1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
|
{-
%
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, TupleSections, ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Typecheck an expression
module GHC.Tc.Gen.Expr
( tcPolyExpr
, tcMonoExpr
, tcMonoExprNC
, tcInferSigma
, tcInferSigmaNC
, tcInferRho
, tcInferRhoNC
, tcSyntaxOp
, tcSyntaxOpGen
, SyntaxOpType(..)
, synKnownType
, tcCheckId
, addExprErrCtxt
, addAmbiguousNameErr
, getFixedTyVars
)
where
#include "HsVersions.h"
import GhcPrelude
import {-# SOURCE #-} GHC.Tc.Gen.Splice( tcSpliceExpr, tcTypedBracket, tcUntypedBracket )
import THNames( liftStringName, liftName )
import GHC.Hs
import GHC.Tc.Types.Constraint ( HoleSort(..) )
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Unify
import GHC.Types.Basic
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Gen.Bind ( chooseInferredQuantifiers, tcLocalBinds )
import GHC.Tc.Gen.Sig ( tcUserTypeSig, tcInstSig )
import GHC.Tc.Solver ( simplifyInfer, InferMode(..) )
import GHC.Tc.Instance.Family ( tcGetFamInstEnvs, tcLookupDataFamInst )
import GHC.Core.FamInstEnv ( FamInstEnvs )
import GHC.Rename.Env ( addUsedGRE )
import GHC.Rename.Utils ( addNameClashErrRn, unknownSubordinateErr )
import GHC.Tc.Utils.Env
import GHC.Tc.Gen.Arrow
import GHC.Tc.Gen.Match
import GHC.Tc.Gen.HsType
import GHC.Tc.TyCl.PatSyn ( tcPatSynBuilderOcc, nonBidirectionalErr )
import GHC.Tc.Gen.Pat
import GHC.Tc.Utils.TcMType
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType as TcType
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr
import GHC.Core.TyCo.Subst (substTyWithInScope)
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Types.Var.Set
import TysWiredIn
import TysPrim( intPrimTy )
import PrimOp( tagToEnumKey )
import PrelNames
import GHC.Driver.Session
import GHC.Types.SrcLoc
import Util
import GHC.Types.Var.Env ( emptyTidyEnv, mkInScopeSet )
import ListSetOps
import Maybes
import Outputable
import FastString
import Control.Monad
import GHC.Core.Class(classTyCon)
import GHC.Types.Unique.Set ( nonDetEltsUniqSet )
import qualified GHC.LanguageExtensions as LangExt
import Data.Function
import Data.List (partition, sortBy, groupBy, intersect)
import qualified Data.Set as Set
{-
************************************************************************
* *
\subsection{Main wrappers}
* *
************************************************************************
-}
tcPolyExpr, tcPolyExprNC
:: LHsExpr GhcRn -- Expression to type check
-> TcSigmaType -- Expected type (could be a polytype)
-> TcM (LHsExpr GhcTcId) -- Generalised expr with expected type
-- tcPolyExpr is a convenient place (frequent but not too frequent)
-- place to add context information.
-- The NC version does not do so, usually because the caller wants
-- to do so himself.
tcPolyExpr expr res_ty = tc_poly_expr expr (mkCheckExpType res_ty)
tcPolyExprNC expr res_ty = tc_poly_expr_nc expr (mkCheckExpType res_ty)
-- these versions take an ExpType
tc_poly_expr, tc_poly_expr_nc :: LHsExpr GhcRn -> ExpSigmaType
-> TcM (LHsExpr GhcTcId)
tc_poly_expr expr res_ty
= addExprErrCtxt expr $
do { traceTc "tcPolyExpr" (ppr res_ty); tc_poly_expr_nc expr res_ty }
tc_poly_expr_nc (L loc expr) res_ty
= setSrcSpan loc $
do { traceTc "tcPolyExprNC" (ppr res_ty)
; (wrap, expr')
<- tcSkolemiseET GenSigCtxt res_ty $ \ res_ty ->
tcExpr expr res_ty
; return $ L loc (mkHsWrap wrap expr') }
---------------
tcMonoExpr, tcMonoExprNC
:: LHsExpr GhcRn -- Expression to type check
-> ExpRhoType -- Expected type
-- Definitely no foralls at the top
-> TcM (LHsExpr GhcTcId)
tcMonoExpr expr res_ty
= addErrCtxt (exprCtxt expr) $
tcMonoExprNC expr res_ty
tcMonoExprNC (L loc expr) res_ty
= setSrcSpan loc $
do { expr' <- tcExpr expr res_ty
; return (L loc expr') }
---------------
tcInferSigma, tcInferSigmaNC :: LHsExpr GhcRn -> TcM ( LHsExpr GhcTcId
, TcSigmaType )
-- Infer a *sigma*-type.
tcInferSigma expr = addErrCtxt (exprCtxt expr) (tcInferSigmaNC expr)
tcInferSigmaNC (L loc expr)
= setSrcSpan loc $
do { (expr', sigma) <- tcInferNoInst (tcExpr expr)
; return (L loc expr', sigma) }
tcInferRho, tcInferRhoNC :: LHsExpr GhcRn -> TcM (LHsExpr GhcTcId, TcRhoType)
-- Infer a *rho*-type. The return type is always (shallowly) instantiated.
tcInferRho expr = addErrCtxt (exprCtxt expr) (tcInferRhoNC expr)
tcInferRhoNC expr
= do { (expr', sigma) <- tcInferSigmaNC expr
; (wrap, rho) <- topInstantiate (lexprCtOrigin expr) sigma
; return (mkLHsWrap wrap expr', rho) }
{-
************************************************************************
* *
tcExpr: the main expression typechecker
* *
************************************************************************
NB: The res_ty is always deeply skolemised.
-}
tcExpr :: HsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTcId)
tcExpr (HsVar _ (L _ name)) res_ty = tcCheckId name res_ty
tcExpr e@(HsUnboundVar _ uv) res_ty = tcUnboundId e uv res_ty
tcExpr e@(HsApp {}) res_ty = tcApp1 e res_ty
tcExpr e@(HsAppType {}) res_ty = tcApp1 e res_ty
tcExpr e@(HsLit x lit) res_ty
= do { let lit_ty = hsLitType lit
; tcWrapResult e (HsLit x (convertLit lit)) lit_ty res_ty }
tcExpr (HsPar x expr) res_ty = do { expr' <- tcMonoExprNC expr res_ty
; return (HsPar x expr') }
tcExpr (HsPragE x prag expr) res_ty
= do { expr' <- tcMonoExpr expr res_ty
; return (HsPragE x (tc_prag prag) expr') }
where
tc_prag :: HsPragE GhcRn -> HsPragE GhcTc
tc_prag (HsPragSCC x1 src ann) = HsPragSCC x1 src ann
tc_prag (HsPragCore x1 src lbl) = HsPragCore x1 src lbl
tc_prag (HsPragTick x1 src info srcInfo) = HsPragTick x1 src info srcInfo
tc_prag (XHsPragE x) = noExtCon x
tcExpr (HsOverLit x lit) res_ty
= do { lit' <- newOverloadedLit lit res_ty
; return (HsOverLit x lit') }
tcExpr (NegApp x expr neg_expr) res_ty
= do { (expr', neg_expr')
<- tcSyntaxOp NegateOrigin neg_expr [SynAny] res_ty $
\[arg_ty] ->
tcMonoExpr expr (mkCheckExpType arg_ty)
; return (NegApp x expr' neg_expr') }
tcExpr e@(HsIPVar _ x) res_ty
= do { {- Implicit parameters must have a *tau-type* not a
type scheme. We enforce this by creating a fresh
type variable as its type. (Because res_ty may not
be a tau-type.) -}
ip_ty <- newOpenFlexiTyVarTy
; let ip_name = mkStrLitTy (hsIPNameFS x)
; ipClass <- tcLookupClass ipClassName
; ip_var <- emitWantedEvVar origin (mkClassPred ipClass [ip_name, ip_ty])
; tcWrapResult e
(fromDict ipClass ip_name ip_ty (HsVar noExtField (noLoc ip_var)))
ip_ty res_ty }
where
-- Coerces a dictionary for `IP "x" t` into `t`.
fromDict ipClass x ty = mkHsWrap $ mkWpCastR $
unwrapIP $ mkClassPred ipClass [x,ty]
origin = IPOccOrigin x
tcExpr e@(HsOverLabel _ mb_fromLabel l) res_ty
= do { -- See Note [Type-checking overloaded labels]
loc <- getSrcSpanM
; case mb_fromLabel of
Just fromLabel -> tcExpr (applyFromLabel loc fromLabel) res_ty
Nothing -> do { isLabelClass <- tcLookupClass isLabelClassName
; alpha <- newFlexiTyVarTy liftedTypeKind
; let pred = mkClassPred isLabelClass [lbl, alpha]
; loc <- getSrcSpanM
; var <- emitWantedEvVar origin pred
; tcWrapResult e
(fromDict pred (HsVar noExtField (L loc var)))
alpha res_ty } }
where
-- Coerces a dictionary for `IsLabel "x" t` into `t`,
-- or `HasField "x" r a into `r -> a`.
fromDict pred = mkHsWrap $ mkWpCastR $ unwrapIP pred
origin = OverLabelOrigin l
lbl = mkStrLitTy l
applyFromLabel loc fromLabel =
HsAppType noExtField
(L loc (HsVar noExtField (L loc fromLabel)))
(mkEmptyWildCardBndrs (L loc (HsTyLit noExtField (HsStrTy NoSourceText l))))
tcExpr (HsLam x match) res_ty
= do { (match', wrap) <- tcMatchLambda herald match_ctxt match res_ty
; return (mkHsWrap wrap (HsLam x match')) }
where
match_ctxt = MC { mc_what = LambdaExpr, mc_body = tcBody }
herald = sep [ text "The lambda expression" <+>
quotes (pprSetDepth (PartWay 1) $
pprMatches match),
-- The pprSetDepth makes the abstraction print briefly
text "has"]
tcExpr e@(HsLamCase x matches) res_ty
= do { (matches', wrap)
<- tcMatchLambda msg match_ctxt matches res_ty
-- The laziness annotation is because we don't want to fail here
-- if there are multiple arguments
; return (mkHsWrap wrap $ HsLamCase x matches') }
where
msg = sep [ text "The function" <+> quotes (ppr e)
, text "requires"]
match_ctxt = MC { mc_what = CaseAlt, mc_body = tcBody }
tcExpr e@(ExprWithTySig _ expr sig_ty) res_ty
= do { let loc = getLoc (hsSigWcType sig_ty)
; sig_info <- checkNoErrs $ -- Avoid error cascade
tcUserTypeSig loc sig_ty Nothing
; (expr', poly_ty) <- tcExprSig expr sig_info
; let expr'' = ExprWithTySig noExtField expr' sig_ty
; tcWrapResult e expr'' poly_ty res_ty }
{-
Note [Type-checking overloaded labels]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Recall that we have
module GHC.OverloadedLabels where
class IsLabel (x :: Symbol) a where
fromLabel :: a
We translate `#foo` to `fromLabel @"foo"`, where we use
* the in-scope `fromLabel` if `RebindableSyntax` is enabled; or if not
* `GHC.OverloadedLabels.fromLabel`.
In the `RebindableSyntax` case, the renamer will have filled in the
first field of `HsOverLabel` with the `fromLabel` function to use, and
we simply apply it to the appropriate visible type argument.
In the `OverloadedLabels` case, when we see an overloaded label like
`#foo`, we generate a fresh variable `alpha` for the type and emit an
`IsLabel "foo" alpha` constraint. Because the `IsLabel` class has a
single method, it is represented by a newtype, so we can coerce
`IsLabel "foo" alpha` to `alpha` (just like for implicit parameters).
-}
{-
************************************************************************
* *
Infix operators and sections
* *
************************************************************************
Note [Left sections]
~~~~~~~~~~~~~~~~~~~~
Left sections, like (4 *), are equivalent to
\ x -> (*) 4 x,
or, if PostfixOperators is enabled, just
(*) 4
With PostfixOperators we don't actually require the function to take
two arguments at all. For example, (x `not`) means (not x); you get
postfix operators! Not Haskell 98, but it's less work and kind of
useful.
Note [Typing rule for ($)]
~~~~~~~~~~~~~~~~~~~~~~~~~~
People write
runST $ blah
so much, where
runST :: (forall s. ST s a) -> a
that I have finally given in and written a special type-checking
rule just for saturated applications of ($).
* Infer the type of the first argument
* Decompose it; should be of form (arg2_ty -> res_ty),
where arg2_ty might be a polytype
* Use arg2_ty to typecheck arg2
-}
tcExpr expr@(OpApp fix arg1 op arg2) res_ty
| (L loc (HsVar _ (L lv op_name))) <- op
, op_name `hasKey` dollarIdKey -- Note [Typing rule for ($)]
= do { traceTc "Application rule" (ppr op)
; (arg1', arg1_ty) <- tcInferSigma arg1
; let doc = text "The first argument of ($) takes"
orig1 = lexprCtOrigin arg1
; (wrap_arg1, [arg2_sigma], op_res_ty) <-
matchActualFunTys doc orig1 (Just (unLoc arg1)) 1 arg1_ty
-- We have (arg1 $ arg2)
-- So: arg1_ty = arg2_ty -> op_res_ty
-- where arg2_sigma maybe polymorphic; that's the point
; arg2' <- tcArg op arg2 arg2_sigma 2
-- Make sure that the argument type has kind '*'
-- ($) :: forall (r:RuntimeRep) (a:*) (b:TYPE r). (a->b) -> a -> b
-- Eg we do not want to allow (D# $ 4.0#) #5570
-- (which gives a seg fault)
; _ <- unifyKind (Just (XHsType $ NHsCoreTy arg2_sigma))
(tcTypeKind arg2_sigma) liftedTypeKind
-- Ignore the evidence. arg2_sigma must have type * or #,
-- because we know (arg2_sigma -> op_res_ty) is well-kinded
-- (because otherwise matchActualFunTys would fail)
-- So this 'unifyKind' will either succeed with Refl, or will
-- produce an insoluble constraint * ~ #, which we'll report later.
