solver.Canonical
| hasCoercionHoleCo co1 || hasCoercionHoleTy ty2
= return (mkBlockedEqErr item, [])
-- If the immediately-enclosing implication has 'tv' a skolem, and
-- we know by now its an InferSkol kind of skolem, then presumably
-- it started life as a TyVarTv, else it'd have been unified, given
-- that there's no occurs-check or forall problem
| (implic:_) <- cec_encl ctxt
, Implic { ic_skols = skols } <- implic
, tv1 `elem` skols
= do
tv_extra <- extraTyVarEqInfo (tv1, Nothing) ty2
let msg = Mismatch
{ mismatchMsg = mismatch_msg
, mismatchTyVarInfo = Just tv_extra
, mismatchAmbiguityInfo = []
, mismatchCoercibleInfo = Nothing }
return (msg, [])
-- Check for skolem escape
| (implic:_) <- cec_encl ctxt -- Get the innermost context
, Implic { ic_skols = skols } <- implic
, let esc_skols = filter (`elemVarSet` (tyCoVarsOfType ty2)) skols
, not (null esc_skols)
= let main_msg =
CannotUnifyVariable
{ mismatchMsg = mismatch_msg
, cannotUnifyReason = SkolemEscape item implic esc_skols }
in return (main_msg, [])
-- Nastiest case: attempt to unify an untouchable variable
-- So tv is a meta tyvar (or started that way before we
-- generalised it). So presumably it is an *untouchable*
-- meta tyvar or a TyVarTv, else it'd have been unified
-- See Note [Error messages for untouchables]
| (implic:_) <- cec_encl ctxt -- Get the innermost context
, Implic { ic_tclvl = lvl } <- implic
= assertPpr (not (isTouchableMetaTyVar lvl tv1))
(ppr tv1 $$ ppr lvl) $ do -- See Note [Error messages for untouchables]
tv_extra <- extraTyVarEqInfo (tv1, Just implic) ty2
let tv_extra' = tv_extra { thisTyVarIsUntouchable = Just implic }
msg = Mismatch
{ mismatchMsg = mismatch_msg
, mismatchTyVarInfo = Just tv_extra'
, mismatchAmbiguityInfo = []
, mismatchCoercibleInfo = Nothing }
return (msg, add_sig)
| otherwise
= do
err <- reportEqErr ctxt item (mkTyVarTy tv1) ty2
return (err, [])
-- This *can* happen (#6123)
-- Consider an ambiguous top-level constraint (a ~ F a)
-- Not an occurs check, because F is a type function.
where
headline_msg = misMatchOrCND insoluble_occurs_check ctxt item ty1 ty2
mismatch_msg = mkMismatchMsg item ty1 ty2
add_sig = maybeToList $ suggestAddSig ctxt ty1 ty2
-- The following doesn't use the cterHasProblem mechanism because
-- we need to retrieve the ConcreteTvOrigin. Just knowing whether
-- there is an error is not sufficient. See #21430.
mb_concrete_reason
| Just frr_orig <- isConcreteTyVar_maybe tv1
, not (isConcrete ty2)
= Just $ frr_reason frr_orig tv1 ty2
| Just (tv2, frr_orig) <- isConcreteTyVarTy_maybe ty2
, not (isConcreteTyVar tv1)
= Just $ frr_reason frr_orig tv2 ty1
-- NB: if it's an unsolved equality in which both sides are concrete
-- (e.g. a concrete type variable on both sides), then it's not a
-- representation-polymorphism problem.
| otherwise
= Nothing
frr_reason (ConcreteFRR frr_orig) conc_tv not_conc
= FRR_Info { frr_info_origin = frr_orig
, frr_info_not_concrete = Just (conc_tv, not_conc) }
ty1 = mkTyVarTy tv1
check_eq_result = case ei_m_reason item of
Just (NonCanonicalReason result) -> result
_ -> checkTyVarEq tv1 ty2
-- in T2627b, we report an error for F (F a0) ~ a0. Note that the type
-- variable is on the right, so we don't get useful info for the CIrredCan,
-- and have to compute the result of checkTyVarEq here.
