1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
|
{-
%
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, TupleSections, ScopedTypeVariables #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies, DataKinds, TypeApplications #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module GHC.Hs.Extension
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Tc.Gen.Expr
( tcCheckPolyExpr, tcCheckPolyExprNC,
tcCheckMonoExpr, tcCheckMonoExprNC, tcMonoExpr, tcMonoExprNC,
tcInferRho, tcInferRhoNC,
tcExpr,
tcSyntaxOp, tcSyntaxOpGen, SyntaxOpType(..), synKnownType,
tcCheckId,
addAmbiguousNameErr,
getFixedTyVars ) where
#include "HsVersions.h"
import GHC.Prelude
import {-# SOURCE #-} GHC.Tc.Gen.Splice( tcSpliceExpr, tcTypedBracket, tcUntypedBracket )
import GHC.Hs
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Unify
import GHC.Types.Basic
import GHC.Core.Multiplicity
import GHC.Core.UsageEnv
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Gen.App
import GHC.Tc.Gen.Head
import GHC.Tc.Gen.Bind ( tcLocalBinds )
import GHC.Tc.Instance.Family ( tcGetFamInstEnvs )
import GHC.Core.FamInstEnv ( FamInstEnvs )
import GHC.Rename.Env ( addUsedGRE )
import GHC.Tc.Utils.Env
import GHC.Tc.Gen.Arrow
import GHC.Tc.Gen.Match
import GHC.Tc.Gen.HsType
import GHC.Tc.Gen.Pat
import GHC.Tc.Utils.TcMType
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType as TcType
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Core.ConLike
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Core.TyCon
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Types.Var.Set
import GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Driver.Session
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Data.List.SetOps
import GHC.Data.Maybe
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Data.FastString
import Control.Monad
import GHC.Core.Class(classTyCon)
import GHC.Types.Unique.Set ( UniqSet, mkUniqSet, elementOfUniqSet, nonDetEltsUniqSet )
import qualified GHC.LanguageExtensions as LangExt
import Data.Function
import Data.List (partition, sortBy, groupBy, intersect)
{-
************************************************************************
* *
\subsection{Main wrappers}
* *
************************************************************************
-}
tcCheckPolyExpr, tcCheckPolyExprNC
:: LHsExpr GhcRn -- Expression to type check
-> TcSigmaType -- Expected type (could be a polytype)
-> TcM (LHsExpr GhcTc) -- Generalised expr with expected type
-- tcCheckPolyExpr is a convenient place (frequent but not too frequent)
-- place to add context information.
-- The NC version does not do so, usually because the caller wants
-- to do so himself.
tcCheckPolyExpr expr res_ty = tcPolyExpr expr (mkCheckExpType res_ty)
tcCheckPolyExprNC expr res_ty = tcPolyExprNC expr (mkCheckExpType res_ty)
-- These versions take an ExpType
tcPolyExpr, tcPolyExprNC
:: LHsExpr GhcRn -> ExpSigmaType
-> TcM (LHsExpr GhcTc)
tcPolyExpr expr res_ty
= addLExprCtxt expr $
do { traceTc "tcPolyExpr" (ppr res_ty)
; tcPolyExprNC expr res_ty }
tcPolyExprNC (L loc expr) res_ty
= set_loc_and_ctxt loc expr $
do { traceTc "tcPolyExprNC" (ppr res_ty)
; (wrap, expr') <- tcSkolemiseET GenSigCtxt res_ty $ \ res_ty ->
tcExpr expr res_ty
; return $ L loc (mkHsWrap wrap expr') }
where -- See Note [Rebindable syntax and HsExpansion), which describes
-- the logic behind this location/context tweaking.
set_loc_and_ctxt l e m = do
inGenCode <- inGeneratedCode
if inGenCode && not (isGeneratedSrcSpan l)
then setSrcSpan l $
addExprCtxt e m
else setSrcSpan l m
---------------
tcCheckMonoExpr, tcCheckMonoExprNC
:: LHsExpr GhcRn -- Expression to type check
-> TcRhoType -- Expected type
-- Definitely no foralls at the top
-> TcM (LHsExpr GhcTc)
tcCheckMonoExpr expr res_ty = tcMonoExpr expr (mkCheckExpType res_ty)
tcCheckMonoExprNC expr res_ty = tcMonoExprNC expr (mkCheckExpType res_ty)
tcMonoExpr, tcMonoExprNC
:: LHsExpr GhcRn -- Expression to type check
-> ExpRhoType -- Expected type
-- Definitely no foralls at the top
-> TcM (LHsExpr GhcTc)
tcMonoExpr expr res_ty
= addLExprCtxt expr $
tcMonoExprNC expr res_ty
tcMonoExprNC (L loc expr) res_ty
= setSrcSpan loc $
do { expr' <- tcExpr expr res_ty
; return (L loc expr') }
---------------
tcInferRho, tcInferRhoNC :: LHsExpr GhcRn -> TcM (LHsExpr GhcTc, TcRhoType)
-- Infer a *rho*-type. The return type is always instantiated.
tcInferRho le = addLExprCtxt le $
tcInferRhoNC le
tcInferRhoNC (L loc expr)
= setSrcSpan loc $
do { (expr', rho) <- tcInfer (tcExpr expr)
; return (L loc expr', rho) }
{- *********************************************************************
* *
tcExpr: the main expression typechecker
* *
********************************************************************* -}
tcExpr :: HsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
-- Use tcApp to typecheck appplications, which are treated specially
-- by Quick Look. Specifically:
-- - HsApp: value applications
-- - HsTypeApp: type applications
-- - HsVar: lone variables, to ensure that they can get an
-- impredicative instantiation (via Quick Look
-- driven by res_ty (in checking mode).
-- - ExprWithTySig: (e :: type)
-- See Note [Application chains and heads] in GHC.Tc.Gen.App
tcExpr e@(HsVar {}) res_ty = tcApp e res_ty
tcExpr e@(HsApp {}) res_ty = tcApp e res_ty
tcExpr e@(HsAppType {}) res_ty = tcApp e res_ty
tcExpr e@(ExprWithTySig {}) res_ty = tcApp e res_ty
tcExpr e@(HsRecFld {}) res_ty = tcApp e res_ty
-- Typecheck an occurrence of an unbound Id
--
-- Some of these started life as a true expression hole "_".
-- Others might simply be variables that accidentally have no binding site
tcExpr e@(HsUnboundVar _ occ) res_ty
= do { ty <- newOpenFlexiTyVarTy -- Allow Int# etc (#12531)
; name <- newSysName occ
; let ev = mkLocalId name Many ty
; emitNewExprHole occ ev ty
; tcWrapResultO (UnboundOccurrenceOf occ) e
(HsUnboundVar ev occ) ty res_ty }
tcExpr e@(HsLit x lit) res_ty
= do { let lit_ty = hsLitType lit
; tcWrapResult e (HsLit x (convertLit lit)) lit_ty res_ty }
tcExpr (HsPar x expr) res_ty
= do { expr' <- tcMonoExprNC expr res_ty
; return (HsPar x expr') }
tcExpr (HsPragE x prag expr) res_ty
= do { expr' <- tcMonoExpr expr res_ty
; return (HsPragE x (tcExprPrag prag) expr') }
tcExpr (HsOverLit x lit) res_ty
= do { lit' <- newOverloadedLit lit res_ty
; return (HsOverLit x lit') }
tcExpr (NegApp x expr neg_expr) res_ty
= do { (expr', neg_expr')
<- tcSyntaxOp NegateOrigin neg_expr [SynAny] res_ty $
\[arg_ty] [arg_mult] ->
tcScalingUsage arg_mult $ tcCheckMonoExpr expr arg_ty
; return (NegApp x expr' neg_expr') }
tcExpr e@(HsIPVar _ x) res_ty
= do { {- Implicit parameters must have a *tau-type* not a
type scheme. We enforce this by creating a fresh
type variable as its type. (Because res_ty may not
be a tau-type.) -}
ip_ty <- newOpenFlexiTyVarTy
; let ip_name = mkStrLitTy (hsIPNameFS x)
; ipClass <- tcLookupClass ipClassName
; ip_var <- emitWantedEvVar origin (mkClassPred ipClass [ip_name, ip_ty])
; tcWrapResult e
(fromDict ipClass ip_name ip_ty (HsVar noExtField (noLoc ip_var)))
ip_ty res_ty }
where
-- Coerces a dictionary for `IP "x" t` into `t`.