-- NB: unlike the argument type, the *result* type, op_res_ty can
-- have any kind (#8739), so we don't need to check anything for that
; op_id <- tcLookupId op_name
; let op' = L loc (mkHsWrap (mkWpTyApps [ getRuntimeRep op_res_ty
, arg2_sigma
, op_res_ty])
(HsVar noExtField (L lv op_id)))
-- arg1' :: arg1_ty
-- wrap_arg1 :: arg1_ty "->" (arg2_sigma -> op_res_ty)
-- op' :: (a2_ty -> op_res_ty) -> a2_ty -> op_res_ty
expr' = OpApp fix (mkLHsWrap wrap_arg1 arg1') op' arg2'
; tcWrapResult expr expr' op_res_ty res_ty }
| (L loc (HsRecFld _ (Ambiguous _ lbl))) <- op
, Just sig_ty <- obviousSig (unLoc arg1)
-- See Note [Disambiguating record fields]
= do { sig_tc_ty <- tcHsSigWcType ExprSigCtxt sig_ty
; sel_name <- disambiguateSelector lbl sig_tc_ty
; let op' = L loc (HsRecFld noExtField (Unambiguous sel_name lbl))
; tcExpr (OpApp fix arg1 op' arg2) res_ty
}
| otherwise
= do { traceTc "Non Application rule" (ppr op)
; (wrap, op', [HsValArg arg1', HsValArg arg2'])
<- tcApp (Just $ mk_op_msg op)
op [HsValArg arg1, HsValArg arg2] res_ty
; return (mkHsWrap wrap $ OpApp fix arg1' op' arg2') }
-- Right sections, equivalent to \ x -> x `op` expr, or
-- \ x -> op x expr
tcExpr expr@(SectionR x op arg2) res_ty
= do { (op', op_ty) <- tcInferFun op
; (wrap_fun, [arg1_ty, arg2_ty], op_res_ty)
<- matchActualFunTys (mk_op_msg op) fn_orig (Just (unLoc op)) 2 op_ty
; wrap_res <- tcSubTypeHR SectionOrigin (Just expr)
(mkVisFunTy arg1_ty op_res_ty) res_ty
; arg2' <- tcArg op arg2 arg2_ty 2
; return ( mkHsWrap wrap_res $
SectionR x (mkLHsWrap wrap_fun op') arg2' ) }
where
fn_orig = lexprCtOrigin op
-- It's important to use the origin of 'op', so that call-stacks
-- come out right; they are driven by the OccurrenceOf CtOrigin
-- See #13285
tcExpr expr@(SectionL x arg1 op) res_ty
= do { (op', op_ty) <- tcInferFun op
; dflags <- getDynFlags -- Note [Left sections]
; let n_reqd_args | xopt LangExt.PostfixOperators dflags = 1
| otherwise = 2
; (wrap_fn, (arg1_ty:arg_tys), op_res_ty)
<- matchActualFunTys (mk_op_msg op) fn_orig (Just (unLoc op))
n_reqd_args op_ty
; wrap_res <- tcSubTypeHR SectionOrigin (Just expr)
(mkVisFunTys arg_tys op_res_ty) res_ty
; arg1' <- tcArg op arg1 arg1_ty 1
; return ( mkHsWrap wrap_res $
SectionL x arg1' (mkLHsWrap wrap_fn op') ) }
where
fn_orig = lexprCtOrigin op
-- It's important to use the origin of 'op', so that call-stacks
-- come out right; they are driven by the OccurrenceOf CtOrigin
-- See #13285
tcExpr expr@(ExplicitTuple x tup_args boxity) res_ty
| all tupArgPresent tup_args
= do { let arity = length tup_args
tup_tc = tupleTyCon boxity arity
-- NB: tupleTyCon doesn't flatten 1-tuples
-- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
; res_ty <- expTypeToType res_ty
; (coi, arg_tys) <- matchExpectedTyConApp tup_tc res_ty
-- Unboxed tuples have RuntimeRep vars, which we
-- don't care about here
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
; let arg_tys' = case boxity of Unboxed -> drop arity arg_tys
Boxed -> arg_tys
; tup_args1 <- tcTupArgs tup_args arg_tys'
; return $ mkHsWrapCo coi (ExplicitTuple x tup_args1 boxity) }
| otherwise
= -- The tup_args are a mixture of Present and Missing (for tuple sections)
do { let arity = length tup_args
; arg_tys <- case boxity of
{ Boxed -> newFlexiTyVarTys arity liftedTypeKind
; Unboxed -> replicateM arity newOpenFlexiTyVarTy }
; let actual_res_ty
= mkVisFunTys [ty | (ty, (L _ (Missing _))) <- arg_tys `zip` tup_args]
(mkTupleTy1 boxity arg_tys)
-- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
; wrap <- tcSubTypeHR (Shouldn'tHappenOrigin "ExpTuple")
(Just expr)
actual_res_ty res_ty
-- Handle tuple sections where
; tup_args1 <- tcTupArgs tup_args arg_tys
; return $ mkHsWrap wrap (ExplicitTuple x tup_args1 boxity) }
tcExpr (ExplicitSum _ alt arity expr) res_ty
= do { let sum_tc = sumTyCon arity
; res_ty <- expTypeToType res_ty
; (coi, arg_tys) <- matchExpectedTyConApp sum_tc res_ty
; -- Drop levity vars, we don't care about them here
let arg_tys' = drop arity arg_tys
; expr' <- tcPolyExpr expr (arg_tys' `getNth` (alt - 1))
; return $ mkHsWrapCo coi (ExplicitSum arg_tys' alt arity expr' ) }
-- This will see the empty list only when -XOverloadedLists.
-- See Note [Empty lists] in GHC.Hs.Expr.
tcExpr (ExplicitList _ witness exprs) res_ty
= case witness of
Nothing -> do { res_ty <- expTypeToType res_ty
; (coi, elt_ty) <- matchExpectedListTy res_ty
; exprs' <- mapM (tc_elt elt_ty) exprs
; return $
mkHsWrapCo coi $ ExplicitList elt_ty Nothing exprs' }
Just fln -> do { ((exprs', elt_ty), fln')
<- tcSyntaxOp ListOrigin fln
[synKnownType intTy, SynList] res_ty $
\ [elt_ty] ->
do { exprs' <-
mapM (tc_elt elt_ty) exprs
; return (exprs', elt_ty) }
; return $ ExplicitList elt_ty (Just fln') exprs' }
where tc_elt elt_ty expr = tcPolyExpr expr elt_ty
{-
************************************************************************
* *
Let, case, if, do
* *
************************************************************************
-}
tcExpr (HsLet x (L l binds) expr) res_ty
= do { (binds', expr') <- tcLocalBinds binds $
tcMonoExpr expr res_ty
; return (HsLet x (L l binds') expr') }
tcExpr (HsCase x scrut matches) res_ty
= do { -- We used to typecheck the case alternatives first.
-- The case patterns tend to give good type info to use
-- when typechecking the scrutinee. For example
-- case (map f) of
-- (x:xs) -> ...
-- will report that map is applied to too few arguments
--
-- But now, in the GADT world, we need to typecheck the scrutinee
-- first, to get type info that may be refined in the case alternatives
(scrut', scrut_ty) <- tcInferRho scrut
; traceTc "HsCase" (ppr scrut_ty)
; matches' <- tcMatchesCase match_ctxt scrut_ty matches res_ty
; return (HsCase x scrut' matches') }
where
match_ctxt = MC { mc_what = CaseAlt,
mc_body = tcBody }
tcExpr (HsIf x NoSyntaxExprRn pred b1 b2) res_ty -- Ordinary 'if'
= do { pred' <- tcMonoExpr pred (mkCheckExpType boolTy)
; res_ty <- tauifyExpType res_ty
-- Just like Note [Case branches must never infer a non-tau type]
-- in GHC.Tc.Gen.Match (See #10619)
; b1' <- tcMonoExpr b1 res_ty
; b2' <- tcMonoExpr b2 res_ty
; return (HsIf x NoSyntaxExprTc pred' b1' b2') }
tcExpr (HsIf x fun@(SyntaxExprRn {}) pred b1 b2) res_ty
= do { ((pred', b1', b2'), fun')
<- tcSyntaxOp IfOrigin fun [SynAny, SynAny, SynAny] res_ty $
\ [pred_ty, b1_ty, b2_ty] ->
do { pred' <- tcPolyExpr pred pred_ty
; b1' <- tcPolyExpr b1 b1_ty
; b2' <- tcPolyExpr b2 b2_ty
; return (pred', b1', b2') }
; return (HsIf x fun' pred' b1' b2') }
tcExpr (HsMultiIf _ alts) res_ty
= do { res_ty <- if isSingleton alts
then return res_ty
else tauifyExpType res_ty
-- Just like GHC.Tc.Gen.Match
-- Note [Case branches must never infer a non-tau type]
; alts' <- mapM (wrapLocM $ tcGRHS match_ctxt res_ty) alts
; res_ty <- readExpType res_ty
; return (HsMultiIf res_ty alts') }
where match_ctxt = MC { mc_what = IfAlt, mc_body = tcBody }
tcExpr (HsDo _ do_or_lc stmts) res_ty
= do { expr' <- tcDoStmts do_or_lc stmts res_ty
; return expr' }
tcExpr (HsProc x pat cmd) res_ty
= do { (pat', cmd', coi) <- tcProc pat cmd res_ty
; return $ mkHsWrapCo coi (HsProc x pat' cmd') }
-- Typechecks the static form and wraps it with a call to 'fromStaticPtr'.
-- See Note [Grand plan for static forms] in StaticPtrTable for an overview.
-- To type check
-- (static e) :: p a
-- we want to check (e :: a),
-- and wrap (static e) in a call to
-- fromStaticPtr :: IsStatic p => StaticPtr a -> p a
tcExpr (HsStatic fvs expr) res_ty
= do { res_ty <- expTypeToType res_ty
; (co, (p_ty, expr_ty)) <- matchExpectedAppTy res_ty
; (expr', lie) <- captureConstraints $
addErrCtxt (hang (text "In the body of a static form:")
2 (ppr expr)
) $
tcPolyExprNC expr expr_ty
-- Check that the free variables of the static form are closed.
-- It's OK to use nonDetEltsUniqSet here as the only side effects of
-- checkClosedInStaticForm are error messages.
; mapM_ checkClosedInStaticForm $ nonDetEltsUniqSet fvs
-- Require the type of the argument to be Typeable.
-- The evidence is not used, but asking the constraint ensures that
-- the current implementation is as restrictive as future versions
-- of the StaticPointers extension.
; typeableClass <- tcLookupClass typeableClassName
; _ <- emitWantedEvVar StaticOrigin $
mkTyConApp (classTyCon typeableClass)
[liftedTypeKind, expr_ty]
-- Insert the constraints of the static form in a global list for later
-- validation.
; emitStaticConstraints lie
-- Wrap the static form with the 'fromStaticPtr' call.
; fromStaticPtr <- newMethodFromName StaticOrigin fromStaticPtrName
[p_ty]
; let wrap = mkWpTyApps [expr_ty]
; loc <- getSrcSpanM
; return $ mkHsWrapCo co $ HsApp noExtField
(L loc $ mkHsWrap wrap fromStaticPtr)
(L loc (HsStatic fvs expr'))
}
{-
************************************************************************
* *
Record construction and update
* *
************************************************************************
-}
tcExpr expr@(RecordCon { rcon_con_name = L loc con_name
, rcon_flds = rbinds }) res_ty
= do { con_like <- tcLookupConLike con_name
-- Check for missing fields
; checkMissingFields con_like rbinds
; (con_expr, con_sigma) <- tcInferId con_name
; (con_wrap, con_tau) <-
topInstantiate (OccurrenceOf con_name) con_sigma
-- a shallow instantiation should really be enough for
-- a data constructor.
; let arity = conLikeArity con_like
Right (arg_tys, actual_res_ty) = tcSplitFunTysN arity con_tau
; case conLikeWrapId_maybe con_like of
Nothing -> nonBidirectionalErr (conLikeName con_like)
Just con_id -> do {
res_wrap <- tcSubTypeHR (Shouldn'tHappenOrigin "RecordCon")
(Just expr) actual_res_ty res_ty
; rbinds' <- tcRecordBinds con_like arg_tys rbinds
; return $
mkHsWrap res_wrap $
RecordCon { rcon_ext = RecordConTc
{ rcon_con_like = con_like
, rcon_con_expr = mkHsWrap con_wrap con_expr }
, rcon_con_name = L loc con_id
, rcon_flds = rbinds' } } }
{-
Note [Type of a record update]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The main complication with RecordUpd is that we need to explicitly
handle the *non-updated* fields. Consider:
data T a b c = MkT1 { fa :: a, fb :: (b,c) }
| MkT2 { fa :: a, fb :: (b,c), fc :: c -> c }
| MkT3 { fd :: a }
upd :: T a b c -> (b',c) -> T a b' c
upd t x = t { fb = x}
The result type should be (T a b' c)
not (T a b c), because 'b' *is not* mentioned in a non-updated field
not (T a b' c'), because 'c' *is* mentioned in a non-updated field
NB that it's not good enough to look at just one constructor; we must
look at them all; cf #3219
After all, upd should be equivalent to:
upd t x = case t of
MkT1 p q -> MkT1 p x
MkT2 a b -> MkT2 p b
MkT3 d -> error ...
So we need to give a completely fresh type to the result record,
and then constrain it by the fields that are *not* updated ("p" above).
We call these the "fixed" type variables, and compute them in getFixedTyVars.
Note that because MkT3 doesn't contain all the fields being updated,
its RHS is simply an error, so it doesn't impose any type constraints.
Hence the use of 'relevant_cont'.
Note [Implicit type sharing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We also take into account any "implicit" non-update fields. For example
data T a b where { MkT { f::a } :: T a a; ... }
So the "real" type of MkT is: forall ab. (a~b) => a -> T a b
Then consider
upd t x = t { f=x }
We infer the type
upd :: T a b -> a -> T a b
upd (t::T a b) (x::a)
= case t of { MkT (co:a~b) (_:a) -> MkT co x }
We can't give it the more general type
upd :: T a b -> c -> T c b
Note [Criteria for update]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to allow update for existentials etc, provided the updated
field isn't part of the existential. For example, this should be ok.
data T a where { MkT { f1::a, f2::b->b } :: T a }
f :: T a -> b -> T b
f t b = t { f1=b }
The criterion we use is this:
The types of the updated fields
mention only the universally-quantified type variables
of the data constructor
NB: this is not (quite) the same as being a "naughty" record selector
(See Note [Naughty record selectors]) in GHC.Tc.TyCl), at least
in the case of GADTs. Consider
data T a where { MkT :: { f :: a } :: T [a] }
Then f is not "naughty" because it has a well-typed record selector.