insoluble_occurs_check = check_eq_result `cterHasProblem` cteInsolubleOccurs
eqInfoMsgs :: TcType -> TcType -> [AmbiguityInfo]
-- Report (a) ambiguity if either side is a type function application
-- e.g. F a0 ~ Int
-- (b) warning about injectivity if both sides are the same
-- type function application F a ~ F b
-- See Note [Non-injective type functions]
eqInfoMsgs ty1 ty2
= catMaybes [tyfun_msg, ambig_msg]
where
mb_fun1 = isTyFun_maybe ty1
mb_fun2 = isTyFun_maybe ty2
-- if a type isn't headed by a type function, then any ambiguous
-- variables need not be reported as such. e.g.: F a ~ t0 -> t0, where a is a skolem
ambig_tkvs1 = maybe mempty (\_ -> ambigTkvsOfTy ty1) mb_fun1
ambig_tkvs2 = maybe mempty (\_ -> ambigTkvsOfTy ty2) mb_fun2
ambig_tkvs@(ambig_kvs, ambig_tvs) = ambig_tkvs1 S.<> ambig_tkvs2
ambig_msg | isJust mb_fun1 || isJust mb_fun2
, not (null ambig_kvs && null ambig_tvs)
= Just $ Ambiguity False ambig_tkvs
| otherwise
= Nothing
tyfun_msg | Just tc1 <- mb_fun1
, Just tc2 <- mb_fun2
, tc1 == tc2
, not (isInjectiveTyCon tc1 Nominal)
= Just $ NonInjectiveTyFam tc1
| otherwise
= Nothing
misMatchOrCND :: Bool -> SolverReportErrCtxt -> ErrorItem
-> TcType -> TcType -> MismatchMsg
-- If oriented then ty1 is actual, ty2 is expected
misMatchOrCND insoluble_occurs_check ctxt item ty1 ty2
| insoluble_occurs_check -- See Note [Insoluble occurs check]
|| (isRigidTy ty1 && isRigidTy ty2)
|| (ei_flavour item == Given)
|| null givens
= -- If the equality is unconditionally insoluble
-- or there is no context, don't report the context
mkMismatchMsg item ty1 ty2
| otherwise
= CouldNotDeduce givens (item :| []) (Just $ CND_Extra level ty1 ty2)
where
level = ctLocTypeOrKind_maybe (errorItemCtLoc item) `orElse` TypeLevel
givens = [ given | given <- getUserGivens ctxt, ic_given_eqs given /= NoGivenEqs ]
-- Keep only UserGivens that have some equalities.
-- See Note [Suppress redundant givens during error reporting]
-- These are for the "blocked" equalities, as described in TcCanonical
-- Note [Equalities with incompatible kinds], wrinkle (2). There should
-- always be another unsolved wanted around, which will ordinarily suppress
-- this message. But this can still be printed out with -fdefer-type-errors
-- (sigh), so we must produce a message.
mkBlockedEqErr :: ErrorItem -> TcSolverReportMsg
mkBlockedEqErr item = BlockedEquality item
{-
Note [Suppress redundant givens during error reporting]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When GHC is unable to solve a constraint and prints out an error message, it
will print out what given constraints are in scope to provide some context to
the programmer. But we shouldn't print out /every/ given, since some of them
are not terribly helpful to diagnose type errors. Consider this example:
foo :: Int :~: Int -> a :~: b -> a :~: c
foo Refl Refl = Refl
When reporting that GHC can't solve (a ~ c), there are two givens in scope:
(Int ~ Int) and (a ~ b). But (Int ~ Int) is trivially soluble (i.e.,
redundant), so it's not terribly useful to report it in an error message.
To accomplish this, we discard any Implications that do not bind any
equalities by filtering the `givens` selected in `misMatchOrCND` (based on
the `ic_given_eqs` field of the Implication). Note that we discard givens
that have no equalities whatsoever, but we want to keep ones with only *local*
equalities, as these may be helpful to the user in understanding what went
wrong.
But this is not enough to avoid all redundant givens! Consider this example,
from #15361:
goo :: forall (a :: Type) (b :: Type) (c :: Type).
a :~~: b -> a :~~: c
goo HRefl = HRefl
Matching on HRefl brings the /single/ given (* ~ *, a ~ b) into scope.