fromDict ipClass x ty = mkHsWrap $ mkWpCastR $
unwrapIP $ mkClassPred ipClass [x,ty]
origin = IPOccOrigin x
tcExpr e@(HsOverLabel _ mb_fromLabel l) res_ty
= do { -- See Note [Type-checking overloaded labels]
loc <- getSrcSpanM
; case mb_fromLabel of
Just fromLabel -> tcExpr (applyFromLabel loc fromLabel) res_ty
Nothing -> do { isLabelClass <- tcLookupClass isLabelClassName
; alpha <- newFlexiTyVarTy liftedTypeKind
; let pred = mkClassPred isLabelClass [lbl, alpha]
; loc <- getSrcSpanM
; var <- emitWantedEvVar origin pred
; tcWrapResult e
(fromDict pred (HsVar noExtField (L loc var)))
alpha res_ty } }
where
-- Coerces a dictionary for `IsLabel "x" t` into `t`,
-- or `HasField "x" r a into `r -> a`.
fromDict pred = mkHsWrap $ mkWpCastR $ unwrapIP pred
origin = OverLabelOrigin l
lbl = mkStrLitTy l
applyFromLabel loc fromLabel =
HsAppType noExtField
(L loc (HsVar noExtField (L loc fromLabel)))
(mkEmptyWildCardBndrs (L loc (HsTyLit noExtField (HsStrTy NoSourceText l))))
tcExpr (HsLam x match) res_ty
= do { (wrap, match') <- tcMatchLambda herald match_ctxt match res_ty
; return (mkHsWrap wrap (HsLam x match')) }
where
match_ctxt = MC { mc_what = LambdaExpr, mc_body = tcBody }
herald = sep [ text "The lambda expression" <+>
quotes (pprSetDepth (PartWay 1) $
pprMatches match),
-- The pprSetDepth makes the abstraction print briefly
text "has"]
tcExpr e@(HsLamCase x matches) res_ty
= do { (wrap, matches')
<- tcMatchLambda msg match_ctxt matches res_ty
-- The laziness annotation is because we don't want to fail here
-- if there are multiple arguments
; return (mkHsWrap wrap $ HsLamCase x matches') }
where
msg = sep [ text "The function" <+> quotes (ppr e)
, text "requires"]
match_ctxt = MC { mc_what = CaseAlt, mc_body = tcBody }
{-
Note [Type-checking overloaded labels]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Recall that we have
module GHC.OverloadedLabels where
class IsLabel (x :: Symbol) a where
fromLabel :: a
We translate `#foo` to `fromLabel @"foo"`, where we use
* the in-scope `fromLabel` if `RebindableSyntax` is enabled; or if not
* `GHC.OverloadedLabels.fromLabel`.
In the `RebindableSyntax` case, the renamer will have filled in the
first field of `HsOverLabel` with the `fromLabel` function to use, and
we simply apply it to the appropriate visible type argument.
In the `OverloadedLabels` case, when we see an overloaded label like
`#foo`, we generate a fresh variable `alpha` for the type and emit an
`IsLabel "foo" alpha` constraint. Because the `IsLabel` class has a
single method, it is represented by a newtype, so we can coerce
`IsLabel "foo" alpha` to `alpha` (just like for implicit parameters).
-}
{-
************************************************************************
* *
Infix operators and sections
* *
************************************************************************
Note [Left sections]
~~~~~~~~~~~~~~~~~~~~
Left sections, like (4 *), are equivalent to
\ x -> (*) 4 x,
or, if PostfixOperators is enabled, just
(*) 4
With PostfixOperators we don't actually require the function to take
two arguments at all. For example, (x `not`) means (not x); you get
postfix operators! Not Haskell 98, but it's less work and kind of
useful.
-}
tcExpr expr@(OpApp {}) res_ty
= tcApp expr res_ty
-- Right sections, equivalent to \ x -> x `op` expr, or
-- \ x -> op x expr
tcExpr expr@(SectionR x op arg2) res_ty
= do { (op', op_ty) <- tcInferRhoNC op
; (wrap_fun, [Scaled arg1_mult arg1_ty, arg2_ty], op_res_ty)
<- matchActualFunTysRho (mk_op_msg op) fn_orig
(Just (ppr op)) 2 op_ty
; arg2' <- tcValArg (unLoc op) arg2 arg2_ty 2
; let expr' = SectionR x (mkLHsWrap wrap_fun op') arg2'
act_res_ty = mkVisFunTy arg1_mult arg1_ty op_res_ty
; tcWrapResultMono expr expr' act_res_ty res_ty }
where
fn_orig = lexprCtOrigin op
-- It's important to use the origin of 'op', so that call-stacks
-- come out right; they are driven by the OccurrenceOf CtOrigin
-- See #13285
tcExpr expr@(SectionL x arg1 op) res_ty
= do { (op', op_ty) <- tcInferRhoNC op
; dflags <- getDynFlags -- Note [Left sections]
; let n_reqd_args | xopt LangExt.PostfixOperators dflags = 1
| otherwise = 2
; (wrap_fn, (arg1_ty:arg_tys), op_res_ty)
<- matchActualFunTysRho (mk_op_msg op) fn_orig
(Just (ppr op)) n_reqd_args op_ty
; arg1' <- tcValArg (unLoc op) arg1 arg1_ty 1
; let expr' = SectionL x arg1' (mkLHsWrap wrap_fn op')
act_res_ty = mkVisFunTys arg_tys op_res_ty
; tcWrapResultMono expr expr' act_res_ty res_ty }
where
fn_orig = lexprCtOrigin op
-- It's important to use the origin of 'op', so that call-stacks
-- come out right; they are driven by the OccurrenceOf CtOrigin
-- See #13285
tcExpr expr@(ExplicitTuple x tup_args boxity) res_ty
| all tupArgPresent tup_args
= do { let arity = length tup_args
tup_tc = tupleTyCon boxity arity
-- NB: tupleTyCon doesn't flatten 1-tuples
-- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
; res_ty <- expTypeToType res_ty
; (coi, arg_tys) <- matchExpectedTyConApp tup_tc res_ty
-- Unboxed tuples have RuntimeRep vars, which we
-- don't care about here
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
; let arg_tys' = case boxity of Unboxed -> drop arity arg_tys
Boxed -> arg_tys
; tup_args1 <- tcTupArgs tup_args arg_tys'
; return $ mkHsWrapCo coi (ExplicitTuple x tup_args1 boxity) }
| otherwise
= -- The tup_args are a mixture of Present and Missing (for tuple sections)
do { let arity = length tup_args
; arg_tys <- case boxity of
{ Boxed -> newFlexiTyVarTys arity liftedTypeKind
; Unboxed -> replicateM arity newOpenFlexiTyVarTy }
-- Handle tuple sections where
; tup_args1 <- tcTupArgs tup_args arg_tys
; let expr' = ExplicitTuple x tup_args1 boxity
missing_tys = [Scaled mult ty | (L _ (Missing (Scaled mult _)), ty) <- zip tup_args1 arg_tys]
-- See Note [Linear fields generalization] in GHC.Tc.Gen.App
act_res_ty
= mkVisFunTys missing_tys (mkTupleTy1 boxity arg_tys)
-- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
; traceTc "ExplicitTuple" (ppr act_res_ty $$ ppr res_ty)
; tcWrapResultMono expr expr' act_res_ty res_ty }
tcExpr (ExplicitSum _ alt arity expr) res_ty
= do { let sum_tc = sumTyCon arity
; res_ty <- expTypeToType res_ty
; (coi, arg_tys) <- matchExpectedTyConApp sum_tc res_ty
; -- Drop levity vars, we don't care about them here
let arg_tys' = drop arity arg_tys
; expr' <- tcCheckPolyExpr expr (arg_tys' `getNth` (alt - 1))
; return $ mkHsWrapCo coi (ExplicitSum arg_tys' alt arity expr' ) }
-- This will see the empty list only when -XOverloadedLists.
-- See Note [Empty lists] in GHC.Hs.Expr.
tcExpr (ExplicitList _ witness exprs) res_ty
= case witness of
Nothing -> do { res_ty <- expTypeToType res_ty
; (coi, elt_ty) <- matchExpectedListTy res_ty
; exprs' <- mapM (tc_elt elt_ty) exprs
; return $
mkHsWrapCo coi $ ExplicitList elt_ty Nothing exprs' }
Just fln -> do { ((exprs', elt_ty), fln')
<- tcSyntaxOp ListOrigin fln
[synKnownType intTy, SynList] res_ty $
\ [elt_ty] [_int_mul, list_mul] ->
-- We ignore _int_mul because the integer (first
-- argument of fromListN) is statically known: it
-- is desugared to a literal. Therefore there is
-- no variable of which to scale the usage in that
-- first argument, and `_int_mul` is completely
-- free in this expression.
do { exprs' <-
mapM (tcScalingUsage list_mul . tc_elt elt_ty) exprs
; return (exprs', elt_ty) }
; return $ ExplicitList elt_ty (Just fln') exprs' }
where tc_elt elt_ty expr = tcCheckPolyExpr expr elt_ty
{-
************************************************************************
* *
Let, case, if, do
* *
************************************************************************
-}
tcExpr (HsLet x (L l binds) expr) res_ty
= do { (binds', expr') <- tcLocalBinds binds $
tcMonoExpr expr res_ty
; return (HsLet x (L l binds') expr') }
tcExpr (HsCase x scrut matches) res_ty
= do { -- We used to typecheck the case alternatives first.