But we don't allow updates for 'f'. (One could consider trying to
allow this, but it makes my head hurt. Badly. And no one has asked
for it.)
In principle one could go further, and allow
g :: T a -> T a
g t = t { f2 = \x -> x }
because the expression is polymorphic...but that seems a bridge too far.
Note [Data family example]
~~~~~~~~~~~~~~~~~~~~~~~~~~
data instance T (a,b) = MkT { x::a, y::b }
--->
data :TP a b = MkT { a::a, y::b }
coTP a b :: T (a,b) ~ :TP a b
Suppose r :: T (t1,t2), e :: t3
Then r { x=e } :: T (t3,t1)
--->
case r |> co1 of
MkT x y -> MkT e y |> co2
where co1 :: T (t1,t2) ~ :TP t1 t2
co2 :: :TP t3 t2 ~ T (t3,t2)
The wrapping with co2 is done by the constructor wrapper for MkT
Outgoing invariants
~~~~~~~~~~~~~~~~~~~
In the outgoing (HsRecordUpd scrut binds cons in_inst_tys out_inst_tys):
* cons are the data constructors to be updated
* in_inst_tys, out_inst_tys have same length, and instantiate the
*representation* tycon of the data cons. In Note [Data
family example], in_inst_tys = [t1,t2], out_inst_tys = [t3,t2]
Note [Mixed Record Field Updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following pattern synonym.
data MyRec = MyRec { foo :: Int, qux :: String }
pattern HisRec{f1, f2} = MyRec{foo = f1, qux=f2}
This allows updates such as the following
updater :: MyRec -> MyRec
updater a = a {f1 = 1 }
It would also make sense to allow the following update (which we reject).
updater a = a {f1 = 1, qux = "two" } ==? MyRec 1 "two"
This leads to confusing behaviour when the selectors in fact refer the same
field.
updater a = a {f1 = 1, foo = 2} ==? ???
For this reason, we reject a mixture of pattern synonym and normal record
selectors in the same update block. Although of course we still allow the
following.
updater a = (a {f1 = 1}) {foo = 2}
> updater (MyRec 0 "str")
MyRec 2 "str"
-}
tcExpr expr@(RecordUpd { rupd_expr = record_expr, rupd_flds = rbnds }) res_ty
= ASSERT( notNull rbnds )
do { -- STEP -2: typecheck the record_expr, the record to be updated
(record_expr', record_rho) <- tcInferRho record_expr
-- STEP -1 See Note [Disambiguating record fields]
-- After this we know that rbinds is unambiguous
; rbinds <- disambiguateRecordBinds record_expr record_rho rbnds res_ty
; let upd_flds = map (unLoc . hsRecFieldLbl . unLoc) rbinds
upd_fld_occs = map (occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc) upd_flds
sel_ids = map selectorAmbiguousFieldOcc upd_flds
-- STEP 0
-- Check that the field names are really field names
-- and they are all field names for proper records or
-- all field names for pattern synonyms.
; let bad_guys = [ setSrcSpan loc $ addErrTc (notSelector fld_name)
| fld <- rbinds,
-- Excludes class ops
let L loc sel_id = hsRecUpdFieldId (unLoc fld),
not (isRecordSelector sel_id),
let fld_name = idName sel_id ]
; unless (null bad_guys) (sequence bad_guys >> failM)
-- See note [Mixed Record Selectors]
; let (data_sels, pat_syn_sels) =
partition isDataConRecordSelector sel_ids
; MASSERT( all isPatSynRecordSelector pat_syn_sels )
; checkTc ( null data_sels || null pat_syn_sels )
( mixedSelectors data_sels pat_syn_sels )
-- STEP 1
-- Figure out the tycon and data cons from the first field name
; let -- It's OK to use the non-tc splitters here (for a selector)
sel_id : _ = sel_ids
mtycon :: Maybe TyCon
mtycon = case idDetails sel_id of
RecSelId (RecSelData tycon) _ -> Just tycon
_ -> Nothing
con_likes :: [ConLike]
con_likes = case idDetails sel_id of
RecSelId (RecSelData tc) _
-> map RealDataCon (tyConDataCons tc)
RecSelId (RecSelPatSyn ps) _
-> [PatSynCon ps]
_ -> panic "tcRecordUpd"
-- NB: for a data type family, the tycon is the instance tycon
relevant_cons = conLikesWithFields con_likes upd_fld_occs
-- A constructor is only relevant to this process if
-- it contains *all* the fields that are being updated
-- Other ones will cause a runtime error if they occur
-- Step 2
-- Check that at least one constructor has all the named fields
-- i.e. has an empty set of bad fields returned by badFields
; checkTc (not (null relevant_cons)) (badFieldsUpd rbinds con_likes)
-- Take apart a representative constructor
; let con1 = ASSERT( not (null relevant_cons) ) head relevant_cons
(con1_tvs, _, _, _prov_theta, req_theta, con1_arg_tys, _)
= conLikeFullSig con1
con1_flds = map flLabel $ conLikeFieldLabels con1
con1_tv_tys = mkTyVarTys con1_tvs
con1_res_ty = case mtycon of
Just tc -> mkFamilyTyConApp tc con1_tv_tys
Nothing -> conLikeResTy con1 con1_tv_tys
-- Check that we're not dealing with a unidirectional pattern
-- synonym
; unless (isJust $ conLikeWrapId_maybe con1)
(nonBidirectionalErr (conLikeName con1))
-- STEP 3 Note [Criteria for update]
-- Check that each updated field is polymorphic; that is, its type
-- mentions only the universally-quantified variables of the data con
; let flds1_w_tys = zipEqual "tcExpr:RecConUpd" con1_flds con1_arg_tys
bad_upd_flds = filter bad_fld flds1_w_tys
con1_tv_set = mkVarSet con1_tvs
bad_fld (fld, ty) = fld `elem` upd_fld_occs &&
not (tyCoVarsOfType ty `subVarSet` con1_tv_set)
; checkTc (null bad_upd_flds) (badFieldTypes bad_upd_flds)
-- STEP 4 Note [Type of a record update]
-- Figure out types for the scrutinee and result
-- Both are of form (T a b c), with fresh type variables, but with
-- common variables where the scrutinee and result must have the same type
-- These are variables that appear in *any* arg of *any* of the
-- relevant constructors *except* in the updated fields
--
; let fixed_tvs = getFixedTyVars upd_fld_occs con1_tvs relevant_cons
is_fixed_tv tv = tv `elemVarSet` fixed_tvs
mk_inst_ty :: TCvSubst -> (TyVar, TcType) -> TcM (TCvSubst, TcType)
-- Deals with instantiation of kind variables
-- c.f. GHC.Tc.Utils.TcMType.newMetaTyVars
mk_inst_ty subst (tv, result_inst_ty)
| is_fixed_tv tv -- Same as result type
= return (extendTvSubst subst tv result_inst_ty, result_inst_ty)
| otherwise -- Fresh type, of correct kind
= do { (subst', new_tv) <- newMetaTyVarX subst tv
; return (subst', mkTyVarTy new_tv) }
; (result_subst, con1_tvs') <- newMetaTyVars con1_tvs
; let result_inst_tys = mkTyVarTys con1_tvs'
init_subst = mkEmptyTCvSubst (getTCvInScope result_subst)
; (scrut_subst, scrut_inst_tys) <- mapAccumLM mk_inst_ty init_subst
(con1_tvs `zip` result_inst_tys)
; let rec_res_ty = TcType.substTy result_subst con1_res_ty
scrut_ty = TcType.substTy scrut_subst con1_res_ty
con1_arg_tys' = map (TcType.substTy result_subst) con1_arg_tys
; wrap_res <- tcSubTypeHR (exprCtOrigin expr)
(Just expr) rec_res_ty res_ty
; co_scrut <- unifyType (Just (unLoc record_expr)) record_rho scrut_ty
-- NB: normal unification is OK here (as opposed to subsumption),
-- because for this to work out, both record_rho and scrut_ty have
-- to be normal datatypes -- no contravariant stuff can go on
-- STEP 5
-- Typecheck the bindings
; rbinds' <- tcRecordUpd con1 con1_arg_tys' rbinds
-- STEP 6: Deal with the stupid theta
; let theta' = substThetaUnchecked scrut_subst (conLikeStupidTheta con1)
; instStupidTheta RecordUpdOrigin theta'
-- Step 7: make a cast for the scrutinee, in the
-- case that it's from a data family
; let fam_co :: HsWrapper -- RepT t1 .. tn ~R scrut_ty
fam_co | Just tycon <- mtycon
, Just co_con <- tyConFamilyCoercion_maybe tycon
= mkWpCastR (mkTcUnbranchedAxInstCo co_con scrut_inst_tys [])
| otherwise
= idHsWrapper
-- Step 8: Check that the req constraints are satisfied
-- For normal data constructors req_theta is empty but we must do
-- this check for pattern synonyms.
; let req_theta' = substThetaUnchecked scrut_subst req_theta
; req_wrap <- instCallConstraints RecordUpdOrigin req_theta'
-- Phew!
; return $
mkHsWrap wrap_res $
RecordUpd { rupd_expr
= mkLHsWrap fam_co (mkLHsWrapCo co_scrut record_expr')
, rupd_flds = rbinds'
, rupd_ext = RecordUpdTc
{ rupd_cons = relevant_cons
, rupd_in_tys = scrut_inst_tys
, rupd_out_tys = result_inst_tys
, rupd_wrap = req_wrap }} }
tcExpr e@(HsRecFld _ f) res_ty
= tcCheckRecSelId e f res_ty
{-
************************************************************************
* *
Arithmetic sequences e.g. [a,b..]
and their parallel-array counterparts e.g. [: a,b.. :]
* *
************************************************************************
-}
tcExpr (ArithSeq _ witness seq) res_ty
= tcArithSeq witness seq res_ty
{-
************************************************************************
* *
Template Haskell
* *
************************************************************************
-}
-- HsSpliced is an annotation produced by 'GHC.Rename.Splice.rnSpliceExpr'.
-- Here we get rid of it and add the finalizers to the global environment.
--
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice.
tcExpr (HsSpliceE _ (HsSpliced _ mod_finalizers (HsSplicedExpr expr)))
res_ty
= do addModFinalizersWithLclEnv mod_finalizers
tcExpr expr res_ty
tcExpr (HsSpliceE _ splice) res_ty
= tcSpliceExpr splice res_ty
tcExpr e@(HsBracket _ brack) res_ty
= tcTypedBracket e brack res_ty
tcExpr e@(HsRnBracketOut _ brack ps) res_ty
= tcUntypedBracket e brack ps res_ty
{-
************************************************************************
* *
Catch-all
* *
************************************************************************
-}
tcExpr other _ = pprPanic "tcMonoExpr" (ppr other)
-- Include ArrForm, ArrApp, which shouldn't appear at all
-- Also HsTcBracketOut, HsQuasiQuoteE
{-
************************************************************************
* *
Arithmetic sequences [a..b] etc
* *
************************************************************************
-}
tcArithSeq :: Maybe (SyntaxExpr GhcRn) -> ArithSeqInfo GhcRn -> ExpRhoType
-> TcM (HsExpr GhcTcId)
tcArithSeq witness seq@(From expr) res_ty
= do { (wrap, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr' <- tcPolyExpr expr elt_ty
; enum_from <- newMethodFromName (ArithSeqOrigin seq)
enumFromName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from wit' (From expr') }
tcArithSeq witness seq@(FromThen expr1 expr2) res_ty
= do { (wrap, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcPolyExpr expr1 elt_ty
; expr2' <- tcPolyExpr expr2 elt_ty
; enum_from_then <- newMethodFromName (ArithSeqOrigin seq)
enumFromThenName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from_then wit' (FromThen expr1' expr2') }
tcArithSeq witness seq@(FromTo expr1 expr2) res_ty
= do { (wrap, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcPolyExpr expr1 elt_ty
; expr2' <- tcPolyExpr expr2 elt_ty
; enum_from_to <- newMethodFromName (ArithSeqOrigin seq)
enumFromToName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from_to wit' (FromTo expr1' expr2') }
tcArithSeq witness seq@(FromThenTo expr1 expr2 expr3) res_ty
= do { (wrap, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcPolyExpr expr1 elt_ty
; expr2' <- tcPolyExpr expr2 elt_ty
; expr3' <- tcPolyExpr expr3 elt_ty
; eft <- newMethodFromName (ArithSeqOrigin seq)
enumFromThenToName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq eft wit' (FromThenTo expr1' expr2' expr3') }
-----------------
arithSeqEltType :: Maybe (SyntaxExpr GhcRn) -> ExpRhoType
-> TcM (HsWrapper, TcType, Maybe (SyntaxExpr GhcTc))
arithSeqEltType Nothing res_ty
= do { res_ty <- expTypeToType res_ty
; (coi, elt_ty) <- matchExpectedListTy res_ty
; return (mkWpCastN coi, elt_ty, Nothing) }
arithSeqEltType (Just fl) res_ty
= do { (elt_ty, fl')
<- tcSyntaxOp ListOrigin fl [SynList] res_ty $
\ [elt_ty] -> return elt_ty
; return (idHsWrapper, elt_ty, Just fl') }
{-
************************************************************************
* *
Applications
* *
************************************************************************
-}
-- HsArg is defined in GHC.Hs.Types
wrapHsArgs :: (NoGhcTc (GhcPass id) ~ GhcRn)
=> LHsExpr (GhcPass id)
-> [HsArg (LHsExpr (GhcPass id)) (LHsWcType GhcRn)]
-> LHsExpr (GhcPass id)
wrapHsArgs f [] = f
wrapHsArgs f (HsValArg a : args) = wrapHsArgs (mkHsApp f a) args
wrapHsArgs f (HsTypeArg _ t : args) = wrapHsArgs (mkHsAppType f t) args
wrapHsArgs f (HsArgPar sp : args) = wrapHsArgs (L sp $ HsPar noExtField f) args
isHsValArg :: HsArg tm ty -> Bool
isHsValArg (HsValArg {}) = True
isHsValArg (HsTypeArg {}) = False
isHsValArg (HsArgPar {}) = False
isArgPar :: HsArg tm ty -> Bool
isArgPar (HsArgPar {}) = True
isArgPar (HsValArg {}) = False
isArgPar (HsTypeArg {}) = False
isArgPar_maybe :: HsArg a b -> Maybe (HsArg c d)
isArgPar_maybe (HsArgPar sp) = Just $ HsArgPar sp
isArgPar_maybe _ = Nothing
type LHsExprArgIn = HsArg (LHsExpr GhcRn) (LHsWcType GhcRn)
type LHsExprArgOut = HsArg (LHsExpr GhcTcId) (LHsWcType GhcRn)
tcApp1 :: HsExpr GhcRn -- either HsApp or HsAppType
-> ExpRhoType -> TcM (HsExpr GhcTcId)
tcApp1 e res_ty
= do { (wrap, fun, args) <- tcApp Nothing (noLoc e) [] res_ty
; return (mkHsWrap wrap $ unLoc $ wrapHsArgs fun args) }
tcApp :: Maybe SDoc -- like "The function `f' is applied to"
-- or leave out to get exactly that message
-> LHsExpr GhcRn -> [LHsExprArgIn] -- Function and args
-> ExpRhoType -> TcM (HsWrapper, LHsExpr GhcTcId, [LHsExprArgOut])
-- (wrap, fun, args). For an ordinary function application,
-- these should be assembled as (wrap (fun args)).