The (* ~ *) part arises due the kinds of (:~~:) being unified. More
importantly, (* ~ *) is redundant, so we'd like not to report it. However,
the Implication (* ~ *, a ~ b) /does/ bind an equality (as reported by its
ic_given_eqs field), so the test above will keep it wholesale.
To refine this given, we apply mkMinimalBySCs on it to extract just the (a ~ b)
part. This works because mkMinimalBySCs eliminates reflexive equalities in
addition to superclasses (see Note [Remove redundant provided dicts]
in GHC.Tc.TyCl.PatSyn).
-}
extraTyVarEqInfo :: (TcTyVar, Maybe Implication) -> TcType -> TcM TyVarInfo
-- Add on extra info about skolem constants
-- NB: The types themselves are already tidied
extraTyVarEqInfo (tv1, mb_implic) ty2
= do
tv1_info <- extraTyVarInfo tv1
ty2_info <- ty_extra ty2
return $
TyVarInfo
{ thisTyVar = tv1_info
, thisTyVarIsUntouchable = mb_implic
, otherTy = ty2_info }
where
ty_extra ty = case getCastedTyVar_maybe ty of
Just (tv, _) -> Just <$> extraTyVarInfo tv
Nothing -> return Nothing
extraTyVarInfo :: TcTyVar -> TcM TyVar
extraTyVarInfo tv = assertPpr (isTyVar tv) (ppr tv) $
case tcTyVarDetails tv of
SkolemTv skol_info lvl overlaps -> do
new_skol_info <- zonkSkolemInfo skol_info
return $ mkTcTyVar (tyVarName tv) (tyVarKind tv) (SkolemTv new_skol_info lvl overlaps)
_ -> return tv
suggestAddSig :: SolverReportErrCtxt -> TcType -> TcType -> Maybe GhcHint
-- See Note [Suggest adding a type signature]
suggestAddSig ctxt ty1 _ty2
| bndr : bndrs <- inferred_bndrs
= Just $ SuggestAddTypeSignatures $ NamedBindings (bndr :| bndrs)
| otherwise
= Nothing
where
inferred_bndrs =
case getTyVar_maybe ty1 of
Just tv | isSkolemTyVar tv -> find (cec_encl ctxt) False tv
_ -> []
-- 'find' returns the binders of an InferSkol for 'tv',
-- provided there is an intervening implication with
-- ic_given_eqs /= NoGivenEqs (i.e. a GADT match)
find [] _ _ = []
find (implic:implics) seen_eqs tv
| tv `elem` ic_skols implic
, InferSkol prs <- ic_info implic
, seen_eqs
= map fst prs
| otherwise
= find implics (seen_eqs || ic_given_eqs implic /= NoGivenEqs) tv
--------------------
mkMismatchMsg :: ErrorItem -> Type -> Type -> MismatchMsg
mkMismatchMsg item ty1 ty2 =
case orig of
TypeEqOrigin { uo_actual, uo_expected, uo_thing = mb_thing } ->
(TypeEqMismatch
{ teq_mismatch_ppr_explicit_kinds = ppr_explicit_kinds
, teq_mismatch_item = item
, teq_mismatch_ty1 = ty1
, teq_mismatch_ty2 = ty2
, teq_mismatch_actual = uo_actual
, teq_mismatch_expected = uo_expected
, teq_mismatch_what = mb_thing
, teq_mb_same_occ = sameOccExtras ty2 ty1 })
KindEqOrigin cty1 cty2 sub_o mb_sub_t_or_k -> BasicMismatch
{ mismatch_ea = NoEA
, mismatch_item = item
, mismatch_ty1 = ty1
, mismatch_ty2 = ty2
, mismatch_whenMatching = Just $ WhenMatching cty1 cty2 sub_o mb_sub_t_or_k
, mismatch_mb_same_occ = mb_same_occ
}
_ -> BasicMismatch
{ mismatch_ea = NoEA
, mismatch_item = item
, mismatch_ty1 = ty1
, mismatch_ty2 = ty2
, mismatch_whenMatching = Nothing
, mismatch_mb_same_occ = mb_same_occ
}
where
orig = errorItemOrigin item
mb_same_occ = sameOccExtras ty2 ty1
ppr_explicit_kinds = shouldPprWithExplicitKinds ty1 ty2 orig
-- | Whether to print explicit kinds (with @-fprint-explicit-kinds@)
-- in an 'SDoc' when a type mismatch occurs to due invisible kind arguments.