-- The case patterns tend to give good type info to use
-- when typechecking the scrutinee. For example
-- case (map f) of
-- (x:xs) -> ...
-- will report that map is applied to too few arguments
--
-- But now, in the GADT world, we need to typecheck the scrutinee
-- first, to get type info that may be refined in the case alternatives
let mult = Many
-- There is not yet syntax or inference mechanism for case
-- expressions to be anything else than unrestricted.
-- Typecheck the scrutinee. We use tcInferRho but tcInferSigma
-- would also be possible (tcMatchesCase accepts sigma-types)
-- Interesting litmus test: do these two behave the same?
-- case id of {..}
-- case (\v -> v) of {..}
-- This design choice is discussed in #17790
; (scrut', scrut_ty) <- tcScalingUsage mult $ tcInferRho scrut
; traceTc "HsCase" (ppr scrut_ty)
; matches' <- tcMatchesCase match_ctxt (Scaled mult scrut_ty) matches res_ty
; return (HsCase x scrut' matches') }
where
match_ctxt = MC { mc_what = CaseAlt,
mc_body = tcBody }
tcExpr (HsIf x pred b1 b2) res_ty
= do { pred' <- tcCheckMonoExpr pred boolTy
; (u1,b1') <- tcCollectingUsage $ tcMonoExpr b1 res_ty
; (u2,b2') <- tcCollectingUsage $ tcMonoExpr b2 res_ty
; tcEmitBindingUsage (supUE u1 u2)
; return (HsIf x pred' b1' b2') }
tcExpr (HsMultiIf _ alts) res_ty
= do { alts' <- mapM (wrapLocM $ tcGRHS match_ctxt res_ty) alts
; res_ty <- readExpType res_ty
; return (HsMultiIf res_ty alts') }
where match_ctxt = MC { mc_what = IfAlt, mc_body = tcBody }
tcExpr (HsDo _ do_or_lc stmts) res_ty
= do { expr' <- tcDoStmts do_or_lc stmts res_ty
; return expr' }
tcExpr (HsProc x pat cmd) res_ty
= do { (pat', cmd', coi) <- tcProc pat cmd res_ty
; return $ mkHsWrapCo coi (HsProc x pat' cmd') }
-- Typechecks the static form and wraps it with a call to 'fromStaticPtr'.
-- See Note [Grand plan for static forms] in GHC.Iface.Tidy.StaticPtrTable for an overview.
-- To type check
-- (static e) :: p a
-- we want to check (e :: a),
-- and wrap (static e) in a call to
-- fromStaticPtr :: IsStatic p => StaticPtr a -> p a
tcExpr (HsStatic fvs expr) res_ty
= do { res_ty <- expTypeToType res_ty
; (co, (p_ty, expr_ty)) <- matchExpectedAppTy res_ty
; (expr', lie) <- captureConstraints $
addErrCtxt (hang (text "In the body of a static form:")
2 (ppr expr)
) $
tcCheckPolyExprNC expr expr_ty
-- Check that the free variables of the static form are closed.
-- It's OK to use nonDetEltsUniqSet here as the only side effects of
-- checkClosedInStaticForm are error messages.
; mapM_ checkClosedInStaticForm $ nonDetEltsUniqSet fvs
-- Require the type of the argument to be Typeable.
-- The evidence is not used, but asking the constraint ensures that
-- the current implementation is as restrictive as future versions
-- of the StaticPointers extension.
; typeableClass <- tcLookupClass typeableClassName
; _ <- emitWantedEvVar StaticOrigin $
mkTyConApp (classTyCon typeableClass)
[liftedTypeKind, expr_ty]
-- Insert the constraints of the static form in a global list for later
-- validation.
; emitStaticConstraints lie
-- Wrap the static form with the 'fromStaticPtr' call.
; fromStaticPtr <- newMethodFromName StaticOrigin fromStaticPtrName
[p_ty]
; let wrap = mkWpTyApps [expr_ty]
; loc <- getSrcSpanM
; return $ mkHsWrapCo co $ HsApp noExtField
(L loc $ mkHsWrap wrap fromStaticPtr)
(L loc (HsStatic fvs expr'))
}
{-
************************************************************************
* *
Record construction and update
* *
************************************************************************
-}
tcExpr expr@(RecordCon { rcon_con_name = L loc con_name
, rcon_flds = rbinds }) res_ty
= do { con_like <- tcLookupConLike con_name
-- Check for missing fields
; checkMissingFields con_like rbinds
; (con_expr, con_sigma) <- tcInferId con_name
; (con_wrap, con_tau) <- topInstantiate orig con_sigma
-- a shallow instantiation should really be enough for
-- a data constructor.
; let arity = conLikeArity con_like
Right (arg_tys, actual_res_ty) = tcSplitFunTysN arity con_tau
; case conLikeWrapId_maybe con_like of {
Nothing -> nonBidirectionalErr (conLikeName con_like) ;
Just con_id ->
do { rbinds' <- tcRecordBinds con_like (map scaledThing arg_tys) rbinds
-- It is currently not possible for a record to have
-- multiplicities. When they do, `tcRecordBinds` will take
-- scaled types instead. Meanwhile, it's safe to take
-- `scaledThing` above, as we know all the multiplicities are
-- Many.
; let rcon_tc = RecordConTc
{ rcon_con_like = con_like
, rcon_con_expr = mkHsWrap con_wrap con_expr }
expr' = RecordCon { rcon_ext = rcon_tc
, rcon_con_name = L loc con_id
, rcon_flds = rbinds' }
; tcWrapResultMono expr expr' actual_res_ty res_ty } } }
where
orig = OccurrenceOf con_name
{-
Note [Type of a record update]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The main complication with RecordUpd is that we need to explicitly
handle the *non-updated* fields. Consider:
data T a b c = MkT1 { fa :: a, fb :: (b,c) }
| MkT2 { fa :: a, fb :: (b,c), fc :: c -> c }
| MkT3 { fd :: a }
upd :: T a b c -> (b',c) -> T a b' c
upd t x = t { fb = x}
The result type should be (T a b' c)
not (T a b c), because 'b' *is not* mentioned in a non-updated field
not (T a b' c'), because 'c' *is* mentioned in a non-updated field
NB that it's not good enough to look at just one constructor; we must
look at them all; cf #3219
After all, upd should be equivalent to:
upd t x = case t of
MkT1 p q -> MkT1 p x
MkT2 a b -> MkT2 p b
MkT3 d -> error ...
So we need to give a completely fresh type to the result record,
and then constrain it by the fields that are *not* updated ("p" above).
We call these the "fixed" type variables, and compute them in getFixedTyVars.
Note that because MkT3 doesn't contain all the fields being updated,
its RHS is simply an error, so it doesn't impose any type constraints.
Hence the use of 'relevant_cont'.
Note [Implicit type sharing]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We also take into account any "implicit" non-update fields. For example
data T a b where { MkT { f::a } :: T a a; ... }
So the "real" type of MkT is: forall ab. (a~b) => a -> T a b
Then consider
upd t x = t { f=x }
We infer the type
upd :: T a b -> a -> T a b
upd (t::T a b) (x::a)
= case t of { MkT (co:a~b) (_:a) -> MkT co x }
We can't give it the more general type
upd :: T a b -> c -> T c b
Note [Criteria for update]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We want to allow update for existentials etc, provided the updated
field isn't part of the existential. For example, this should be ok.
data T a where { MkT { f1::a, f2::b->b } :: T a }
f :: T a -> b -> T b
f t b = t { f1=b }
The criterion we use is this:
The types of the updated fields
mention only the universally-quantified type variables
of the data constructor
NB: this is not (quite) the same as being a "naughty" record selector
(See Note [Naughty record selectors]) in GHC.Tc.TyCl), at least
in the case of GADTs. Consider
data T a where { MkT :: { f :: a } :: T [a] }
Then f is not "naughty" because it has a well-typed record selector.