-- But OpApp is slightly different, so that's why the caller
-- must assemble
tcApp m_herald (L sp (HsPar _ fun)) args res_ty
= tcApp m_herald fun (HsArgPar sp : args) res_ty
tcApp m_herald (L _ (HsApp _ fun arg1)) args res_ty
= tcApp m_herald fun (HsValArg arg1 : args) res_ty
tcApp m_herald (L _ (HsAppType _ fun ty1)) args res_ty
= tcApp m_herald fun (HsTypeArg noSrcSpan ty1 : args) res_ty
tcApp m_herald fun@(L loc (HsRecFld _ fld_lbl)) args res_ty
| Ambiguous _ lbl <- fld_lbl -- Still ambiguous
, HsValArg (L _ arg) : _ <- filterOut isArgPar args -- A value arg is first
, Just sig_ty <- obviousSig arg -- A type sig on the arg disambiguates
= do { sig_tc_ty <- tcHsSigWcType ExprSigCtxt sig_ty
; sel_name <- disambiguateSelector lbl sig_tc_ty
; (tc_fun, fun_ty) <- tcInferRecSelId (Unambiguous sel_name lbl)
; tcFunApp m_herald fun (L loc tc_fun) fun_ty args res_ty }
tcApp _m_herald (L loc (HsVar _ (L _ fun_id))) args res_ty
-- Special typing rule for tagToEnum#
| fun_id `hasKey` tagToEnumKey
, n_val_args == 1
= tcTagToEnum loc fun_id args res_ty
where
n_val_args = count isHsValArg args
tcApp m_herald fun args res_ty
= do { (tc_fun, fun_ty) <- tcInferFun fun
; tcFunApp m_herald fun tc_fun fun_ty args res_ty }
---------------------
tcFunApp :: Maybe SDoc -- like "The function `f' is applied to"
-- or leave out to get exactly that message
-> LHsExpr GhcRn -- Renamed function
-> LHsExpr GhcTcId -> TcSigmaType -- Function and its type
-> [LHsExprArgIn] -- Arguments
-> ExpRhoType -- Overall result type
-> TcM (HsWrapper, LHsExpr GhcTcId, [LHsExprArgOut])
-- (wrapper-for-result, fun, args)
-- For an ordinary function application,
-- these should be assembled as wrap_res[ fun args ]
-- But OpApp is slightly different, so that's why the caller
-- must assemble
-- tcFunApp deals with the general case;
-- the special cases are handled by tcApp
tcFunApp m_herald rn_fun tc_fun fun_sigma rn_args res_ty
= do { let orig = lexprCtOrigin rn_fun
; traceTc "tcFunApp" (ppr rn_fun <+> dcolon <+> ppr fun_sigma $$ ppr rn_args $$ ppr res_ty)
; (wrap_fun, tc_args, actual_res_ty)
<- tcArgs rn_fun fun_sigma orig rn_args
(m_herald `orElse` mk_app_msg rn_fun rn_args)
-- this is just like tcWrapResult, but the types don't line
-- up to call that function
; wrap_res <- addFunResCtxt True (unLoc rn_fun) actual_res_ty res_ty $
tcSubTypeDS_NC_O orig GenSigCtxt
(Just $ unLoc $ wrapHsArgs rn_fun rn_args)
actual_res_ty res_ty
; return (wrap_res, mkLHsWrap wrap_fun tc_fun, tc_args) }
mk_app_msg :: LHsExpr GhcRn -> [LHsExprArgIn] -> SDoc
mk_app_msg fun args = sep [ text "The" <+> text what <+> quotes (ppr expr)
, text "is applied to"]
where
what | null type_app_args = "function"
| otherwise = "expression"
-- Include visible type arguments (but not other arguments) in the herald.
-- See Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify.
expr = mkHsAppTypes fun type_app_args
type_app_args = [hs_ty | HsTypeArg _ hs_ty <- args]
mk_op_msg :: LHsExpr GhcRn -> SDoc
mk_op_msg op = text "The operator" <+> quotes (ppr op) <+> text "takes"
----------------
tcInferFun :: LHsExpr GhcRn -> TcM (LHsExpr GhcTcId, TcSigmaType)
-- Infer type of a function
tcInferFun (L loc (HsVar _ (L _ name)))
= do { (fun, ty) <- setSrcSpan loc (tcInferId name)
-- Don't wrap a context around a plain Id
; return (L loc fun, ty) }
tcInferFun (L loc (HsRecFld _ f))
= do { (fun, ty) <- setSrcSpan loc (tcInferRecSelId f)
-- Don't wrap a context around a plain Id
; return (L loc fun, ty) }
tcInferFun fun
= tcInferSigma fun
-- NB: tcInferSigma; see GHC.Tc.Utils.Unify
-- Note [Deep instantiation of InferResult] in GHC.Tc.Utils.Unify
----------------
-- | Type-check the arguments to a function, possibly including visible type
-- applications
tcArgs :: LHsExpr GhcRn -- ^ The function itself (for err msgs only)
-> TcSigmaType -- ^ the (uninstantiated) type of the function
-> CtOrigin -- ^ the origin for the function's type
-> [LHsExprArgIn] -- ^ the args
-> SDoc -- ^ the herald for matchActualFunTys
-> TcM (HsWrapper, [LHsExprArgOut], TcSigmaType)
-- ^ (a wrapper for the function, the tc'd args, result type)
tcArgs fun orig_fun_ty fun_orig orig_args herald
= go [] 1 orig_fun_ty orig_args
where
-- Don't count visible type arguments when determining how many arguments
-- an expression is given in an arity mismatch error, since visible type
-- arguments reported as a part of the expression herald itself.
-- See Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify.
orig_expr_args_arity = count isHsValArg orig_args
fun_is_out_of_scope -- See Note [VTA for out-of-scope functions]
= case fun of
L _ (HsUnboundVar {}) -> True
_ -> False
go _ _ fun_ty [] = return (idHsWrapper, [], fun_ty)
go acc_args n fun_ty (HsArgPar sp : args)
= do { (inner_wrap, args', res_ty) <- go acc_args n fun_ty args
; return (inner_wrap, HsArgPar sp : args', res_ty)
}
go acc_args n fun_ty (HsTypeArg l hs_ty_arg : args)
| fun_is_out_of_scope -- See Note [VTA for out-of-scope functions]
= go acc_args (n+1) fun_ty args
| otherwise
= do { (wrap1, upsilon_ty) <- topInstantiateInferred fun_orig fun_ty
-- wrap1 :: fun_ty "->" upsilon_ty
; case tcSplitForAllTy_maybe upsilon_ty of
Just (tvb, inner_ty)
| binderArgFlag tvb == Specified ->
-- It really can't be Inferred, because we've justn
-- instantiated those. But, oddly, it might just be Required.
-- See Note [Required quantifiers in the type of a term]
do { let tv = binderVar tvb
kind = tyVarKind tv
; ty_arg <- tcHsTypeApp hs_ty_arg kind
; inner_ty <- zonkTcType inner_ty
-- See Note [Visible type application zonk]
; let in_scope = mkInScopeSet (tyCoVarsOfTypes [upsilon_ty, ty_arg])
insted_ty = substTyWithInScope in_scope [tv] [ty_arg] inner_ty
-- NB: tv and ty_arg have the same kind, so this
-- substitution is kind-respecting
; traceTc "VTA" (vcat [ppr tv, debugPprType kind
, debugPprType ty_arg
, debugPprType (tcTypeKind ty_arg)
, debugPprType inner_ty
, debugPprType insted_ty ])
; (inner_wrap, args', res_ty)
<- go acc_args (n+1) insted_ty args
-- inner_wrap :: insted_ty "->" (map typeOf args') -> res_ty
; let inst_wrap = mkWpTyApps [ty_arg]
; return ( inner_wrap <.> inst_wrap <.> wrap1
, HsTypeArg l hs_ty_arg : args'
, res_ty ) }
_ -> ty_app_err upsilon_ty hs_ty_arg }
go acc_args n fun_ty (HsValArg arg : args)
= do { (wrap, [arg_ty], res_ty)
<- matchActualFunTysPart herald fun_orig (Just (unLoc fun)) 1 fun_ty
acc_args orig_expr_args_arity
-- wrap :: fun_ty "->" arg_ty -> res_ty
; arg' <- tcArg fun arg arg_ty n
; (inner_wrap, args', inner_res_ty)
<- go (arg_ty : acc_args) (n+1) res_ty args
-- inner_wrap :: res_ty "->" (map typeOf args') -> inner_res_ty
; return ( mkWpFun idHsWrapper inner_wrap arg_ty res_ty doc <.> wrap
, HsValArg arg' : args'
, inner_res_ty ) }
where
doc = text "When checking the" <+> speakNth n <+>
text "argument to" <+> quotes (ppr fun)
ty_app_err ty arg
= do { (_, ty) <- zonkTidyTcType emptyTidyEnv ty
; failWith $
text "Cannot apply expression of type" <+> quotes (ppr ty) $$
text "to a visible type argument" <+> quotes (ppr arg) }
{- Note [Required quantifiers in the type of a term]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#15859)
data A k :: k -> Type -- A :: forall k -> k -> Type
type KindOf (a :: k) = k -- KindOf :: forall k. k -> Type
a = (undefind :: KindOf A) @Int
With ImpredicativeTypes (thin ice, I know), we instantiate
KindOf at type (forall k -> k -> Type), so
KindOf A = forall k -> k -> Type
whose first argument is Required
We want to reject this type application to Int, but in earlier
GHCs we had an ASSERT that Required could not occur here.
The ice is thin; c.f. Note [No Required TyCoBinder in terms]
in GHC.Core.TyCo.Rep.
Note [VTA for out-of-scope functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose 'wurble' is not in scope, and we have
(wurble @Int @Bool True 'x')
Then the renamer will make (HsUnboundVar "wurble) for 'wurble',
and the typechecker will typecheck it with tcUnboundId, giving it
a type 'alpha', and emitting a deferred CHoleCan constraint, to
be reported later.
But then comes the visible type application. If we do nothing, we'll
generate an immediate failure (in tc_app_err), saying that a function
of type 'alpha' can't be applied to Bool. That's insane! And indeed
users complain bitterly (#13834, #17150.)
The right error is the CHoleCan, which has /already/ been emitted by
tcUnboundId. It later reports 'wurble' as out of scope, and tries to
give its type.
Fortunately in tcArgs we still have access to the function, so we can
check if it is a HsUnboundVar. We use this info to simply skip over
any visible type arguments. We've already inferred the type of the
function, so we'll /already/ have emitted a CHoleCan constraint;
failing preserves that constraint.
We do /not/ want to fail altogether in this case (via failM) becuase
that may abandon an entire instance decl, which (in the presence of
-fdefer-type-errors) leads to leading to #17792.
Downside; the typechecked term has lost its visible type arguments; we
don't even kind-check them. But let's jump that bridge if we come to
it. Meanwhile, let's not crash!
Note [Visible type application zonk]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Substitutions should be kind-preserving, so we need kind(tv) = kind(ty_arg).
* tcHsTypeApp only guarantees that
- ty_arg is zonked
- kind(zonk(tv)) = kind(ty_arg)
(checkExpectedKind zonks as it goes).
So we must zonk inner_ty as well, to guarantee consistency between zonk(tv)
and inner_ty. Otherwise we can build an ill-kinded type. An example was
#14158, where we had:
id :: forall k. forall (cat :: k -> k -> *). forall (a :: k). cat a a
and we had the visible type application
id @(->)
* We instantiated k := kappa, yielding
forall (cat :: kappa -> kappa -> *). forall (a :: kappa). cat a a
* Then we called tcHsTypeApp (->) with expected kind (kappa -> kappa -> *).
* That instantiated (->) as ((->) q1 q1), and unified kappa := q1,
Here q1 :: RuntimeRep
* Now we substitute
cat :-> (->) q1 q1 :: TYPE q1 -> TYPE q1 -> *
but we must first zonk the inner_ty to get
forall (a :: TYPE q1). cat a a
so that the result of substitution is well-kinded
Failing to do so led to #14158.