--
-- This function first checks to see if the 'CtOrigin' argument is a
-- 'TypeEqOrigin'. If so, it first checks whether the equality is a visible
-- equality; if it's not, definitely print the kinds. Even if the equality is
-- a visible equality, check the expected/actual types to see if the types
-- have equal visible components. If the 'CtOrigin' is
-- not a 'TypeEqOrigin', fall back on the actual mismatched types themselves.
shouldPprWithExplicitKinds :: Type -> Type -> CtOrigin -> Bool
shouldPprWithExplicitKinds _ty1 _ty2 (TypeEqOrigin { uo_actual = act
, uo_expected = exp
, uo_visible = vis })
| not vis = True -- See tests T15870, T16204c
| otherwise = tcEqTypeVis act exp -- See tests T9171, T9144.
shouldPprWithExplicitKinds ty1 ty2 _ct
= tcEqTypeVis ty1 ty2
{- Note [Insoluble occurs check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider [G] a ~ [a], [W] a ~ [a] (#13674). The Given is insoluble
so we don't use it for rewriting. The Wanted is also insoluble, and
we don't solve it from the Given. It's very confusing to say
Cannot solve a ~ [a] from given constraints a ~ [a]
And indeed even thinking about the Givens is silly; [W] a ~ [a] is
just as insoluble as Int ~ Bool.
Conclusion: if there's an insoluble occurs check (cteInsolubleOccurs)
then report it directly, not in the "cannot deduce X from Y" form.
This is done in misMatchOrCND (via the insoluble_occurs_check arg)
(NB: there are potentially-soluble ones, like (a ~ F a b), and we don't
want to be as draconian with them.)
-}
sameOccExtras :: TcType -> TcType -> Maybe SameOccInfo
-- See Note [Disambiguating (X ~ X) errors]
sameOccExtras ty1 ty2
| Just (tc1, _) <- tcSplitTyConApp_maybe ty1
, Just (tc2, _) <- tcSplitTyConApp_maybe ty2
, let n1 = tyConName tc1
n2 = tyConName tc2
same_occ = nameOccName n1 == nameOccName n2
same_pkg = moduleUnit (nameModule n1) == moduleUnit (nameModule n2)
, n1 /= n2 -- Different Names
, same_occ -- but same OccName
= Just $ SameOcc same_pkg n1 n2
| otherwise
= Nothing
{- Note [Suggest adding a type signature]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The OutsideIn algorithm rejects GADT programs that don't have a principal
type, and indeed some that do. Example:
data T a where
MkT :: Int -> T Int
f (MkT n) = n
Does this have type f :: T a -> a, or f :: T a -> Int?
The error that shows up tends to be an attempt to unify an
untouchable type variable. So suggestAddSig sees if the offending
type variable is bound by an *inferred* signature, and suggests
adding a declared signature instead.
More specifically, we suggest adding a type sig if we have p ~ ty, and
p is a skolem bound by an InferSkol. Those skolems were created from
unification variables in simplifyInfer. Why didn't we unify? It must
have been because of an intervening GADT or existential, making it
untouchable. Either way, a type signature would help. For GADTs, it
might make it typeable; for existentials the attempt to write a
signature will fail -- or at least will produce a better error message
next time
This initially came up in #8968, concerning pattern synonyms.
Note [Disambiguating (X ~ X) errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #8278
Note [Reporting occurs-check errors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (a ~ [a]), if 'a' is a rigid type variable bound by a user-supplied
type signature, then the best thing is to report that we can't unify
a with [a], because a is a skolem variable. That avoids the confusing
"occur-check" error message.
But nowadays when inferring the type of a function with no type signature,
even if there are errors inside, we still generalise its signature and
carry on. For example
f x = x:x
Here we will infer something like
f :: forall a. a -> [a]
with a deferred error of (a ~ [a]). So in the deferred unsolved constraint
'a' is now a skolem, but not one bound by the programmer in the context!