But we don't allow updates for 'f'. (One could consider trying to
allow this, but it makes my head hurt. Badly. And no one has asked
for it.)
In principle one could go further, and allow
g :: T a -> T a
g t = t { f2 = \x -> x }
because the expression is polymorphic...but that seems a bridge too far.
Note [Data family example]
~~~~~~~~~~~~~~~~~~~~~~~~~~
data instance T (a,b) = MkT { x::a, y::b }
--->
data :TP a b = MkT { a::a, y::b }
coTP a b :: T (a,b) ~ :TP a b
Suppose r :: T (t1,t2), e :: t3
Then r { x=e } :: T (t3,t1)
--->
case r |> co1 of
MkT x y -> MkT e y |> co2
where co1 :: T (t1,t2) ~ :TP t1 t2
co2 :: :TP t3 t2 ~ T (t3,t2)
The wrapping with co2 is done by the constructor wrapper for MkT
Outgoing invariants
~~~~~~~~~~~~~~~~~~~
In the outgoing (HsRecordUpd scrut binds cons in_inst_tys out_inst_tys):
* cons are the data constructors to be updated
* in_inst_tys, out_inst_tys have same length, and instantiate the
*representation* tycon of the data cons. In Note [Data
family example], in_inst_tys = [t1,t2], out_inst_tys = [t3,t2]
Note [Mixed Record Field Updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following pattern synonym.
data MyRec = MyRec { foo :: Int, qux :: String }
pattern HisRec{f1, f2} = MyRec{foo = f1, qux=f2}
This allows updates such as the following
updater :: MyRec -> MyRec
updater a = a {f1 = 1 }
It would also make sense to allow the following update (which we reject).
updater a = a {f1 = 1, qux = "two" } ==? MyRec 1 "two"
This leads to confusing behaviour when the selectors in fact refer the same
field.
updater a = a {f1 = 1, foo = 2} ==? ???
For this reason, we reject a mixture of pattern synonym and normal record
selectors in the same update block. Although of course we still allow the
following.
updater a = (a {f1 = 1}) {foo = 2}
> updater (MyRec 0 "str")
MyRec 2 "str"
-}
tcExpr expr@(RecordUpd { rupd_expr = record_expr, rupd_flds = rbnds }) res_ty
= ASSERT( notNull rbnds )
do { -- STEP -2: typecheck the record_expr, the record to be updated
(record_expr', record_rho) <- tcScalingUsage Many $ tcInferRho record_expr
-- Record update drops some of the content of the record (namely the
-- content of the field being updated). As a consequence, unless the
-- field being updated is unrestricted in the record, or we need an
-- unrestricted record. Currently, we simply always require an
-- unrestricted record.
--
-- Consider the following example:
--
-- data R a = R { self :: a }
-- bad :: a ⊸ ()
-- bad x = let r = R x in case r { self = () } of { R x' -> x' }
--
-- This should definitely *not* typecheck.
-- STEP -1 See Note [Disambiguating record fields] in GHC.Tc.Gen.Head
-- After this we know that rbinds is unambiguous
; rbinds <- disambiguateRecordBinds record_expr record_rho rbnds res_ty
; let upd_flds = map (unLoc . hsRecFieldLbl . unLoc) rbinds
upd_fld_occs = map (occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc) upd_flds
sel_ids = map selectorAmbiguousFieldOcc upd_flds
-- STEP 0
-- Check that the field names are really field names
-- and they are all field names for proper records or
-- all field names for pattern synonyms.
; let bad_guys = [ setSrcSpan loc $ addErrTc (notSelector fld_name)
| fld <- rbinds,
-- Excludes class ops
let L loc sel_id = hsRecUpdFieldId (unLoc fld),
not (isRecordSelector sel_id),
let fld_name = idName sel_id ]
; unless (null bad_guys) (sequence bad_guys >> failM)
-- See note [Mixed Record Selectors]
; let (data_sels, pat_syn_sels) =
partition isDataConRecordSelector sel_ids
; MASSERT( all isPatSynRecordSelector pat_syn_sels )
; checkTc ( null data_sels || null pat_syn_sels )
( mixedSelectors data_sels pat_syn_sels )
-- STEP 1
-- Figure out the tycon and data cons from the first field name
; let -- It's OK to use the non-tc splitters here (for a selector)
sel_id : _ = sel_ids
mtycon :: Maybe TyCon
mtycon = case idDetails sel_id of
RecSelId (RecSelData tycon) _ -> Just tycon
_ -> Nothing
con_likes :: [ConLike]
con_likes = case idDetails sel_id of
RecSelId (RecSelData tc) _
-> map RealDataCon (tyConDataCons tc)
RecSelId (RecSelPatSyn ps) _
-> [PatSynCon ps]
_ -> panic "tcRecordUpd"
-- NB: for a data type family, the tycon is the instance tycon
relevant_cons = conLikesWithFields con_likes upd_fld_occs
-- A constructor is only relevant to this process if
-- it contains *all* the fields that are being updated
-- Other ones will cause a runtime error if they occur
-- Step 2
-- Check that at least one constructor has all the named fields
-- i.e. has an empty set of bad fields returned by badFields
; checkTc (not (null relevant_cons)) (badFieldsUpd rbinds con_likes)
-- Take apart a representative constructor
; let con1 = ASSERT( not (null relevant_cons) ) head relevant_cons
(con1_tvs, _, _, _prov_theta, req_theta, scaled_con1_arg_tys, _)
= conLikeFullSig con1
con1_arg_tys = map scaledThing scaled_con1_arg_tys
-- We can safely drop the fields' multiplicities because
-- they are currently always 1: there is no syntax for record
-- fields with other multiplicities yet. This way we don't need
-- to handle it in the rest of the function
con1_flds = map flLabel $ conLikeFieldLabels con1
con1_tv_tys = mkTyVarTys con1_tvs
con1_res_ty = case mtycon of
Just tc -> mkFamilyTyConApp tc con1_tv_tys
Nothing -> conLikeResTy con1 con1_tv_tys
-- Check that we're not dealing with a unidirectional pattern
-- synonym
; unless (isJust $ conLikeWrapId_maybe con1)
(nonBidirectionalErr (conLikeName con1))
-- STEP 3 Note [Criteria for update]
-- Check that each updated field is polymorphic; that is, its type
-- mentions only the universally-quantified variables of the data con
; let flds1_w_tys = zipEqual "tcExpr:RecConUpd" con1_flds con1_arg_tys
bad_upd_flds = filter bad_fld flds1_w_tys
con1_tv_set = mkVarSet con1_tvs
bad_fld (fld, ty) = fld `elem` upd_fld_occs &&
not (tyCoVarsOfType ty `subVarSet` con1_tv_set)
; checkTc (null bad_upd_flds) (badFieldTypes bad_upd_flds)
-- STEP 4 Note [Type of a record update]
-- Figure out types for the scrutinee and result
-- Both are of form (T a b c), with fresh type variables, but with
-- common variables where the scrutinee and result must have the same type
-- These are variables that appear in *any* arg of *any* of the
-- relevant constructors *except* in the updated fields
--
; let fixed_tvs = getFixedTyVars upd_fld_occs con1_tvs relevant_cons
is_fixed_tv tv = tv `elemVarSet` fixed_tvs
mk_inst_ty :: TCvSubst -> (TyVar, TcType) -> TcM (TCvSubst, TcType)
-- Deals with instantiation of kind variables
-- c.f. GHC.Tc.Utils.TcMType.newMetaTyVars
mk_inst_ty subst (tv, result_inst_ty)
| is_fixed_tv tv -- Same as result type
= return (extendTvSubst subst tv result_inst_ty, result_inst_ty)
| otherwise -- Fresh type, of correct kind
= do { (subst', new_tv) <- newMetaTyVarX subst tv
; return (subst', mkTyVarTy new_tv) }
; (result_subst, con1_tvs') <- newMetaTyVars con1_tvs
; let result_inst_tys = mkTyVarTys con1_tvs'
init_subst = mkEmptyTCvSubst (getTCvInScope result_subst)
; (scrut_subst, scrut_inst_tys) <- mapAccumLM mk_inst_ty init_subst
(con1_tvs `zip` result_inst_tys)
; let rec_res_ty = TcType.substTy result_subst con1_res_ty
scrut_ty = TcType.substTy scrut_subst con1_res_ty
con1_arg_tys' = map (TcType.substTy result_subst) con1_arg_tys
; co_scrut <- unifyType (Just (ppr record_expr)) record_rho scrut_ty
-- NB: normal unification is OK here (as opposed to subsumption),
-- because for this to work out, both record_rho and scrut_ty have
-- to be normal datatypes -- no contravariant stuff can go on
-- STEP 5
-- Typecheck the bindings
; rbinds' <- tcRecordUpd con1 con1_arg_tys' rbinds
-- STEP 6: Deal with the stupid theta
; let theta' = substThetaUnchecked scrut_subst (conLikeStupidTheta con1)
; instStupidTheta RecordUpdOrigin theta'
-- Step 7: make a cast for the scrutinee, in the
-- case that it's from a data family
; let fam_co :: HsWrapper -- RepT t1 .. tn ~R scrut_ty
fam_co | Just tycon <- mtycon
, Just co_con <- tyConFamilyCoercion_maybe tycon
= mkWpCastR (mkTcUnbranchedAxInstCo co_con scrut_inst_tys [])
| otherwise
= idHsWrapper
-- Step 8: Check that the req constraints are satisfied
-- For normal data constructors req_theta is empty but we must do
-- this check for pattern synonyms.