-}
----------------
tcArg :: LHsExpr GhcRn -- The function (for error messages)
-> LHsExpr GhcRn -- Actual arguments
-> TcRhoType -- expected arg type
-> Int -- # of argument
-> TcM (LHsExpr GhcTcId) -- Resulting argument
tcArg fun arg ty arg_no = addErrCtxt (funAppCtxt fun arg arg_no) $
tcPolyExprNC arg ty
----------------
tcTupArgs :: [LHsTupArg GhcRn] -> [TcSigmaType] -> TcM [LHsTupArg GhcTcId]
tcTupArgs args tys
= ASSERT( equalLength args tys ) mapM go (args `zip` tys)
where
go (L l (Missing {}), arg_ty) = return (L l (Missing arg_ty))
go (L l (Present x expr), arg_ty) = do { expr' <- tcPolyExpr expr arg_ty
; return (L l (Present x expr')) }
go (L _ (XTupArg nec), _) = noExtCon nec
---------------------------
-- See TcType.SyntaxOpType also for commentary
tcSyntaxOp :: CtOrigin
-> SyntaxExprRn
-> [SyntaxOpType] -- ^ shape of syntax operator arguments
-> ExpRhoType -- ^ overall result type
-> ([TcSigmaType] -> TcM a) -- ^ Type check any arguments
-> TcM (a, SyntaxExprTc)
-- ^ Typecheck a syntax operator
-- The operator is a variable or a lambda at this stage (i.e. renamer
-- output)
tcSyntaxOp orig expr arg_tys res_ty
= tcSyntaxOpGen orig expr arg_tys (SynType res_ty)
-- | Slightly more general version of 'tcSyntaxOp' that allows the caller
-- to specify the shape of the result of the syntax operator
tcSyntaxOpGen :: CtOrigin
-> SyntaxExprRn
-> [SyntaxOpType]
-> SyntaxOpType
-> ([TcSigmaType] -> TcM a)
-> TcM (a, SyntaxExprTc)
tcSyntaxOpGen orig (SyntaxExprRn op) arg_tys res_ty thing_inside
= do { (expr, sigma) <- tcInferSigma $ noLoc op
; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma)
; (result, expr_wrap, arg_wraps, res_wrap)
<- tcSynArgA orig sigma arg_tys res_ty $
thing_inside
; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma )
; return (result, SyntaxExprTc { syn_expr = mkHsWrap expr_wrap $ unLoc expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap }) }
tcSyntaxOpGen _ NoSyntaxExprRn _ _ _ = panic "tcSyntaxOpGen"
{-
Note [tcSynArg]
~~~~~~~~~~~~~~~
Because of the rich structure of SyntaxOpType, we must do the
contra-/covariant thing when working down arrows, to get the
instantiation vs. skolemisation decisions correct (and, more
obviously, the orientation of the HsWrappers). We thus have
two tcSynArgs.
-}
-- works on "expected" types, skolemising where necessary
-- See Note [tcSynArg]
tcSynArgE :: CtOrigin
-> TcSigmaType
-> SyntaxOpType -- ^ shape it is expected to have
-> ([TcSigmaType] -> TcM a) -- ^ check the arguments
-> TcM (a, HsWrapper)
-- ^ returns a wrapper :: (type of right shape) "->" (type passed in)
tcSynArgE orig sigma_ty syn_ty thing_inside
= do { (skol_wrap, (result, ty_wrapper))
<- tcSkolemise GenSigCtxt sigma_ty $ \ _ rho_ty ->
go rho_ty syn_ty
; return (result, skol_wrap <.> ty_wrapper) }
where
go rho_ty SynAny
= do { result <- thing_inside [rho_ty]
; return (result, idHsWrapper) }
go rho_ty SynRho -- same as SynAny, because we skolemise eagerly
= do { result <- thing_inside [rho_ty]
; return (result, idHsWrapper) }
go rho_ty SynList
= do { (list_co, elt_ty) <- matchExpectedListTy rho_ty
; result <- thing_inside [elt_ty]
; return (result, mkWpCastN list_co) }
go rho_ty (SynFun arg_shape res_shape)
= do { ( ( ( (result, arg_ty, res_ty)
, res_wrapper ) -- :: res_ty_out "->" res_ty
, arg_wrapper1, [], arg_wrapper2 ) -- :: arg_ty "->" arg_ty_out
, match_wrapper ) -- :: (arg_ty -> res_ty) "->" rho_ty
<- matchExpectedFunTys herald 1 (mkCheckExpType rho_ty) $
\ [arg_ty] res_ty ->
do { arg_tc_ty <- expTypeToType arg_ty
; res_tc_ty <- expTypeToType res_ty
-- another nested arrow is too much for now,
-- but I bet we'll never need this
; MASSERT2( case arg_shape of
SynFun {} -> False;
_ -> True
, text "Too many nested arrows in SyntaxOpType" $$
pprCtOrigin orig )
; tcSynArgA orig arg_tc_ty [] arg_shape $
\ arg_results ->
tcSynArgE orig res_tc_ty res_shape $
\ res_results ->
do { result <- thing_inside (arg_results ++ res_results)
; return (result, arg_tc_ty, res_tc_ty) }}
; return ( result
, match_wrapper <.>
mkWpFun (arg_wrapper2 <.> arg_wrapper1) res_wrapper
arg_ty res_ty doc ) }
where
herald = text "This rebindable syntax expects a function with"
doc = text "When checking a rebindable syntax operator arising from" <+> ppr orig
go rho_ty (SynType the_ty)
= do { wrap <- tcSubTypeET orig GenSigCtxt the_ty rho_ty
; result <- thing_inside []
; return (result, wrap) }
-- works on "actual" types, instantiating where necessary
-- See Note [tcSynArg]
tcSynArgA :: CtOrigin
-> TcSigmaType
-> [SyntaxOpType] -- ^ argument shapes
-> SyntaxOpType -- ^ result shape
-> ([TcSigmaType] -> TcM a) -- ^ check the arguments
-> TcM (a, HsWrapper, [HsWrapper], HsWrapper)
-- ^ returns a wrapper to be applied to the original function,
-- wrappers to be applied to arguments
-- and a wrapper to be applied to the overall expression
tcSynArgA orig sigma_ty arg_shapes res_shape thing_inside
= do { (match_wrapper, arg_tys, res_ty)
<- matchActualFunTys herald orig Nothing (length arg_shapes) sigma_ty
-- match_wrapper :: sigma_ty "->" (arg_tys -> res_ty)
; ((result, res_wrapper), arg_wrappers)
<- tc_syn_args_e arg_tys arg_shapes $ \ arg_results ->
tc_syn_arg res_ty res_shape $ \ res_results ->
thing_inside (arg_results ++ res_results)
; return (result, match_wrapper, arg_wrappers, res_wrapper) }
where
herald = text "This rebindable syntax expects a function with"
tc_syn_args_e :: [TcSigmaType] -> [SyntaxOpType]
-> ([TcSigmaType] -> TcM a)
-> TcM (a, [HsWrapper])
-- the wrappers are for arguments
tc_syn_args_e (arg_ty : arg_tys) (arg_shape : arg_shapes) thing_inside
= do { ((result, arg_wraps), arg_wrap)
<- tcSynArgE orig arg_ty arg_shape $ \ arg1_results ->
tc_syn_args_e arg_tys arg_shapes $ \ args_results ->
thing_inside (arg1_results ++ args_results)
; return (result, arg_wrap : arg_wraps) }
tc_syn_args_e _ _ thing_inside = (, []) <$> thing_inside []
tc_syn_arg :: TcSigmaType -> SyntaxOpType
-> ([TcSigmaType] -> TcM a)
-> TcM (a, HsWrapper)
-- the wrapper applies to the overall result
tc_syn_arg res_ty SynAny thing_inside
= do { result <- thing_inside [res_ty]
; return (result, idHsWrapper) }
tc_syn_arg res_ty SynRho thing_inside
= do { (inst_wrap, rho_ty) <- deeplyInstantiate orig res_ty
-- inst_wrap :: res_ty "->" rho_ty
; result <- thing_inside [rho_ty]
; return (result, inst_wrap) }
tc_syn_arg res_ty SynList thing_inside
= do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
-- inst_wrap :: res_ty "->" rho_ty
; (list_co, elt_ty) <- matchExpectedListTy rho_ty
-- list_co :: [elt_ty] ~N rho_ty
; result <- thing_inside [elt_ty]
; return (result, mkWpCastN (mkTcSymCo list_co) <.> inst_wrap) }
tc_syn_arg _ (SynFun {}) _
= pprPanic "tcSynArgA hits a SynFun" (ppr orig)
tc_syn_arg res_ty (SynType the_ty) thing_inside
= do { wrap <- tcSubTypeO orig GenSigCtxt res_ty the_ty
; result <- thing_inside []
; return (result, wrap) }
{-
Note [Push result type in]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Unify with expected result before type-checking the args so that the
info from res_ty percolates to args. This is when we might detect a
too-few args situation. (One can think of cases when the opposite
order would give a better error message.)
experimenting with putting this first.
Here's an example where it actually makes a real difference
class C t a b | t a -> b
instance C Char a Bool
data P t a = forall b. (C t a b) => MkP b
data Q t = MkQ (forall a. P t a)
f1, f2 :: Q Char;
f1 = MkQ (MkP True)
f2 = MkQ (MkP True :: forall a. P Char a)
With the change, f1 will type-check, because the 'Char' info from
the signature is propagated into MkQ's argument. With the check
in the other order, the extra signature in f2 is reqd.
************************************************************************
* *
Expressions with a type signature
expr :: type
* *
********************************************************************* -}
tcExprSig :: LHsExpr GhcRn -> TcIdSigInfo -> TcM (LHsExpr GhcTcId, TcType)
tcExprSig expr (CompleteSig { sig_bndr = poly_id, sig_loc = loc })
= setSrcSpan loc $ -- Sets the location for the implication constraint
do { (tv_prs, theta, tau) <- tcInstType tcInstSkolTyVars poly_id
; given <- newEvVars theta
; traceTc "tcExprSig: CompleteSig" $
vcat [ text "poly_id:" <+> ppr poly_id <+> dcolon <+> ppr (idType poly_id)
, text "tv_prs:" <+> ppr tv_prs ]
; let skol_info = SigSkol ExprSigCtxt (idType poly_id) tv_prs
skol_tvs = map snd tv_prs
; (ev_binds, expr') <- checkConstraints skol_info skol_tvs given $
tcExtendNameTyVarEnv tv_prs $
tcPolyExprNC expr tau
; let poly_wrap = mkWpTyLams skol_tvs
<.> mkWpLams given
<.> mkWpLet ev_binds
; return (mkLHsWrap poly_wrap expr', idType poly_id) }
tcExprSig expr sig@(PartialSig { psig_name = name, sig_loc = loc })
= setSrcSpan loc $ -- Sets the location for the implication constraint
do { (tclvl, wanted, (expr', sig_inst))
<- pushLevelAndCaptureConstraints $
do { sig_inst <- tcInstSig sig
; expr' <- tcExtendNameTyVarEnv (sig_inst_skols sig_inst) $
tcExtendNameTyVarEnv (sig_inst_wcs sig_inst) $
tcPolyExprNC expr (sig_inst_tau sig_inst)
; return (expr', sig_inst) }
-- See Note [Partial expression signatures]
; let tau = sig_inst_tau sig_inst
infer_mode | null (sig_inst_theta sig_inst)
, isNothing (sig_inst_wcx sig_inst)
= ApplyMR
| otherwise
= NoRestrictions
; (qtvs, givens, ev_binds, residual, _)
<- simplifyInfer tclvl infer_mode [sig_inst] [(name, tau)] wanted
; emitConstraints residual
; tau <- zonkTcType tau
; let inferred_theta = map evVarPred givens
tau_tvs = tyCoVarsOfType tau
; (binders, my_theta) <- chooseInferredQuantifiers inferred_theta
tau_tvs qtvs (Just sig_inst)
; let inferred_sigma = mkInfSigmaTy qtvs inferred_theta tau
my_sigma = mkForAllTys binders (mkPhiTy my_theta tau)
; wrap <- if inferred_sigma `eqType` my_sigma -- NB: eqType ignores vis.
then return idHsWrapper -- Fast path; also avoids complaint when we infer
-- an ambiguous type and have AllowAmbiguousType
-- e..g infer x :: forall a. F a -> Int
else tcSubType_NC ExprSigCtxt inferred_sigma my_sigma
; traceTc "tcExpSig" (ppr qtvs $$ ppr givens $$ ppr inferred_sigma $$ ppr my_sigma)
; let poly_wrap = wrap
<.> mkWpTyLams qtvs
<.> mkWpLams givens
<.> mkWpLet ev_binds
; return (mkLHsWrap poly_wrap expr', my_sigma) }
{- Note [Partial expression signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Partial type signatures on expressions are easy to get wrong. But
here is a guiding principile
e :: ty
should behave like
let x :: ty
x = e
in x
So for partial signatures we apply the MR if no context is given. So
e :: IO _ apply the MR
e :: _ => IO _ do not apply the MR
just like in GHC.Tc.Gen.Bind.decideGeneralisationPlan
This makes a difference (#11670):
peek :: Ptr a -> IO CLong
peek ptr = peekElemOff undefined 0 :: _
from (peekElemOff undefined 0) we get
type: IO w
constraints: Storable w
We must NOT try to generalise over 'w' because the signature specifies
no constraints so we'll complain about not being able to solve
Storable w. Instead, don't generalise; then _ gets instantiated to
CLong, as it should.