Here we really should report an occurs check.
So isUserSkolem distinguishes the two.
Note [Non-injective type functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very confusing to get a message like
Couldn't match expected type `Depend s'
against inferred type `Depend s1'
so mkTyFunInfoMsg adds:
NB: `Depend' is type function, and hence may not be injective
Warn of loopy local equalities that were dropped.
************************************************************************
* *
Type-class errors
* *
************************************************************************
-}
mkDictErr :: HasDebugCallStack => SolverReportErrCtxt -> NonEmpty ErrorItem -> TcM SolverReport
mkDictErr ctxt orig_items
= do { inst_envs <- tcGetInstEnvs
; let min_items = elim_superclasses items
lookups = map (lookup_cls_inst inst_envs) min_items
(no_inst_items, overlap_items) = partition is_no_inst lookups
-- Report definite no-instance errors,
-- or (iff there are none) overlap errors
-- But we report only one of them (hence 'head') because they all
-- have the same source-location origin, to try avoid a cascade
-- of error from one location
; err <- mk_dict_err ctxt (head (no_inst_items ++ overlap_items))
; return $ important ctxt err }
where
items = tryFilter (not . ei_suppress) orig_items
no_givens = null (getUserGivens ctxt)
is_no_inst (item, (matches, unifiers, _))
= no_givens
&& null matches
&& (nullUnifiers unifiers || all (not . isAmbiguousTyVar) (tyCoVarsOfTypeList (errorItemPred item)))
lookup_cls_inst inst_envs item
= (item, lookupInstEnv True inst_envs clas tys)
where
(clas, tys) = getClassPredTys (errorItemPred item)
-- When simplifying [W] Ord (Set a), we need
-- [W] Eq a, [W] Ord a
-- but we really only want to report the latter
elim_superclasses = mkMinimalBySCs errorItemPred . toList
-- Note [mk_dict_err]
-- ~~~~~~~~~~~~~~~~~~~
-- Different dictionary error messages are reported depending on the number of
-- matches and unifiers:
--
-- - No matches, regardless of unifiers: report "No instance for ...".
-- - Two or more matches, regardless of unifiers: report "Overlapping instances for ...",
-- and show the matching and unifying instances.
-- - One match, one or more unifiers: report "Overlapping instances for", show the
-- matching and unifying instances, and say "The choice depends on the instantion of ...,
-- and the result of evaluating ...".
mk_dict_err :: HasCallStack => SolverReportErrCtxt -> (ErrorItem, ClsInstLookupResult)
-> TcM TcSolverReportMsg
mk_dict_err ctxt (item, (matches, unifiers, unsafe_overlapped)) = case (NE.nonEmpty matches, NE.nonEmpty unsafe_overlapped) of
(Nothing, _) -> do -- No matches but perhaps several unifiers
{ (_, rel_binds, item) <- relevantBindings True ctxt item
; candidate_insts <- get_candidate_instances
; (imp_errs, field_suggestions) <- record_field_suggestions
; return (cannot_resolve_msg item candidate_insts rel_binds imp_errs field_suggestions) }
-- Some matches => overlap errors
(Just matchesNE, Nothing) -> return $
OverlappingInstances item (NE.map fst matchesNE) (getPotentialUnifiers unifiers)
(Just (match :| []), Just unsafe_overlappedNE) -> return $
UnsafeOverlap item (fst match) (NE.map fst unsafe_overlappedNE)
(Just matches@(_ :| _), Just overlaps) -> pprPanic "mk_dict_err: multiple matches with overlap" $ vcat [ text "matches:" <+> ppr matches, text "overlaps:" <+> ppr overlaps ]
where
orig = errorItemOrigin item
pred = errorItemPred item
(clas, tys) = getClassPredTys pred
get_candidate_instances :: TcM [ClsInst]
-- See Note [Report candidate instances]
get_candidate_instances
| [ty] <- tys -- Only try for single-parameter classes
= do { instEnvs <- tcGetInstEnvs
; return (filter (is_candidate_inst ty)
(classInstances instEnvs clas)) }
| otherwise = return []
is_candidate_inst ty inst -- See Note [Report candidate instances]
| [other_ty] <- is_tys inst
, Just (tc1, _) <- tcSplitTyConApp_maybe ty
, Just (tc2, _) <- tcSplitTyConApp_maybe other_ty
= let n1 = tyConName tc1