; let req_theta' = substThetaUnchecked scrut_subst req_theta
; req_wrap <- instCallConstraints RecordUpdOrigin req_theta'
-- Phew!
; let upd_tc = RecordUpdTc { rupd_cons = relevant_cons
, rupd_in_tys = scrut_inst_tys
, rupd_out_tys = result_inst_tys
, rupd_wrap = req_wrap }
expr' = RecordUpd { rupd_expr = mkLHsWrap fam_co $
mkLHsWrapCo co_scrut record_expr'
, rupd_flds = rbinds'
, rupd_ext = upd_tc }
; tcWrapResult expr expr' rec_res_ty res_ty }
{-
************************************************************************
* *
Arithmetic sequences e.g. [a,b..]
and their parallel-array counterparts e.g. [: a,b.. :]
* *
************************************************************************
-}
tcExpr (ArithSeq _ witness seq) res_ty
= tcArithSeq witness seq res_ty
{-
************************************************************************
* *
Template Haskell
* *
************************************************************************
-}
-- HsSpliced is an annotation produced by 'GHC.Rename.Splice.rnSpliceExpr'.
-- Here we get rid of it and add the finalizers to the global environment.
--
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice.
tcExpr (HsSpliceE _ (HsSpliced _ mod_finalizers (HsSplicedExpr expr)))
res_ty
= do addModFinalizersWithLclEnv mod_finalizers
tcExpr expr res_ty
tcExpr (HsSpliceE _ splice) res_ty = tcSpliceExpr splice res_ty
tcExpr e@(HsBracket _ brack) res_ty = tcTypedBracket e brack res_ty
tcExpr e@(HsRnBracketOut _ brack ps) res_ty = tcUntypedBracket e brack ps res_ty
{-
************************************************************************
* *
Rebindable syntax
* *
************************************************************************
-}
-- See Note [Rebindable syntax and HsExpansion].
tcExpr (XExpr (HsExpanded a b)) t
= fmap (XExpr . ExpansionExpr . HsExpanded a) $
setSrcSpan generatedSrcSpan (tcExpr b t)
{-
************************************************************************
* *
Catch-all
* *
************************************************************************
-}
tcExpr other _ = pprPanic "tcExpr" (ppr other)
-- Include ArrForm, ArrApp, which shouldn't appear at all
-- Also HsTcBracketOut, HsQuasiQuoteE
{-
************************************************************************
* *
Arithmetic sequences [a..b] etc
* *
************************************************************************
-}
tcArithSeq :: Maybe (SyntaxExpr GhcRn) -> ArithSeqInfo GhcRn -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcArithSeq witness seq@(From expr) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr' <-tcScalingUsage elt_mult $ tcCheckPolyExpr expr elt_ty
; enum_from <- newMethodFromName (ArithSeqOrigin seq)
enumFromName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from wit' (From expr') }
tcArithSeq witness seq@(FromThen expr1 expr2) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
; enum_from_then <- newMethodFromName (ArithSeqOrigin seq)
enumFromThenName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from_then wit' (FromThen expr1' expr2') }
tcArithSeq witness seq@(FromTo expr1 expr2) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
; enum_from_to <- newMethodFromName (ArithSeqOrigin seq)
enumFromToName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq enum_from_to wit' (FromTo expr1' expr2') }
tcArithSeq witness seq@(FromThenTo expr1 expr2 expr3) res_ty
= do { (wrap, elt_mult, elt_ty, wit') <- arithSeqEltType witness res_ty
; expr1' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr1 elt_ty
; expr2' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr2 elt_ty
; expr3' <- tcScalingUsage elt_mult $ tcCheckPolyExpr expr3 elt_ty
; eft <- newMethodFromName (ArithSeqOrigin seq)
enumFromThenToName [elt_ty]
; return $ mkHsWrap wrap $
ArithSeq eft wit' (FromThenTo expr1' expr2' expr3') }
-----------------
arithSeqEltType :: Maybe (SyntaxExpr GhcRn) -> ExpRhoType
-> TcM (HsWrapper, Mult, TcType, Maybe (SyntaxExpr GhcTc))
arithSeqEltType Nothing res_ty
= do { res_ty <- expTypeToType res_ty
; (coi, elt_ty) <- matchExpectedListTy res_ty
; return (mkWpCastN coi, One, elt_ty, Nothing) }
arithSeqEltType (Just fl) res_ty
= do { ((elt_mult, elt_ty), fl')
<- tcSyntaxOp ListOrigin fl [SynList] res_ty $
\ [elt_ty] [elt_mult] -> return (elt_mult, elt_ty)
; return (idHsWrapper, elt_mult, elt_ty, Just fl') }
----------------
tcTupArgs :: [LHsTupArg GhcRn] -> [TcSigmaType] -> TcM [LHsTupArg GhcTc]
tcTupArgs args tys
= ASSERT( equalLength args tys ) mapM go (args `zip` tys)
where
go (L l (Missing {}), arg_ty) = do { mult <- newFlexiTyVarTy multiplicityTy
; return (L l (Missing (Scaled mult arg_ty))) }
go (L l (Present x expr), arg_ty) = do { expr' <- tcCheckPolyExpr expr arg_ty
; return (L l (Present x expr')) }
---------------------------
-- See TcType.SyntaxOpType also for commentary
tcSyntaxOp :: CtOrigin
-> SyntaxExprRn
-> [SyntaxOpType] -- ^ shape of syntax operator arguments
-> ExpRhoType -- ^ overall result type
-> ([TcSigmaType] -> [Mult] -> TcM a) -- ^ Type check any arguments,
-- takes a type per hole and a
-- multiplicity per arrow in
-- the shape.
-> TcM (a, SyntaxExprTc)
-- ^ Typecheck a syntax operator
-- The operator is a variable or a lambda at this stage (i.e. renamer
-- output)t
tcSyntaxOp orig expr arg_tys res_ty
= tcSyntaxOpGen orig expr arg_tys (SynType res_ty)
-- | Slightly more general version of 'tcSyntaxOp' that allows the caller
-- to specify the shape of the result of the syntax operator
tcSyntaxOpGen :: CtOrigin
-> SyntaxExprRn
-> [SyntaxOpType]
-> SyntaxOpType
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, SyntaxExprTc)
tcSyntaxOpGen orig (SyntaxExprRn op) arg_tys res_ty thing_inside
= do { (expr, sigma) <- tcInferAppHead op [] Nothing
-- Nothing here might be improved, but all this
-- code is scheduled for demolition anyway
; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma)
; (result, expr_wrap, arg_wraps, res_wrap)
<- tcSynArgA orig sigma arg_tys res_ty $
thing_inside
; traceTc "tcSyntaxOpGen" (ppr op $$ ppr expr $$ ppr sigma )
; return (result, SyntaxExprTc { syn_expr = mkHsWrap expr_wrap expr
, syn_arg_wraps = arg_wraps
, syn_res_wrap = res_wrap }) }
tcSyntaxOpGen _ NoSyntaxExprRn _ _ _ = panic "tcSyntaxOpGen"
{-
Note [tcSynArg]
~~~~~~~~~~~~~~~
Because of the rich structure of SyntaxOpType, we must do the
contra-/covariant thing when working down arrows, to get the
instantiation vs. skolemisation decisions correct (and, more
obviously, the orientation of the HsWrappers). We thus have
two tcSynArgs.