-}
{- *********************************************************************
* *
tcInferId
* *
********************************************************************* -}
tcCheckId :: Name -> ExpRhoType -> TcM (HsExpr GhcTcId)
tcCheckId name res_ty
= do { (expr, actual_res_ty) <- tcInferId name
; traceTc "tcCheckId" (vcat [ppr name, ppr actual_res_ty, ppr res_ty])
; addFunResCtxt False (HsVar noExtField (noLoc name)) actual_res_ty res_ty $
tcWrapResultO (OccurrenceOf name) (HsVar noExtField (noLoc name)) expr
actual_res_ty res_ty }
tcCheckRecSelId :: HsExpr GhcRn -> AmbiguousFieldOcc GhcRn -> ExpRhoType -> TcM (HsExpr GhcTcId)
tcCheckRecSelId rn_expr f@(Unambiguous _ (L _ lbl)) res_ty
= do { (expr, actual_res_ty) <- tcInferRecSelId f
; addFunResCtxt False (HsRecFld noExtField f) actual_res_ty res_ty $
tcWrapResultO (OccurrenceOfRecSel lbl) rn_expr expr actual_res_ty res_ty }
tcCheckRecSelId rn_expr (Ambiguous _ lbl) res_ty
= case tcSplitFunTy_maybe =<< checkingExpType_maybe res_ty of
Nothing -> ambiguousSelector lbl
Just (arg, _) -> do { sel_name <- disambiguateSelector lbl arg
; tcCheckRecSelId rn_expr (Unambiguous sel_name lbl)
res_ty }
tcCheckRecSelId _ (XAmbiguousFieldOcc nec) _ = noExtCon nec
------------------------
tcInferRecSelId :: AmbiguousFieldOcc GhcRn -> TcM (HsExpr GhcTcId, TcRhoType)
tcInferRecSelId (Unambiguous sel (L _ lbl))
= do { (expr', ty) <- tc_infer_id lbl sel
; return (expr', ty) }
tcInferRecSelId (Ambiguous _ lbl)
= ambiguousSelector lbl
tcInferRecSelId (XAmbiguousFieldOcc nec) = noExtCon nec
------------------------
tcInferId :: Name -> TcM (HsExpr GhcTcId, TcSigmaType)
-- Look up an occurrence of an Id
-- Do not instantiate its type
tcInferId id_name
| id_name `hasKey` tagToEnumKey
= failWithTc (text "tagToEnum# must appear applied to one argument")
-- tcApp catches the case (tagToEnum# arg)
| id_name `hasKey` assertIdKey
= do { dflags <- getDynFlags
; if gopt Opt_IgnoreAsserts dflags
then tc_infer_id (nameRdrName id_name) id_name
else tc_infer_assert id_name }
| otherwise
= do { (expr, ty) <- tc_infer_id (nameRdrName id_name) id_name
; traceTc "tcInferId" (ppr id_name <+> dcolon <+> ppr ty)
; return (expr, ty) }
tc_infer_assert :: Name -> TcM (HsExpr GhcTcId, TcSigmaType)
-- Deal with an occurrence of 'assert'
-- See Note [Adding the implicit parameter to 'assert']
tc_infer_assert assert_name
= do { assert_error_id <- tcLookupId assertErrorName
; (wrap, id_rho) <- topInstantiate (OccurrenceOf assert_name)
(idType assert_error_id)
; return (mkHsWrap wrap (HsVar noExtField (noLoc assert_error_id)), id_rho)
}
tc_infer_id :: RdrName -> Name -> TcM (HsExpr GhcTcId, TcSigmaType)
tc_infer_id lbl id_name
= do { thing <- tcLookup id_name
; case thing of
ATcId { tct_id = id }
-> do { check_naughty id -- Note [Local record selectors]
; checkThLocalId id
; return_id id }
AGlobal (AnId id)
-> do { check_naughty id
; return_id id }
-- A global cannot possibly be ill-staged
-- nor does it need the 'lifting' treatment
-- hence no checkTh stuff here
AGlobal (AConLike cl) -> case cl of
RealDataCon con -> return_data_con con
PatSynCon ps -> tcPatSynBuilderOcc ps
_ -> failWithTc $
ppr thing <+> text "used where a value identifier was expected" }
where
return_id id = return (HsVar noExtField (noLoc id), idType id)
return_data_con con
-- For data constructors, must perform the stupid-theta check
| null stupid_theta
= return (HsConLikeOut noExtField (RealDataCon con), con_ty)
| otherwise
-- See Note [Instantiating stupid theta]
= do { let (tvs, theta, rho) = tcSplitSigmaTy con_ty
; (subst, tvs') <- newMetaTyVars tvs
; let tys' = mkTyVarTys tvs'
theta' = substTheta subst theta
rho' = substTy subst rho
; wrap <- instCall (OccurrenceOf id_name) tys' theta'
; addDataConStupidTheta con tys'
; return ( mkHsWrap wrap (HsConLikeOut noExtField (RealDataCon con))
, rho') }
where
con_ty = dataConUserType con
stupid_theta = dataConStupidTheta con
check_naughty id
| isNaughtyRecordSelector id = failWithTc (naughtyRecordSel lbl)
| otherwise = return ()
tcUnboundId :: HsExpr GhcRn -> OccName -> ExpRhoType -> TcM (HsExpr GhcTcId)
-- Typecheck an occurrence of an unbound Id
--
-- Some of these started life as a true expression hole "_".
-- Others might simply be variables that accidentally have no binding site
--
-- We turn all of them into HsVar, since HsUnboundVar can't contain an
-- Id; and indeed the evidence for the CHoleCan does bind it, so it's
-- not unbound any more!
tcUnboundId rn_expr occ res_ty
= do { ty <- newOpenFlexiTyVarTy -- Allow Int# etc (#12531)
; name <- newSysName occ
; let ev = mkLocalId name ty
; can <- newHoleCt ExprHole ev ty
; emitInsoluble can
; tcWrapResultO (UnboundOccurrenceOf occ) rn_expr
(HsVar noExtField (noLoc ev)) ty res_ty }
{-
Note [Adding the implicit parameter to 'assert']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The typechecker transforms (assert e1 e2) to (assertError e1 e2).
This isn't really the Right Thing because there's no way to "undo"
if you want to see the original source code in the typechecker
output. We'll have fix this in due course, when we care more about
being able to reconstruct the exact original program.
Note [tagToEnum#]
~~~~~~~~~~~~~~~~~
Nasty check to ensure that tagToEnum# is applied to a type that is an
enumeration TyCon. Unification may refine the type later, but this
check won't see that, alas. It's crude, because it relies on our
knowing *now* that the type is ok, which in turn relies on the
eager-unification part of the type checker pushing enough information
here. In theory the Right Thing to do is to have a new form of
constraint but I definitely cannot face that! And it works ok as-is.
Here's are two cases that should fail
f :: forall a. a
f = tagToEnum# 0 -- Can't do tagToEnum# at a type variable
g :: Int
g = tagToEnum# 0 -- Int is not an enumeration
When data type families are involved it's a bit more complicated.
data family F a
data instance F [Int] = A | B | C
Then we want to generate something like
tagToEnum# R:FListInt 3# |> co :: R:FListInt ~ F [Int]
Usually that coercion is hidden inside the wrappers for
constructors of F [Int] but here we have to do it explicitly.
It's all grotesquely complicated.
Note [Instantiating stupid theta]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Normally, when we infer the type of an Id, we don't instantiate,
because we wish to allow for visible type application later on.
But if a datacon has a stupid theta, we're a bit stuck. We need
to emit the stupid theta constraints with instantiated types. It's
difficult to defer this to the lazy instantiation, because a stupid
theta has no spot to put it in a type. So we just instantiate eagerly
in this case. Thus, users cannot use visible type application with
a data constructor sporting a stupid theta. I won't feel so bad for
the users that complain.
-}
tcTagToEnum :: SrcSpan -> Name -> [LHsExprArgIn] -> ExpRhoType
-> TcM (HsWrapper, LHsExpr GhcTcId, [LHsExprArgOut])
-- tagToEnum# :: forall a. Int# -> a
-- See Note [tagToEnum#] Urgh!
tcTagToEnum loc fun_name args res_ty
= do { fun <- tcLookupId fun_name
; let pars1 = mapMaybe isArgPar_maybe before
pars2 = mapMaybe isArgPar_maybe after
-- args contains exactly one HsValArg
(before, _:after) = break isHsValArg args
; arg <- case filterOut isArgPar args of
[HsTypeArg _ hs_ty_arg, HsValArg term_arg]
-> do { ty_arg <- tcHsTypeApp hs_ty_arg liftedTypeKind
; _ <- tcSubTypeDS (OccurrenceOf fun_name) GenSigCtxt ty_arg res_ty
-- other than influencing res_ty, we just
-- don't care about a type arg passed in.
-- So drop the evidence.
; return term_arg }
[HsValArg term_arg] -> do { _ <- expTypeToType res_ty
; return term_arg }
_ -> too_many_args "tagToEnum#" args
; res_ty <- readExpType res_ty
; ty' <- zonkTcType res_ty
-- Check that the type is algebraic
; let mb_tc_app = tcSplitTyConApp_maybe ty'
Just (tc, tc_args) = mb_tc_app
; checkTc (isJust mb_tc_app)
(mk_error ty' doc1)
-- Look through any type family
; fam_envs <- tcGetFamInstEnvs
; let (rep_tc, rep_args, coi)
= tcLookupDataFamInst fam_envs tc tc_args
-- coi :: tc tc_args ~R rep_tc rep_args
; checkTc (isEnumerationTyCon rep_tc)
(mk_error ty' doc2)
; arg' <- tcMonoExpr arg (mkCheckExpType intPrimTy)
; let fun' = L loc (mkHsWrap (WpTyApp rep_ty) (HsVar noExtField (L loc fun)))
rep_ty = mkTyConApp rep_tc rep_args
out_args = concat
[ pars1
, [HsValArg arg']
, pars2
]
; return (mkWpCastR (mkTcSymCo coi), fun', out_args) }
-- coi is a Representational coercion
where
doc1 = vcat [ text "Specify the type by giving a type signature"
, text "e.g. (tagToEnum# x) :: Bool" ]
doc2 = text "Result type must be an enumeration type"
mk_error :: TcType -> SDoc -> SDoc
mk_error ty what
= hang (text "Bad call to tagToEnum#"
<+> text "at type" <+> ppr ty)
2 what
too_many_args :: String -> [LHsExprArgIn] -> TcM a
too_many_args fun args
= failWith $
hang (text "Too many type arguments to" <+> text fun <> colon)
2 (sep (map pp args))
where
pp (HsValArg e) = ppr e
pp (HsTypeArg _ (HsWC { hswc_body = L _ t })) = pprHsType t
pp (HsTypeArg _ (XHsWildCardBndrs nec)) = noExtCon nec
pp (HsArgPar _) = empty
{-
************************************************************************
* *
Template Haskell checks
* *
************************************************************************
-}
checkThLocalId :: Id -> TcM ()
-- The renamer has already done checkWellStaged,
-- in RnSplice.checkThLocalName, so don't repeat that here.
-- Here we just just add constraints fro cross-stage lifting
checkThLocalId id
= do { mb_local_use <- getStageAndBindLevel (idName id)
; case mb_local_use of
Just (top_lvl, bind_lvl, use_stage)
| thLevel use_stage > bind_lvl
-> checkCrossStageLifting top_lvl id use_stage
_ -> return () -- Not a locally-bound thing, or
-- no cross-stage link
}
--------------------------------------
checkCrossStageLifting :: TopLevelFlag -> Id -> ThStage -> TcM ()
-- If we are inside typed brackets, and (use_lvl > bind_lvl)
-- we must check whether there's a cross-stage lift to do
-- Examples \x -> [|| x ||]
-- [|| map ||]
--
-- This is similar to checkCrossStageLifting in GHC.Rename.Splice, but
-- this code is applied to *typed* brackets.
checkCrossStageLifting top_lvl id (Brack _ (TcPending ps_var lie_var q))
| isTopLevel top_lvl
= when (isExternalName id_name) (keepAlive id_name)
-- See Note [Keeping things alive for Template Haskell] in GHC.Rename.Splice
| otherwise
= -- Nested identifiers, such as 'x' in
-- E.g. \x -> [|| h x ||]
-- We must behave as if the reference to x was
-- h $(lift x)
-- We use 'x' itself as the splice proxy, used by
-- the desugarer to stitch it all back together.
-- If 'x' occurs many times we may get many identical
-- bindings of the same splice proxy, but that doesn't
-- matter, although it's a mite untidy.
do { let id_ty = idType id
; checkTc (isTauTy id_ty) (polySpliceErr id)
-- If x is polymorphic, its occurrence sites might
-- have different instantiations, so we can't use plain
-- 'x' as the splice proxy name. I don't know how to
-- solve this, and it's probably unimportant, so I'm
-- just going to flag an error for now
; lift <- if isStringTy id_ty then
do { sid <- tcLookupId THNames.liftStringName
-- See Note [Lifting strings]
; return (HsVar noExtField (noLoc sid)) }
else
setConstraintVar lie_var $
-- Put the 'lift' constraint into the right LIE
newMethodFromName (OccurrenceOf id_name)
THNames.liftName
[getRuntimeRep id_ty, id_ty]
-- Update the pending splices
; ps <- readMutVar ps_var
; let pending_splice = PendingTcSplice id_name
(nlHsApp (mkLHsWrap (applyQuoteWrapper q) (noLoc lift))
(nlHsVar id))
; writeMutVar ps_var (pending_splice : ps)
; return () }
where
id_name = idName id
checkCrossStageLifting _ _ _ = return ()
polySpliceErr :: Id -> SDoc
polySpliceErr id
= text "Can't splice the polymorphic local variable" <+> quotes (ppr id)
{-
Note [Lifting strings]
~~~~~~~~~~~~~~~~~~~~~~
If we see $(... [| s |] ...) where s::String, we don't want to
generate a mass of Cons (CharL 'x') (Cons (CharL 'y') ...)) etc.
So this conditional short-circuits the lifting mechanism to generate
(liftString "xy") in that case. I didn't want to use overlapping instances
for the Lift class in TH.Syntax, because that can lead to overlapping-instance
errors in a polymorphic situation.
If this check fails (which isn't impossible) we get another chance; see
Note [Converting strings] in Convert.hs
Local record selectors
~~~~~~~~~~~~~~~~~~~~~~
Record selectors for TyCons in this module are ordinary local bindings,
which show up as ATcIds rather than AGlobals. So we need to check for
naughtiness in both branches. c.f. TcTyClsBindings.mkAuxBinds.
************************************************************************
* *
\subsection{Record bindings}
* *
************************************************************************
-}
getFixedTyVars :: [FieldLabelString] -> [TyVar] -> [ConLike] -> TyVarSet
-- These tyvars must not change across the updates
getFixedTyVars upd_fld_occs univ_tvs cons
= mkVarSet [tv1 | con <- cons
, let (u_tvs, _, eqspec, prov_theta
, req_theta, arg_tys, _)
= conLikeFullSig con
theta = eqSpecPreds eqspec
++ prov_theta
++ req_theta
flds = conLikeFieldLabels con
fixed_tvs = exactTyCoVarsOfTypes fixed_tys
-- fixed_tys: See Note [Type of a record update]
`unionVarSet` tyCoVarsOfTypes theta
-- Universally-quantified tyvars that
-- appear in any of the *implicit*
-- arguments to the constructor are fixed
-- See Note [Implicit type sharing]
fixed_tys = [ty | (fl, ty) <- zip flds arg_tys
, not (flLabel fl `elem` upd_fld_occs)]
, (tv1,tv) <- univ_tvs `zip` u_tvs
, tv `elemVarSet` fixed_tvs ]
{-
Note [Disambiguating record fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the -XDuplicateRecordFields extension is used, and the renamer
encounters a record selector or update that it cannot immediately
disambiguate (because it involves fields that belong to multiple
datatypes), it will defer resolution of the ambiguity to the
typechecker. In this case, the `Ambiguous` constructor of
`AmbiguousFieldOcc` is used.