n2 = tyConName tc2
different_names = n1 /= n2
same_occ_names = nameOccName n1 == nameOccName n2
in different_names && same_occ_names
| otherwise = False
-- See Note [Out-of-scope fields with -XOverloadedRecordDot]
record_field_suggestions :: TcM ([ImportError], [GhcHint])
record_field_suggestions = flip (maybe $ return ([], noHints)) record_field $ \name ->
do { glb_env <- getGlobalRdrEnv
; lcl_env <- getLocalRdrEnv
; if occ_name_in_scope glb_env lcl_env name
then return ([], noHints)
else do { dflags <- getDynFlags
; imp_info <- getImports
; curr_mod <- getModule
; hpt <- getHpt
; return (unknownNameSuggestions WL_RecField dflags hpt curr_mod
glb_env emptyLocalRdrEnv imp_info (mkRdrUnqual name)) } }
occ_name_in_scope glb_env lcl_env occ_name = not $
null (lookupGlobalRdrEnv glb_env occ_name) &&
isNothing (lookupLocalRdrOcc lcl_env occ_name)
record_field = case orig of
HasFieldOrigin name -> Just (mkVarOccFS name)
_ -> Nothing
cannot_resolve_msg :: ErrorItem -> [ClsInst] -> RelevantBindings
-> [ImportError] -> [GhcHint] -> TcSolverReportMsg
cannot_resolve_msg item candidate_insts binds imp_errs field_suggestions
= CannotResolveInstance item (getPotentialUnifiers unifiers) candidate_insts imp_errs field_suggestions binds
{- Note [Report candidate instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an unsolved (Num Int), where `Int` is not the Prelude Int,
but comes from some other module, then it may be helpful to point out
that there are some similarly named instances elsewhere. So we get
something like
No instance for (Num Int) arising from the literal ‘3’
There are instances for similar types:
instance Num GHC.Types.Int -- Defined in ‘GHC.Num’
Discussion in #9611.
Note [Highlighting ambiguous type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we encounter ambiguous type variables (i.e. type variables
that remain metavariables after type inference), we need a few more
conditions before we can reason that *ambiguity* prevents constraints
from being solved:
- We can't have any givens, as encountering a typeclass error
with given constraints just means we couldn't deduce
a solution satisfying those constraints and as such couldn't
bind the type variable to a known type.
- If we don't have any unifiers, we don't even have potential
instances from which an ambiguity could arise.
- Lastly, I don't want to mess with error reporting for
unknown runtime types so we just fall back to the old message there.
Once these conditions are satisfied, we can safely say that ambiguity prevents
the constraint from being solved.
Note [Out-of-scope fields with -XOverloadedRecordDot]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With -XOverloadedRecordDot, when a field isn't in scope, the error that appears
is produces here, and it says
No instance for (GHC.Record.HasField "<fieldname>" ...).
Additionally, though, we want to suggest similar field names that are in scope
or could be in scope with different import lists.
However, we can still get an error about a missing HasField instance when a
field is in scope (if the types are wrong), and so it's important that we don't
suggest similar names here if the record field is in scope, either qualified or
unqualified, since qualification doesn't matter for -XOverloadedRecordDot.
Example:
import Data.Monoid (Alt(..))
foo = undefined.getAll
results in
No instance for (GHC.Records.HasField "getAll" r0 a0)
arising from selecting the field ‘getAll’
Perhaps you meant ‘getAlt’ (imported from Data.Monoid)
Perhaps you want to add ‘getAll’ to the import list
in the import of ‘Data.Monoid’
-}
{-
Note [Kind arguments in error messages]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It can be terribly confusing to get an error message like (#9171)
Couldn't match expected type ‘GetParam Base (GetParam Base Int)’
with actual type ‘GetParam Base (GetParam Base Int)’
The reason may be that the kinds don't match up. Typically you'll get
more useful information, but not when it's as a result of ambiguity.