-}
-- works on "expected" types, skolemising where necessary
-- See Note [tcSynArg]
tcSynArgE :: CtOrigin
-> TcSigmaType
-> SyntaxOpType -- ^ shape it is expected to have
-> ([TcSigmaType] -> [Mult] -> TcM a) -- ^ check the arguments
-> TcM (a, HsWrapper)
-- ^ returns a wrapper :: (type of right shape) "->" (type passed in)
tcSynArgE orig sigma_ty syn_ty thing_inside
= do { (skol_wrap, (result, ty_wrapper))
<- tcSkolemise GenSigCtxt sigma_ty $ \ rho_ty ->
go rho_ty syn_ty
; return (result, skol_wrap <.> ty_wrapper) }
where
go rho_ty SynAny
= do { result <- thing_inside [rho_ty] []
; return (result, idHsWrapper) }
go rho_ty SynRho -- same as SynAny, because we skolemise eagerly
= do { result <- thing_inside [rho_ty] []
; return (result, idHsWrapper) }
go rho_ty SynList
= do { (list_co, elt_ty) <- matchExpectedListTy rho_ty
; result <- thing_inside [elt_ty] []
; return (result, mkWpCastN list_co) }
go rho_ty (SynFun arg_shape res_shape)
= do { ( match_wrapper -- :: (arg_ty -> res_ty) "->" rho_ty
, ( ( (result, arg_ty, res_ty, op_mult)
, res_wrapper ) -- :: res_ty_out "->" res_ty
, arg_wrapper1, [], arg_wrapper2 ) ) -- :: arg_ty "->" arg_ty_out
<- matchExpectedFunTys herald GenSigCtxt 1 (mkCheckExpType rho_ty) $
\ [arg_ty] res_ty ->
do { arg_tc_ty <- expTypeToType (scaledThing arg_ty)
; res_tc_ty <- expTypeToType res_ty
-- another nested arrow is too much for now,
-- but I bet we'll never need this
; MASSERT2( case arg_shape of
SynFun {} -> False;
_ -> True
, text "Too many nested arrows in SyntaxOpType" $$
pprCtOrigin orig )
; let arg_mult = scaledMult arg_ty
; tcSynArgA orig arg_tc_ty [] arg_shape $
\ arg_results arg_res_mults ->
tcSynArgE orig res_tc_ty res_shape $
\ res_results res_res_mults ->
do { result <- thing_inside (arg_results ++ res_results) ([arg_mult] ++ arg_res_mults ++ res_res_mults)
; return (result, arg_tc_ty, res_tc_ty, arg_mult) }}
; return ( result
, match_wrapper <.>
mkWpFun (arg_wrapper2 <.> arg_wrapper1) res_wrapper
(Scaled op_mult arg_ty) res_ty doc ) }
where
herald = text "This rebindable syntax expects a function with"
doc = text "When checking a rebindable syntax operator arising from" <+> ppr orig
go rho_ty (SynType the_ty)
= do { wrap <- tcSubTypePat orig GenSigCtxt the_ty rho_ty
; result <- thing_inside [] []
; return (result, wrap) }
-- works on "actual" types, instantiating where necessary
-- See Note [tcSynArg]
tcSynArgA :: CtOrigin
-> TcSigmaType
-> [SyntaxOpType] -- ^ argument shapes
-> SyntaxOpType -- ^ result shape
-> ([TcSigmaType] -> [Mult] -> TcM a) -- ^ check the arguments
-> TcM (a, HsWrapper, [HsWrapper], HsWrapper)
-- ^ returns a wrapper to be applied to the original function,
-- wrappers to be applied to arguments
-- and a wrapper to be applied to the overall expression
tcSynArgA orig sigma_ty arg_shapes res_shape thing_inside
= do { (match_wrapper, arg_tys, res_ty)
<- matchActualFunTysRho herald orig Nothing
(length arg_shapes) sigma_ty
-- match_wrapper :: sigma_ty "->" (arg_tys -> res_ty)
; ((result, res_wrapper), arg_wrappers)
<- tc_syn_args_e (map scaledThing arg_tys) arg_shapes $ \ arg_results arg_res_mults ->
tc_syn_arg res_ty res_shape $ \ res_results ->
thing_inside (arg_results ++ res_results) (map scaledMult arg_tys ++ arg_res_mults)
; return (result, match_wrapper, arg_wrappers, res_wrapper) }
where
herald = text "This rebindable syntax expects a function with"
tc_syn_args_e :: [TcSigmaType] -> [SyntaxOpType]
-> ([TcSigmaType] -> [Mult] -> TcM a)
-> TcM (a, [HsWrapper])
-- the wrappers are for arguments
tc_syn_args_e (arg_ty : arg_tys) (arg_shape : arg_shapes) thing_inside
= do { ((result, arg_wraps), arg_wrap)
<- tcSynArgE orig arg_ty arg_shape $ \ arg1_results arg1_mults ->
tc_syn_args_e arg_tys arg_shapes $ \ args_results args_mults ->
thing_inside (arg1_results ++ args_results) (arg1_mults ++ args_mults)
; return (result, arg_wrap : arg_wraps) }
tc_syn_args_e _ _ thing_inside = (, []) <$> thing_inside [] []
tc_syn_arg :: TcSigmaType -> SyntaxOpType
-> ([TcSigmaType] -> TcM a)
-> TcM (a, HsWrapper)
-- the wrapper applies to the overall result
tc_syn_arg res_ty SynAny thing_inside
= do { result <- thing_inside [res_ty]
; return (result, idHsWrapper) }
tc_syn_arg res_ty SynRho thing_inside
= do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
-- inst_wrap :: res_ty "->" rho_ty
; result <- thing_inside [rho_ty]
; return (result, inst_wrap) }
tc_syn_arg res_ty SynList thing_inside
= do { (inst_wrap, rho_ty) <- topInstantiate orig res_ty
-- inst_wrap :: res_ty "->" rho_ty
; (list_co, elt_ty) <- matchExpectedListTy rho_ty
-- list_co :: [elt_ty] ~N rho_ty
; result <- thing_inside [elt_ty]
; return (result, mkWpCastN (mkTcSymCo list_co) <.> inst_wrap) }
tc_syn_arg _ (SynFun {}) _
= pprPanic "tcSynArgA hits a SynFun" (ppr orig)
tc_syn_arg res_ty (SynType the_ty) thing_inside
= do { wrap <- tcSubType orig GenSigCtxt res_ty the_ty
; result <- thing_inside []
; return (result, wrap) }
{-
Note [Push result type in]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Unify with expected result before type-checking the args so that the
info from res_ty percolates to args. This is when we might detect a
too-few args situation. (One can think of cases when the opposite
order would give a better error message.)
experimenting with putting this first.
Here's an example where it actually makes a real difference
class C t a b | t a -> b
instance C Char a Bool
data P t a = forall b. (C t a b) => MkP b
data Q t = MkQ (forall a. P t a)
f1, f2 :: Q Char;
f1 = MkQ (MkP True)
f2 = MkQ (MkP True :: forall a. P Char a)
With the change, f1 will type-check, because the 'Char' info from
the signature is propagated into MkQ's argument. With the check
in the other order, the extra signature in f2 is reqd.
-}
{- *********************************************************************
* *
Record bindings
* *
********************************************************************* -}
getFixedTyVars :: [FieldLabelString] -> [TyVar] -> [ConLike] -> TyVarSet
-- These tyvars must not change across the updates
getFixedTyVars upd_fld_occs univ_tvs cons
= mkVarSet [tv1 | con <- cons
, let (u_tvs, _, eqspec, prov_theta
, req_theta, arg_tys, _)
= conLikeFullSig con
theta = eqSpecPreds eqspec
++ prov_theta
++ req_theta
flds = conLikeFieldLabels con
fixed_tvs = exactTyCoVarsOfTypes (map scaledThing fixed_tys)
-- fixed_tys: See Note [Type of a record update]
`unionVarSet` tyCoVarsOfTypes theta
-- Universally-quantified tyvars that
-- appear in any of the *implicit*
-- arguments to the constructor are fixed
-- See Note [Implicit type sharing]
fixed_tys = [ty | (fl, ty) <- zip flds arg_tys
, not (flLabel fl `elem` upd_fld_occs)]
, (tv1,tv) <- univ_tvs `zip` u_tvs
, tv `elemVarSet` fixed_tvs ]
-- Disambiguate the fields in a record update.
-- See Note [Disambiguating record fields] in GHC.Tc.Gen.Head
disambiguateRecordBinds :: LHsExpr GhcRn -> TcRhoType
-> [LHsRecUpdField GhcRn] -> ExpRhoType
-> TcM [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
disambiguateRecordBinds record_expr record_rho rbnds res_ty
-- Are all the fields unambiguous?