Consider the following definitions:
data S = MkS { foo :: Int }
data T = MkT { foo :: Int, bar :: Int }
data U = MkU { bar :: Int, baz :: Int }
When the renamer sees `foo` as a selector or an update, it will not
know which parent datatype is in use.
For selectors, there are two possible ways to disambiguate:
1. Check if the pushed-in type is a function whose domain is a
datatype, for example:
f s = (foo :: S -> Int) s
g :: T -> Int
g = foo
This is checked by `tcCheckRecSelId` when checking `HsRecFld foo`.
2. Check if the selector is applied to an argument that has a type
signature, for example:
h = foo (s :: S)
This is checked by `tcApp`.
Updates are slightly more complex. The `disambiguateRecordBinds`
function tries to determine the parent datatype in three ways:
1. Check for types that have all the fields being updated. For example:
f x = x { foo = 3, bar = 2 }
Here `f` must be updating `T` because neither `S` nor `U` have
both fields. This may also discover that no possible type exists.
For example the following will be rejected:
f' x = x { foo = 3, baz = 3 }
2. Use the type being pushed in, if it is already a TyConApp. The
following are valid updates to `T`:
g :: T -> T
g x = x { foo = 3 }
g' x = x { foo = 3 } :: T
3. Use the type signature of the record expression, if it exists and
is a TyConApp. Thus this is valid update to `T`:
h x = (x :: T) { foo = 3 }
Note that we do not look up the types of variables being updated, and
no constraint-solving is performed, so for example the following will
be rejected as ambiguous:
let bad (s :: S) = foo s
let r :: T
r = blah
in r { foo = 3 }
\r. (r { foo = 3 }, r :: T )
We could add further tests, of a more heuristic nature. For example,
rather than looking for an explicit signature, we could try to infer
the type of the argument to a selector or the record expression being
updated, in case we are lucky enough to get a TyConApp straight
away. However, it might be hard for programmers to predict whether a
particular update is sufficiently obvious for the signature to be
omitted. Moreover, this might change the behaviour of typechecker in
non-obvious ways.
See also Note [HsRecField and HsRecUpdField] in GHC.Hs.Pat.
-}
-- Given a RdrName that refers to multiple record fields, and the type
-- of its argument, try to determine the name of the selector that is
-- meant.
disambiguateSelector :: Located RdrName -> Type -> TcM Name
disambiguateSelector lr@(L _ rdr) parent_type
= do { fam_inst_envs <- tcGetFamInstEnvs
; case tyConOf fam_inst_envs parent_type of
Nothing -> ambiguousSelector lr
Just p ->
do { xs <- lookupParents rdr
; let parent = RecSelData p
; case lookup parent xs of
Just gre -> do { addUsedGRE True gre
; return (gre_name gre) }
Nothing -> failWithTc (fieldNotInType parent rdr) } }
-- This field name really is ambiguous, so add a suitable "ambiguous
-- occurrence" error, then give up.
ambiguousSelector :: Located RdrName -> TcM a
ambiguousSelector (L _ rdr)
= do { addAmbiguousNameErr rdr
; failM }
-- | This name really is ambiguous, so add a suitable "ambiguous
-- occurrence" error, then continue
addAmbiguousNameErr :: RdrName -> TcM ()
addAmbiguousNameErr rdr
= do { env <- getGlobalRdrEnv
; let gres = lookupGRE_RdrName rdr env
; setErrCtxt [] $ addNameClashErrRn rdr gres}
-- Disambiguate the fields in a record update.
-- See Note [Disambiguating record fields]
disambiguateRecordBinds :: LHsExpr GhcRn -> TcRhoType
-> [LHsRecUpdField GhcRn] -> ExpRhoType
-> TcM [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
disambiguateRecordBinds record_expr record_rho rbnds res_ty
-- Are all the fields unambiguous?
= case mapM isUnambiguous rbnds of
-- If so, just skip to looking up the Ids
-- Always the case if DuplicateRecordFields is off
Just rbnds' -> mapM lookupSelector rbnds'
Nothing -> -- If not, try to identify a single parent
do { fam_inst_envs <- tcGetFamInstEnvs
-- Look up the possible parents for each field
; rbnds_with_parents <- getUpdFieldsParents
; let possible_parents = map (map fst . snd) rbnds_with_parents
-- Identify a single parent
; p <- identifyParent fam_inst_envs possible_parents
-- Pick the right selector with that parent for each field
; checkNoErrs $ mapM (pickParent p) rbnds_with_parents }
where
-- Extract the selector name of a field update if it is unambiguous
isUnambiguous :: LHsRecUpdField GhcRn -> Maybe (LHsRecUpdField GhcRn,Name)
isUnambiguous x = case unLoc (hsRecFieldLbl (unLoc x)) of
Unambiguous sel_name _ -> Just (x, sel_name)
Ambiguous{} -> Nothing
XAmbiguousFieldOcc nec -> noExtCon nec
-- Look up the possible parents and selector GREs for each field
getUpdFieldsParents :: TcM [(LHsRecUpdField GhcRn
, [(RecSelParent, GlobalRdrElt)])]
getUpdFieldsParents
= fmap (zip rbnds) $ mapM
(lookupParents . unLoc . hsRecUpdFieldRdr . unLoc)
rbnds
-- Given a the lists of possible parents for each field,
-- identify a single parent
identifyParent :: FamInstEnvs -> [[RecSelParent]] -> TcM RecSelParent
identifyParent fam_inst_envs possible_parents
= case foldr1 intersect possible_parents of
-- No parents for all fields: record update is ill-typed
[] -> failWithTc (noPossibleParents rbnds)
-- Exactly one datatype with all the fields: use that
[p] -> return p
-- Multiple possible parents: try harder to disambiguate
-- Can we get a parent TyCon from the pushed-in type?
_:_ | Just p <- tyConOfET fam_inst_envs res_ty -> return (RecSelData p)
-- Does the expression being updated have a type signature?
-- If so, try to extract a parent TyCon from it
| Just {} <- obviousSig (unLoc record_expr)
, Just tc <- tyConOf fam_inst_envs record_rho
-> return (RecSelData tc)
-- Nothing else we can try...
_ -> failWithTc badOverloadedUpdate
-- Make a field unambiguous by choosing the given parent.
-- Emits an error if the field cannot have that parent,
-- e.g. if the user writes
-- r { x = e } :: T
-- where T does not have field x.
pickParent :: RecSelParent
-> (LHsRecUpdField GhcRn, [(RecSelParent, GlobalRdrElt)])
-> TcM (LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
pickParent p (upd, xs)
= case lookup p xs of
-- Phew! The parent is valid for this field.
-- Previously ambiguous fields must be marked as
-- used now that we know which one is meant, but
-- unambiguous ones shouldn't be recorded again
-- (giving duplicate deprecation warnings).
Just gre -> do { unless (null (tail xs)) $ do
let L loc _ = hsRecFieldLbl (unLoc upd)
setSrcSpan loc $ addUsedGRE True gre
; lookupSelector (upd, gre_name gre) }
-- The field doesn't belong to this parent, so report
-- an error but keep going through all the fields
Nothing -> do { addErrTc (fieldNotInType p
(unLoc (hsRecUpdFieldRdr (unLoc upd))))
; lookupSelector (upd, gre_name (snd (head xs))) }
-- Given a (field update, selector name) pair, look up the
-- selector to give a field update with an unambiguous Id
lookupSelector :: (LHsRecUpdField GhcRn, Name)
-> TcM (LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
lookupSelector (L l upd, n)
= do { i <- tcLookupId n
; let L loc af = hsRecFieldLbl upd
lbl = rdrNameAmbiguousFieldOcc af
; return $ L l upd { hsRecFieldLbl
= L loc (Unambiguous i (L loc lbl)) } }
-- Extract the outermost TyCon of a type, if there is one; for
-- data families this is the representation tycon (because that's
-- where the fields live).
tyConOf :: FamInstEnvs -> TcSigmaType -> Maybe TyCon
tyConOf fam_inst_envs ty0
= case tcSplitTyConApp_maybe ty of
Just (tc, tys) -> Just (fstOf3 (tcLookupDataFamInst fam_inst_envs tc tys))
Nothing -> Nothing
where
(_, _, ty) = tcSplitSigmaTy ty0
-- Variant of tyConOf that works for ExpTypes
tyConOfET :: FamInstEnvs -> ExpRhoType -> Maybe TyCon
tyConOfET fam_inst_envs ty0 = tyConOf fam_inst_envs =<< checkingExpType_maybe ty0
-- For an ambiguous record field, find all the candidate record
-- selectors (as GlobalRdrElts) and their parents.
lookupParents :: RdrName -> RnM [(RecSelParent, GlobalRdrElt)]
lookupParents rdr
= do { env <- getGlobalRdrEnv
; let gres = lookupGRE_RdrName rdr env
; mapM lookupParent gres }
where
lookupParent :: GlobalRdrElt -> RnM (RecSelParent, GlobalRdrElt)
lookupParent gre = do { id <- tcLookupId (gre_name gre)
; if isRecordSelector id
then return (recordSelectorTyCon id, gre)
else failWithTc (notSelector (gre_name gre)) }
-- A type signature on the argument of an ambiguous record selector or
-- the record expression in an update must be "obvious", i.e. the
-- outermost constructor ignoring parentheses.
obviousSig :: HsExpr GhcRn -> Maybe (LHsSigWcType GhcRn)
obviousSig (ExprWithTySig _ _ ty) = Just ty
obviousSig (HsPar _ p) = obviousSig (unLoc p)
obviousSig _ = Nothing
{-
Game plan for record bindings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Find the TyCon for the bindings, from the first field label.
2. Instantiate its tyvars and unify (T a1 .. an) with expected_ty.
For each binding field = value
3. Instantiate the field type (from the field label) using the type
envt from step 2.
4 Type check the value using tcArg, passing the field type as
the expected argument type.
This extends OK when the field types are universally quantified.
-}
tcRecordBinds
:: ConLike
-> [TcType] -- Expected type for each field
-> HsRecordBinds GhcRn
-> TcM (HsRecordBinds GhcTcId)
tcRecordBinds con_like arg_tys (HsRecFields rbinds dd)
= do { mb_binds <- mapM do_bind rbinds
; return (HsRecFields (catMaybes mb_binds) dd) }
where
fields = map flSelector $ conLikeFieldLabels con_like
flds_w_tys = zipEqual "tcRecordBinds" fields arg_tys
do_bind :: LHsRecField GhcRn (LHsExpr GhcRn)
-> TcM (Maybe (LHsRecField GhcTcId (LHsExpr GhcTcId)))
do_bind (L l fld@(HsRecField { hsRecFieldLbl = f
, hsRecFieldArg = rhs }))
= do { mb <- tcRecordField con_like flds_w_tys f rhs
; case mb of
Nothing -> return Nothing
Just (f', rhs') -> return (Just (L l (fld { hsRecFieldLbl = f'
, hsRecFieldArg = rhs' }))) }
tcRecordUpd
:: ConLike
-> [TcType] -- Expected type for each field
-> [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
-> TcM [LHsRecUpdField GhcTcId]
tcRecordUpd con_like arg_tys rbinds = fmap catMaybes $ mapM do_bind rbinds
where
fields = map flSelector $ conLikeFieldLabels con_like
flds_w_tys = zipEqual "tcRecordUpd" fields arg_tys
do_bind :: LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)
-> TcM (Maybe (LHsRecUpdField GhcTcId))
do_bind (L l fld@(HsRecField { hsRecFieldLbl = L loc af
, hsRecFieldArg = rhs }))
= do { let lbl = rdrNameAmbiguousFieldOcc af
sel_id = selectorAmbiguousFieldOcc af
f = L loc (FieldOcc (idName sel_id) (L loc lbl))
; mb <- tcRecordField con_like flds_w_tys f rhs
; case mb of
Nothing -> return Nothing
Just (f', rhs') ->
return (Just
(L l (fld { hsRecFieldLbl
= L loc (Unambiguous
(extFieldOcc (unLoc f'))
(L loc lbl))
, hsRecFieldArg = rhs' }))) }
tcRecordField :: ConLike -> Assoc Name Type
-> LFieldOcc GhcRn -> LHsExpr GhcRn
-> TcM (Maybe (LFieldOcc GhcTc, LHsExpr GhcTc))
tcRecordField con_like flds_w_tys (L loc (FieldOcc sel_name lbl)) rhs
| Just field_ty <- assocMaybe flds_w_tys sel_name
= addErrCtxt (fieldCtxt field_lbl) $
do { rhs' <- tcPolyExprNC rhs field_ty
; let field_id = mkUserLocal (nameOccName sel_name)
(nameUnique sel_name)
field_ty loc
-- Yuk: the field_id has the *unique* of the selector Id
-- (so we can find it easily)
-- but is a LocalId with the appropriate type of the RHS
-- (so the desugarer knows the type of local binder to make)
; return (Just (L loc (FieldOcc field_id lbl), rhs')) }
| otherwise
= do { addErrTc (badFieldCon con_like field_lbl)
; return Nothing }
where
field_lbl = occNameFS $ rdrNameOcc (unLoc lbl)
tcRecordField _ _ (L _ (XFieldOcc nec)) _ = noExtCon nec
checkMissingFields :: ConLike -> HsRecordBinds GhcRn -> TcM ()
checkMissingFields con_like rbinds
| null field_labels -- Not declared as a record;
-- But C{} is still valid if no strict fields
= if any isBanged field_strs then
-- Illegal if any arg is strict
addErrTc (missingStrictFields con_like [])
else do
warn <- woptM Opt_WarnMissingFields
when (warn && notNull field_strs && null field_labels)
(warnTc (Reason Opt_WarnMissingFields) True
(missingFields con_like []))
| otherwise = do -- A record
unless (null missing_s_fields)
(addErrTc (missingStrictFields con_like missing_s_fields))
warn <- woptM Opt_WarnMissingFields
when (warn && notNull missing_ns_fields)
(warnTc (Reason Opt_WarnMissingFields) True
(missingFields con_like missing_ns_fields))
where
missing_s_fields
= [ flLabel fl | (fl, str) <- field_info,
isBanged str,
not (fl `elemField` field_names_used)
]
missing_ns_fields
= [ flLabel fl | (fl, str) <- field_info,
not (isBanged str),
not (fl `elemField` field_names_used)
]
field_names_used = hsRecFields rbinds
field_labels = conLikeFieldLabels con_like
field_info = zipEqual "missingFields"
field_labels
field_strs
field_strs = conLikeImplBangs con_like
fl `elemField` flds = any (\ fl' -> flSelector fl == fl') flds
{-
************************************************************************
* *
\subsection{Errors and contexts}
* *
************************************************************************
Boring and alphabetical:
-}
addExprErrCtxt :: LHsExpr GhcRn -> TcM a -> TcM a
addExprErrCtxt expr = addErrCtxt (exprCtxt expr)
exprCtxt :: LHsExpr GhcRn -> SDoc
exprCtxt expr
= hang (text "In the expression:") 2 (ppr (stripParensHsExpr expr))
fieldCtxt :: FieldLabelString -> SDoc
fieldCtxt field_name
= text "In the" <+> quotes (ppr field_name) <+> ptext (sLit "field of a record")
addFunResCtxt :: Bool -- There is at least one argument
-> HsExpr GhcRn -> TcType -> ExpRhoType
-> TcM a -> TcM a
-- When we have a mis-match in the return type of a function
-- try to give a helpful message about too many/few arguments
--
-- Used for naked variables too; but with has_args = False
addFunResCtxt has_args fun fun_res_ty env_ty
= addLandmarkErrCtxtM (\env -> (env, ) <$> mk_msg)
-- NB: use a landmark error context, so that an empty context
-- doesn't suppress some more useful context
where
mk_msg
= do { mb_env_ty <- readExpType_maybe env_ty
-- by the time the message is rendered, the ExpType
-- will be filled in (except if we're debugging)
; fun_res' <- zonkTcType fun_res_ty
; env' <- case mb_env_ty of
Just env_ty -> zonkTcType env_ty
Nothing ->
do { dumping <- doptM Opt_D_dump_tc_trace
; MASSERT( dumping )
; newFlexiTyVarTy liftedTypeKind }
; let -- See Note [Splitting nested sigma types in mismatched
-- function types]
(_, _, fun_tau) = tcSplitNestedSigmaTys fun_res'
-- No need to call tcSplitNestedSigmaTys here, since env_ty is
-- an ExpRhoTy, i.e., it's already deeply instantiated.