To mitigate this, GHC attempts to enable the -fprint-explicit-kinds flag
whenever any error message arises due to a kind mismatch. This means that
the above error message would instead be displayed as:
Couldn't match expected type
‘GetParam @* @k2 @* Base (GetParam @* @* @k2 Base Int)’
with actual type
‘GetParam @* @k20 @* Base (GetParam @* @* @k20 Base Int)’
Which makes it clearer that the culprit is the mismatch between `k2` and `k20`.
-}
-----------------------
-- relevantBindings looks at the value environment and finds values whose
-- types mention any of the offending type variables. It has to be
-- careful to zonk the Id's type first, so it has to be in the monad.
-- We must be careful to pass it a zonked type variable, too.
--
-- We always remove closed top-level bindings, though,
-- since they are never relevant (cf #8233)
relevantBindings :: Bool -- True <=> filter by tyvar; False <=> no filtering
-- See #8191
-> SolverReportErrCtxt -> ErrorItem
-> TcM (SolverReportErrCtxt, RelevantBindings, ErrorItem)
-- Also returns the zonked and tidied CtOrigin of the constraint
relevantBindings want_filtering ctxt item
= do { traceTc "relevantBindings" (ppr item)
; (env1, tidy_orig) <- zonkTidyOrigin (cec_tidy ctxt) (ctLocOrigin loc)
-- For *kind* errors, report the relevant bindings of the
-- enclosing *type* equality, because that's more useful for the programmer
; let extra_tvs = case tidy_orig of
KindEqOrigin t1 t2 _ _ -> tyCoVarsOfTypes [t1,t2]
_ -> emptyVarSet
ct_fvs = tyCoVarsOfType (errorItemPred item) `unionVarSet` extra_tvs
-- Put a zonked, tidied CtOrigin into the ErrorItem
loc' = setCtLocOrigin loc tidy_orig
item' = item { ei_loc = loc' }
; (env2, lcl_name_cache) <- zonkTidyTcLclEnvs env1 [lcl_env]
; relev_bds <- relevant_bindings want_filtering lcl_env lcl_name_cache ct_fvs
; let ctxt' = ctxt { cec_tidy = env2 }
; return (ctxt', relev_bds, item') }
where
loc = errorItemCtLoc item
lcl_env = ctLocEnv loc
-- slightly more general version, to work also with holes
relevant_bindings :: Bool
-> TcLclEnv
-> NameEnv Type -- Cache of already zonked and tidied types
-> TyCoVarSet
-> TcM RelevantBindings
relevant_bindings want_filtering lcl_env lcl_name_env ct_tvs
= do { dflags <- getDynFlags
; traceTc "relevant_bindings" $
vcat [ ppr ct_tvs
, pprWithCommas id [ ppr id <+> dcolon <+> ppr (idType id)
| TcIdBndr id _ <- tcl_bndrs lcl_env ]
, pprWithCommas id
[ ppr id | TcIdBndr_ExpType id _ _ <- tcl_bndrs lcl_env ] ]
; go dflags (maxRelevantBinds dflags)
emptyVarSet (RelevantBindings [] False)
(removeBindingShadowing $ tcl_bndrs lcl_env)
-- tcl_bndrs has the innermost bindings first,
-- which are probably the most relevant ones
}
where
run_out :: Maybe Int -> Bool
run_out Nothing = False
run_out (Just n) = n <= 0
dec_max :: Maybe Int -> Maybe Int
dec_max = fmap (\n -> n - 1)
go :: DynFlags -> Maybe Int -> TcTyVarSet
-> RelevantBindings
-> [TcBinder]
-> TcM RelevantBindings
go _ _ _ (RelevantBindings bds discards) []
= return $ RelevantBindings (reverse bds) discards
go dflags n_left tvs_seen rels@(RelevantBindings bds discards) (tc_bndr : tc_bndrs)
= case tc_bndr of
TcTvBndr {} -> discard_it
TcIdBndr id top_lvl -> go2 (idName id) top_lvl
TcIdBndr_ExpType name et top_lvl ->
do { mb_ty <- readExpType_maybe et
-- et really should be filled in by now. But there's a chance
-- it hasn't, if, say, we're reporting a kind error en route to
-- checking a term. See test indexed-types/should_fail/T8129
-- Or we are reporting errors from the ambiguity check on