= case mapM isUnambiguous rbnds of
-- If so, just skip to looking up the Ids
-- Always the case if DuplicateRecordFields is off
Just rbnds' -> mapM lookupSelector rbnds'
Nothing -> -- If not, try to identify a single parent
do { fam_inst_envs <- tcGetFamInstEnvs
-- Look up the possible parents for each field
; rbnds_with_parents <- getUpdFieldsParents
; let possible_parents = map (map fst . snd) rbnds_with_parents
-- Identify a single parent
; p <- identifyParent fam_inst_envs possible_parents
-- Pick the right selector with that parent for each field
; checkNoErrs $ mapM (pickParent p) rbnds_with_parents }
where
-- Extract the selector name of a field update if it is unambiguous
isUnambiguous :: LHsRecUpdField GhcRn -> Maybe (LHsRecUpdField GhcRn,Name)
isUnambiguous x = case unLoc (hsRecFieldLbl (unLoc x)) of
Unambiguous sel_name _ -> Just (x, sel_name)
Ambiguous{} -> Nothing
-- Look up the possible parents and selector GREs for each field
getUpdFieldsParents :: TcM [(LHsRecUpdField GhcRn
, [(RecSelParent, GlobalRdrElt)])]
getUpdFieldsParents
= fmap (zip rbnds) $ mapM
(lookupParents . unLoc . hsRecUpdFieldRdr . unLoc)
rbnds
-- Given a the lists of possible parents for each field,
-- identify a single parent
identifyParent :: FamInstEnvs -> [[RecSelParent]] -> TcM RecSelParent
identifyParent fam_inst_envs possible_parents
= case foldr1 intersect possible_parents of
-- No parents for all fields: record update is ill-typed
[] -> failWithTc (noPossibleParents rbnds)
-- Exactly one datatype with all the fields: use that
[p] -> return p
-- Multiple possible parents: try harder to disambiguate
-- Can we get a parent TyCon from the pushed-in type?
_:_ | Just p <- tyConOfET fam_inst_envs res_ty -> return (RecSelData p)
-- Does the expression being updated have a type signature?
-- If so, try to extract a parent TyCon from it
| Just {} <- obviousSig (unLoc record_expr)
, Just tc <- tyConOf fam_inst_envs record_rho
-> return (RecSelData tc)
-- Nothing else we can try...
_ -> failWithTc badOverloadedUpdate
-- Make a field unambiguous by choosing the given parent.
-- Emits an error if the field cannot have that parent,
-- e.g. if the user writes
-- r { x = e } :: T
-- where T does not have field x.
pickParent :: RecSelParent
-> (LHsRecUpdField GhcRn, [(RecSelParent, GlobalRdrElt)])
-> TcM (LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
pickParent p (upd, xs)
= case lookup p xs of
-- Phew! The parent is valid for this field.
-- Previously ambiguous fields must be marked as
-- used now that we know which one is meant, but
-- unambiguous ones shouldn't be recorded again
-- (giving duplicate deprecation warnings).
Just gre -> do { unless (null (tail xs)) $ do
let L loc _ = hsRecFieldLbl (unLoc upd)
setSrcSpan loc $ addUsedGRE True gre
; lookupSelector (upd, gre_name gre) }
-- The field doesn't belong to this parent, so report
-- an error but keep going through all the fields
Nothing -> do { addErrTc (fieldNotInType p
(unLoc (hsRecUpdFieldRdr (unLoc upd))))
; lookupSelector (upd, gre_name (snd (head xs))) }
-- Given a (field update, selector name) pair, look up the
-- selector to give a field update with an unambiguous Id
lookupSelector :: (LHsRecUpdField GhcRn, Name)
-> TcM (LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn))
lookupSelector (L l upd, n)
= do { i <- tcLookupId n
; let L loc af = hsRecFieldLbl upd
lbl = rdrNameAmbiguousFieldOcc af
; return $ L l upd { hsRecFieldLbl
= L loc (Unambiguous i (L loc lbl)) } }
{-
Game plan for record bindings
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Find the TyCon for the bindings, from the first field label.
2. Instantiate its tyvars and unify (T a1 .. an) with expected_ty.
For each binding field = value
3. Instantiate the field type (from the field label) using the type
envt from step 2.
4 Type check the value using tcValArg, passing the field type as
the expected argument type.
This extends OK when the field types are universally quantified.
-}
tcRecordBinds
:: ConLike
-> [TcType] -- Expected type for each field
-> HsRecordBinds GhcRn
-> TcM (HsRecordBinds GhcTc)
tcRecordBinds con_like arg_tys (HsRecFields rbinds dd)
= do { mb_binds <- mapM do_bind rbinds
; return (HsRecFields (catMaybes mb_binds) dd) }
where
fields = map flSelector $ conLikeFieldLabels con_like
flds_w_tys = zipEqual "tcRecordBinds" fields arg_tys
do_bind :: LHsRecField GhcRn (LHsExpr GhcRn)
-> TcM (Maybe (LHsRecField GhcTc (LHsExpr GhcTc)))
do_bind (L l fld@(HsRecField { hsRecFieldLbl = f
, hsRecFieldArg = rhs }))
= do { mb <- tcRecordField con_like flds_w_tys f rhs
; case mb of
Nothing -> return Nothing
Just (f', rhs') -> return (Just (L l (fld { hsRecFieldLbl = f'
, hsRecFieldArg = rhs' }))) }
tcRecordUpd
:: ConLike
-> [TcType] -- Expected type for each field
-> [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
-> TcM [LHsRecUpdField GhcTc]
tcRecordUpd con_like arg_tys rbinds = fmap catMaybes $ mapM do_bind rbinds
where
fields = map flSelector $ conLikeFieldLabels con_like
flds_w_tys = zipEqual "tcRecordUpd" fields arg_tys
do_bind :: LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)
-> TcM (Maybe (LHsRecUpdField GhcTc))
do_bind (L l fld@(HsRecField { hsRecFieldLbl = L loc af
, hsRecFieldArg = rhs }))
= do { let lbl = rdrNameAmbiguousFieldOcc af
sel_id = selectorAmbiguousFieldOcc af
f = L loc (FieldOcc (idName sel_id) (L loc lbl))
; mb <- tcRecordField con_like flds_w_tys f rhs
; case mb of
Nothing -> return Nothing
Just (f', rhs') ->
return (Just
(L l (fld { hsRecFieldLbl
= L loc (Unambiguous
(extFieldOcc (unLoc f'))
(L loc lbl))
, hsRecFieldArg = rhs' }))) }
tcRecordField :: ConLike -> Assoc Name Type
-> LFieldOcc GhcRn -> LHsExpr GhcRn
-> TcM (Maybe (LFieldOcc GhcTc, LHsExpr GhcTc))
tcRecordField con_like flds_w_tys (L loc (FieldOcc sel_name lbl)) rhs
| Just field_ty <- assocMaybe flds_w_tys sel_name
= addErrCtxt (fieldCtxt field_lbl) $
do { rhs' <- tcCheckPolyExprNC rhs field_ty
; let field_id = mkUserLocal (nameOccName sel_name)
(nameUnique sel_name)
Many field_ty loc
-- Yuk: the field_id has the *unique* of the selector Id
-- (so we can find it easily)
-- but is a LocalId with the appropriate type of the RHS
-- (so the desugarer knows the type of local binder to make)
; return (Just (L loc (FieldOcc field_id lbl), rhs')) }
| otherwise
= do { addErrTc (badFieldCon con_like field_lbl)
; return Nothing }
where
field_lbl = occNameFS $ rdrNameOcc (unLoc lbl)
checkMissingFields :: ConLike -> HsRecordBinds GhcRn -> TcM ()
checkMissingFields con_like rbinds
| null field_labels -- Not declared as a record;
-- But C{} is still valid if no strict fields
= if any isBanged field_strs then
-- Illegal if any arg is strict
addErrTc (missingStrictFields con_like [])
else do
warn <- woptM Opt_WarnMissingFields
when (warn && notNull field_strs && null field_labels)
(warnTc (Reason Opt_WarnMissingFields) True
(missingFields con_like []))
| otherwise = do -- A record
unless (null missing_s_fields)
(addErrTc (missingStrictFields con_like missing_s_fields))
warn <- woptM Opt_WarnMissingFields
when (warn && notNull missing_ns_fields)
(warnTc (Reason Opt_WarnMissingFields) True
(missingFields con_like missing_ns_fields))
where
missing_s_fields
= [ flLabel fl | (fl, str) <- field_info,
isBanged str,
not (fl `elemField` field_names_used)
]
missing_ns_fields
= [ flLabel fl | (fl, str) <- field_info,
not (isBanged str),
not (fl `elemField` field_names_used)
]
field_names_used = hsRecFields rbinds
field_labels = conLikeFieldLabels con_like
field_info = zipEqual "missingFields"
field_labels
field_strs
field_strs = conLikeImplBangs con_like
fl `elemField` flds = any (\ fl' -> flSelector fl == fl') flds
{-
************************************************************************
* *
\subsection{Errors and contexts}
* *
************************************************************************
Boring and alphabetical:
-}
fieldCtxt :: FieldLabelString -> SDoc
fieldCtxt field_name
= text "In the" <+> quotes (ppr field_name) <+> ptext (sLit "field of a record")
mk_op_msg :: LHsExpr GhcRn -> SDoc
mk_op_msg op = text "The operator" <+> quotes (ppr op) <+> text "takes"
badFieldTypes :: [(FieldLabelString,TcType)] -> SDoc
badFieldTypes prs
= hang (text "Record update for insufficiently polymorphic field"
<> plural prs <> colon)
2 (vcat [ ppr f <+> dcolon <+> ppr ty | (f,ty) <- prs ])
badFieldsUpd
:: [LHsRecField' (AmbiguousFieldOcc GhcTc) (LHsExpr GhcRn)]
-- Field names that don't belong to a single datacon
-> [ConLike] -- Data cons of the type which the first field name belongs to
-> SDoc
badFieldsUpd rbinds data_cons
= hang (text "No constructor has all these fields:")
2 (pprQuotedList conflictingFields)
-- See Note [Finding the conflicting fields]
where
-- A (preferably small) set of fields such that no constructor contains
-- all of them. See Note [Finding the conflicting fields]
conflictingFields = case nonMembers of
-- nonMember belongs to a different type.