(_, _, env_tau) = tcSplitSigmaTy env'
(args_fun, res_fun) = tcSplitFunTys fun_tau
(args_env, res_env) = tcSplitFunTys env_tau
n_fun = length args_fun
n_env = length args_env
info | n_fun == n_env = Outputable.empty
| n_fun > n_env
, not_fun res_env
= text "Probable cause:" <+> quotes (ppr fun)
<+> text "is applied to too few arguments"
| has_args
, not_fun res_fun
= text "Possible cause:" <+> quotes (ppr fun)
<+> text "is applied to too many arguments"
| otherwise
= Outputable.empty -- Never suggest that a naked variable is -- applied to too many args!
; return info }
where
not_fun ty -- ty is definitely not an arrow type,
-- and cannot conceivably become one
= case tcSplitTyConApp_maybe ty of
Just (tc, _) -> isAlgTyCon tc
Nothing -> False
{-
Note [Splitting nested sigma types in mismatched function types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When one applies a function to too few arguments, GHC tries to determine this
fact if possible so that it may give a helpful error message. It accomplishes
this by checking if the type of the applied function has more argument types
than supplied arguments.
Previously, GHC computed the number of argument types through tcSplitSigmaTy.
This is incorrect in the face of nested foralls, however! This caused Trac
#13311, for instance:
f :: forall a. (Monoid a) => forall b. (Monoid b) => Maybe a -> Maybe b
If one uses `f` like so:
do { f; putChar 'a' }
Then tcSplitSigmaTy will decompose the type of `f` into:
Tyvars: [a]
Context: (Monoid a)
Argument types: []
Return type: forall b. Monoid b => Maybe a -> Maybe b
That is, it will conclude that there are *no* argument types, and since `f`
was given no arguments, it won't print a helpful error message. On the other
hand, tcSplitNestedSigmaTys correctly decomposes `f`'s type down to:
Tyvars: [a, b]
Context: (Monoid a, Monoid b)
Argument types: [Maybe a]
Return type: Maybe b
So now GHC recognizes that `f` has one more argument type than it was actually
provided.
-}
badFieldTypes :: [(FieldLabelString,TcType)] -> SDoc
badFieldTypes prs
= hang (text "Record update for insufficiently polymorphic field"
<> plural prs <> colon)
2 (vcat [ ppr f <+> dcolon <+> ppr ty | (f,ty) <- prs ])
badFieldsUpd
:: [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
-- Field names that don't belong to a single datacon
-> [ConLike] -- Data cons of the type which the first field name belongs to
-> SDoc
badFieldsUpd rbinds data_cons
= hang (text "No constructor has all these fields:")
2 (pprQuotedList conflictingFields)
-- See Note [Finding the conflicting fields]
where
-- A (preferably small) set of fields such that no constructor contains
-- all of them. See Note [Finding the conflicting fields]
conflictingFields = case nonMembers of
-- nonMember belongs to a different type.
(nonMember, _) : _ -> [aMember, nonMember]
[] -> let
-- All of rbinds belong to one type. In this case, repeatedly add
-- a field to the set until no constructor contains the set.
-- Each field, together with a list indicating which constructors
-- have all the fields so far.
growingSets :: [(FieldLabelString, [Bool])]
growingSets = scanl1 combine membership
combine (_, setMem) (field, fldMem)
= (field, zipWith (&&) setMem fldMem)
in
-- Fields that don't change the membership status of the set
-- are redundant and can be dropped.
map (fst . head) $ groupBy ((==) `on` snd) growingSets
aMember = ASSERT( not (null members) ) fst (head members)
(members, nonMembers) = partition (or . snd) membership
-- For each field, which constructors contain the field?
membership :: [(FieldLabelString, [Bool])]
membership = sortMembership $
map (\fld -> (fld, map (Set.member fld) fieldLabelSets)) $
map (occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc . unLoc . hsRecFieldLbl . unLoc) rbinds
fieldLabelSets :: [Set.Set FieldLabelString]
fieldLabelSets = map (Set.fromList . map flLabel . conLikeFieldLabels) data_cons
-- Sort in order of increasing number of True, so that a smaller
-- conflicting set can be found.
sortMembership =
map snd .
sortBy (compare `on` fst) .
map (\ item@(_, membershipRow) -> (countTrue membershipRow, item))
countTrue = count id
{-
Note [Finding the conflicting fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
data A = A {a0, a1 :: Int}
| B {b0, b1 :: Int}
and we see a record update
x { a0 = 3, a1 = 2, b0 = 4, b1 = 5 }
Then we'd like to find the smallest subset of fields that no
constructor has all of. Here, say, {a0,b0}, or {a0,b1}, etc.
We don't really want to report that no constructor has all of
{a0,a1,b0,b1}, because when there are hundreds of fields it's
hard to see what was really wrong.
We may need more than two fields, though; eg
data T = A { x,y :: Int, v::Int }
| B { y,z :: Int, v::Int }
| C { z,x :: Int, v::Int }
with update
r { x=e1, y=e2, z=e3 }, we
Finding the smallest subset is hard, so the code here makes
a decent stab, no more. See #7989.
-}
naughtyRecordSel :: RdrName -> SDoc
naughtyRecordSel sel_id
= text "Cannot use record selector" <+> quotes (ppr sel_id) <+>
text "as a function due to escaped type variables" $$
text "Probable fix: use pattern-matching syntax instead"
notSelector :: Name -> SDoc
notSelector field
= hsep [quotes (ppr field), text "is not a record selector"]
mixedSelectors :: [Id] -> [Id] -> SDoc
mixedSelectors data_sels@(dc_rep_id:_) pat_syn_sels@(ps_rep_id:_)
= ptext
(sLit "Cannot use a mixture of pattern synonym and record selectors") $$
text "Record selectors defined by"
<+> quotes (ppr (tyConName rep_dc))
<> text ":"
<+> pprWithCommas ppr data_sels $$
text "Pattern synonym selectors defined by"
<+> quotes (ppr (patSynName rep_ps))
<> text ":"
<+> pprWithCommas ppr pat_syn_sels
where
RecSelPatSyn rep_ps = recordSelectorTyCon ps_rep_id
RecSelData rep_dc = recordSelectorTyCon dc_rep_id
mixedSelectors _ _ = panic "GHC.Tc.Gen.Expr: mixedSelectors emptylists"
missingStrictFields :: ConLike -> [FieldLabelString] -> SDoc
missingStrictFields con fields
= header <> rest
where
rest | null fields = Outputable.empty -- Happens for non-record constructors
-- with strict fields
| otherwise = colon <+> pprWithCommas ppr fields
header = text "Constructor" <+> quotes (ppr con) <+>
text "does not have the required strict field(s)"
missingFields :: ConLike -> [FieldLabelString] -> SDoc
missingFields con fields
= header <> rest
where
rest | null fields = Outputable.empty
| otherwise = colon <+> pprWithCommas ppr fields
header = text "Fields of" <+> quotes (ppr con) <+>
text "not initialised"
-- callCtxt fun args = text "In the call" <+> parens (ppr (foldl' mkHsApp fun args))
noPossibleParents :: [LHsRecUpdField GhcRn] -> SDoc
noPossibleParents rbinds
= hang (text "No type has all these fields:")
2 (pprQuotedList fields)
where
fields = map (hsRecFieldLbl . unLoc) rbinds
badOverloadedUpdate :: SDoc
badOverloadedUpdate = text "Record update is ambiguous, and requires a type signature"
fieldNotInType :: RecSelParent -> RdrName -> SDoc
fieldNotInType p rdr
= unknownSubordinateErr (text "field of type" <+> quotes (ppr p)) rdr
{-
************************************************************************
* *
\subsection{Static Pointers}
* *
************************************************************************
-}
-- | A data type to describe why a variable is not closed.
data NotClosedReason = NotLetBoundReason
| NotTypeClosed VarSet
| NotClosed Name NotClosedReason
-- | Checks if the given name is closed and emits an error if not.
--
-- See Note [Not-closed error messages].
checkClosedInStaticForm :: Name -> TcM ()
checkClosedInStaticForm name = do
type_env <- getLclTypeEnv
case checkClosed type_env name of
Nothing -> return ()
Just reason -> addErrTc $ explain name reason
where
-- See Note [Checking closedness].
checkClosed :: TcTypeEnv -> Name -> Maybe NotClosedReason
checkClosed type_env n = checkLoop type_env (unitNameSet n) n
checkLoop :: TcTypeEnv -> NameSet -> Name -> Maybe NotClosedReason
checkLoop type_env visited n = do
-- The @visited@ set is an accumulating parameter that contains the set of
-- visited nodes, so we avoid repeating cycles in the traversal.
case lookupNameEnv type_env n of
Just (ATcId { tct_id = tcid, tct_info = info }) -> case info of
ClosedLet -> Nothing
NotLetBound -> Just NotLetBoundReason
NonClosedLet fvs type_closed -> listToMaybe $
-- Look for a non-closed variable in fvs
[ NotClosed n' reason
| n' <- nameSetElemsStable fvs
, not (elemNameSet n' visited)
, Just reason <- [checkLoop type_env (extendNameSet visited n') n']
] ++
if type_closed then
[]
else
-- We consider non-let-bound variables easier to figure out than
-- non-closed types, so we report non-closed types to the user
-- only if we cannot spot the former.
[ NotTypeClosed $ tyCoVarsOfType (idType tcid) ]
-- The binding is closed.
_ -> Nothing
-- Converts a reason into a human-readable sentence.
--
-- @explain name reason@ starts with
--
-- "<name> is used in a static form but it is not closed because it"
--
-- and then follows a list of causes. For each id in the path, the text
--
-- "uses <id> which"
--
-- is appended, yielding something like
--
-- "uses <id> which uses <id1> which uses <id2> which"
--
-- until the end of the path is reached, which is reported as either
--
-- "is not let-bound"
--
-- when the final node is not let-bound, or
--
-- "has a non-closed type because it contains the type variables:
-- v1, v2, v3"
--
-- when the final node has a non-closed type.
--
explain :: Name -> NotClosedReason -> SDoc
explain name reason =
quotes (ppr name) <+> text "is used in a static form but it is not closed"
<+> text "because it"
$$
sep (causes reason)
causes :: NotClosedReason -> [SDoc]
causes NotLetBoundReason = [text "is not let-bound."]
causes (NotTypeClosed vs) =
[ text "has a non-closed type because it contains the"
, text "type variables:" <+>
pprVarSet vs (hsep . punctuate comma . map (quotes . ppr))
]
causes (NotClosed n reason) =
let msg = text "uses" <+> quotes (ppr n) <+> text "which"
in case reason of
NotClosed _ _ -> msg : causes reason
_ -> let (xs0, xs1) = splitAt 1 $ causes reason
in fmap (msg <+>) xs0 ++ xs1
-- Note [Not-closed error messages]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- When variables in a static form are not closed, we go through the trouble
-- of explaining why they aren't.
--
-- Thus, the following program
--
-- > {-# LANGUAGE StaticPointers #-}
-- > module M where
-- >
-- > f x = static g
-- > where
-- > g = h
-- > h = x
--
-- produces the error
--
-- 'g' is used in a static form but it is not closed because it
-- uses 'h' which uses 'x' which is not let-bound.
--
-- And a program like
--
-- > {-# LANGUAGE StaticPointers #-}
-- > module M where
-- >
-- > import Data.Typeable
-- > import GHC.StaticPtr
-- >
-- > f :: Typeable a => a -> StaticPtr TypeRep
-- > f x = const (static (g undefined)) (h x)
-- > where
-- > g = h
-- > h = typeOf
--
-- produces the error
--
-- 'g' is used in a static form but it is not closed because it
-- uses 'h' which has a non-closed type because it contains the
-- type variables: 'a'
--
-- Note [Checking closedness]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- @checkClosed@ checks if a binding is closed and returns a reason if it is
-- not.
--
-- The bindings define a graph where the nodes are ids, and there is an edge
-- from @id1@ to @id2@ if the rhs of @id1@ contains @id2@ among its free
-- variables.
--
-- When @n@ is not closed, it has to exist in the graph some node reachable
-- from @n@ that it is not a let-bound variable or that it has a non-closed
-- type. Thus, the "reason" is a path from @n@ to this offending node.
--
-- When @n@ is not closed, we traverse the graph reachable from @n@ to build
-- the reason.
--
|