-- a local type signature
; case mb_ty of
Just _ty -> go2 name top_lvl
Nothing -> discard_it -- No info; discard
}
where
discard_it = go dflags n_left tvs_seen rels tc_bndrs
go2 id_name top_lvl
= do { let tidy_ty = case lookupNameEnv lcl_name_env id_name of
Just tty -> tty
Nothing -> pprPanic "relevant_bindings" (ppr id_name)
; traceTc "relevantBindings 1" (ppr id_name <+> dcolon <+> ppr tidy_ty)
; let id_tvs = tyCoVarsOfType tidy_ty
bd = (id_name, tidy_ty)
new_seen = tvs_seen `unionVarSet` id_tvs
; if (want_filtering && not (hasPprDebug dflags)
&& id_tvs `disjointVarSet` ct_tvs)
-- We want to filter out this binding anyway
-- so discard it silently
then discard_it
else if isTopLevel top_lvl && not (isNothing n_left)
-- It's a top-level binding and we have not specified
-- -fno-max-relevant-bindings, so discard it silently
then discard_it
else if run_out n_left && id_tvs `subVarSet` tvs_seen
-- We've run out of n_left fuel and this binding only
-- mentions already-seen type variables, so discard it
then go dflags n_left tvs_seen (RelevantBindings bds True) -- Record that we have now discarded something
tc_bndrs
-- Keep this binding, decrement fuel
else go dflags (dec_max n_left) new_seen
(RelevantBindings (bd:bds) discards) tc_bndrs }
-----------------------
warnDefaulting :: TcTyVar -> [Ct] -> Type -> TcM ()
warnDefaulting _ [] _
= panic "warnDefaulting: empty Wanteds"
warnDefaulting the_tv wanteds@(ct:_) default_ty
= do { warn_default <- woptM Opt_WarnTypeDefaults
; env0 <- tcInitTidyEnv
-- don't want to report all the superclass constraints, which
-- add unhelpful clutter
; let filtered = filter (not . isWantedSuperclassOrigin . ctOrigin) wanteds
tidy_env = tidyFreeTyCoVars env0 $
tyCoVarsOfCtsList (listToBag filtered)
tidy_wanteds = map (tidyCt tidy_env) filtered
tidy_tv = lookupVarEnv (snd tidy_env) the_tv
diag = TcRnWarnDefaulting tidy_wanteds tidy_tv default_ty
loc = ctLoc ct
; setCtLocM loc $ diagnosticTc warn_default diag }
{-
Note [Runtime skolems]
~~~~~~~~~~~~~~~~~~~~~~
We want to give a reasonably helpful error message for ambiguity
arising from *runtime* skolems in the debugger. These
are created by in GHC.Runtime.Heap.Inspect.zonkRTTIType.
-}
{-**********************************************************************
* *
GHC API helper functions
* *
**********************************************************************-}
-- | If the 'TcSolverReportMsg' is a type mismatch between
-- an actual and an expected type, return the actual and expected types
-- (in that order).
--
-- Prefer using this over manually inspecting the 'TcSolverReportMsg' datatype
-- if you just want this information, as the datatype itself is subject to change
-- across GHC versions.
solverReportMsg_ExpectedActuals :: TcSolverReportMsg -> [(Type, Type)]
solverReportMsg_ExpectedActuals
= \case
Mismatch { mismatchMsg = mismatch_msg } ->
case mismatch_msg of
BasicMismatch { mismatch_ty1 = exp, mismatch_ty2 = act } ->
[(exp, act)]
KindMismatch { kmismatch_expected = exp, kmismatch_actual = act } ->
[(exp, act)]
TypeEqMismatch { teq_mismatch_expected = exp, teq_mismatch_actual = act } ->
[(exp,act)]
CouldNotDeduce {} ->
[]
_ -> []
-- | Filter the list by the given predicate, but if that would be empty,
-- just give back the original list.
-- We use this as we must report something for fdefer-type-errors.
tryFilter :: (a -> Bool) -> NonEmpty a -> NonEmpty a
tryFilter f as = fromMaybe as $ nonEmpty (filter f (toList as))
|