(nonMember, _) : _ -> [aMember, nonMember]
[] -> let
-- All of rbinds belong to one type. In this case, repeatedly add
-- a field to the set until no constructor contains the set.
-- Each field, together with a list indicating which constructors
-- have all the fields so far.
growingSets :: [(FieldLabelString, [Bool])]
growingSets = scanl1 combine membership
combine (_, setMem) (field, fldMem)
= (field, zipWith (&&) setMem fldMem)
in
-- Fields that don't change the membership status of the set
-- are redundant and can be dropped.
map (fst . head) $ groupBy ((==) `on` snd) growingSets
aMember = ASSERT( not (null members) ) fst (head members)
(members, nonMembers) = partition (or . snd) membership
-- For each field, which constructors contain the field?
membership :: [(FieldLabelString, [Bool])]
membership = sortMembership $
map (\fld -> (fld, map (fld `elementOfUniqSet`) fieldLabelSets)) $
map (occNameFS . rdrNameOcc . rdrNameAmbiguousFieldOcc . unLoc . hsRecFieldLbl . unLoc) rbinds
fieldLabelSets :: [UniqSet FieldLabelString]
fieldLabelSets = map (mkUniqSet . map flLabel . conLikeFieldLabels) data_cons
-- Sort in order of increasing number of True, so that a smaller
-- conflicting set can be found.
sortMembership =
map snd .
sortBy (compare `on` fst) .
map (\ item@(_, membershipRow) -> (countTrue membershipRow, item))
countTrue = count id
{-
Note [Finding the conflicting fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
data A = A {a0, a1 :: Int}
| B {b0, b1 :: Int}
and we see a record update
x { a0 = 3, a1 = 2, b0 = 4, b1 = 5 }
Then we'd like to find the smallest subset of fields that no
constructor has all of. Here, say, {a0,b0}, or {a0,b1}, etc.
We don't really want to report that no constructor has all of
{a0,a1,b0,b1}, because when there are hundreds of fields it's
hard to see what was really wrong.
We may need more than two fields, though; eg
data T = A { x,y :: Int, v::Int }
| B { y,z :: Int, v::Int }
| C { z,x :: Int, v::Int }
with update
r { x=e1, y=e2, z=e3 }, we
Finding the smallest subset is hard, so the code here makes
a decent stab, no more. See #7989.
-}
mixedSelectors :: [Id] -> [Id] -> SDoc
mixedSelectors data_sels@(dc_rep_id:_) pat_syn_sels@(ps_rep_id:_)
= ptext
(sLit "Cannot use a mixture of pattern synonym and record selectors") $$
text "Record selectors defined by"
<+> quotes (ppr (tyConName rep_dc))
<> text ":"
<+> pprWithCommas ppr data_sels $$
text "Pattern synonym selectors defined by"
<+> quotes (ppr (patSynName rep_ps))
<> text ":"
<+> pprWithCommas ppr pat_syn_sels
where
RecSelPatSyn rep_ps = recordSelectorTyCon ps_rep_id
RecSelData rep_dc = recordSelectorTyCon dc_rep_id
mixedSelectors _ _ = panic "GHC.Tc.Gen.Expr: mixedSelectors emptylists"
missingStrictFields :: ConLike -> [FieldLabelString] -> SDoc
missingStrictFields con fields
= header <> rest
where
rest | null fields = Outputable.empty -- Happens for non-record constructors
-- with strict fields
| otherwise = colon <+> pprWithCommas ppr fields
header = text "Constructor" <+> quotes (ppr con) <+>
text "does not have the required strict field(s)"
missingFields :: ConLike -> [FieldLabelString] -> SDoc
missingFields con fields
= header <> rest
where
rest | null fields = Outputable.empty
| otherwise = colon <+> pprWithCommas ppr fields
header = text "Fields of" <+> quotes (ppr con) <+>
text "not initialised"
-- callCtxt fun args = text "In the call" <+> parens (ppr (foldl' mkHsApp fun args))
noPossibleParents :: [LHsRecUpdField GhcRn] -> SDoc
noPossibleParents rbinds
= hang (text "No type has all these fields:")
2 (pprQuotedList fields)
where
fields = map (hsRecFieldLbl . unLoc) rbinds
badOverloadedUpdate :: SDoc
badOverloadedUpdate = text "Record update is ambiguous, and requires a type signature"
{-
************************************************************************
* *
\subsection{Static Pointers}
* *
************************************************************************
-}
-- | A data type to describe why a variable is not closed.
data NotClosedReason = NotLetBoundReason
| NotTypeClosed VarSet
| NotClosed Name NotClosedReason
-- | Checks if the given name is closed and emits an error if not.
--
-- See Note [Not-closed error messages].
checkClosedInStaticForm :: Name -> TcM ()
checkClosedInStaticForm name = do
type_env <- getLclTypeEnv
case checkClosed type_env name of
Nothing -> return ()
Just reason -> addErrTc $ explain name reason
where
-- See Note [Checking closedness].
checkClosed :: TcTypeEnv -> Name -> Maybe NotClosedReason
checkClosed type_env n = checkLoop type_env (unitNameSet n) n
checkLoop :: TcTypeEnv -> NameSet -> Name -> Maybe NotClosedReason
checkLoop type_env visited n = do
-- The @visited@ set is an accumulating parameter that contains the set of
-- visited nodes, so we avoid repeating cycles in the traversal.
case lookupNameEnv type_env n of
Just (ATcId { tct_id = tcid, tct_info = info }) -> case info of
ClosedLet -> Nothing
NotLetBound -> Just NotLetBoundReason
NonClosedLet fvs type_closed -> listToMaybe $
-- Look for a non-closed variable in fvs
[ NotClosed n' reason
| n' <- nameSetElemsStable fvs
, not (elemNameSet n' visited)
, Just reason <- [checkLoop type_env (extendNameSet visited n') n']
] ++
if type_closed then
[]
else
-- We consider non-let-bound variables easier to figure out than
-- non-closed types, so we report non-closed types to the user
-- only if we cannot spot the former.
[ NotTypeClosed $ tyCoVarsOfType (idType tcid) ]
-- The binding is closed.
_ -> Nothing
-- Converts a reason into a human-readable sentence.
--
-- @explain name reason@ starts with
--
-- "<name> is used in a static form but it is not closed because it"
--
-- and then follows a list of causes. For each id in the path, the text
--
-- "uses <id> which"
--
-- is appended, yielding something like
--
-- "uses <id> which uses <id1> which uses <id2> which"
--
-- until the end of the path is reached, which is reported as either
--
-- "is not let-bound"
--
-- when the final node is not let-bound, or
--
-- "has a non-closed type because it contains the type variables:
-- v1, v2, v3"
--
-- when the final node has a non-closed type.
--
explain :: Name -> NotClosedReason -> SDoc
explain name reason =
quotes (ppr name) <+> text "is used in a static form but it is not closed"
<+> text "because it"
$$
sep (causes reason)
causes :: NotClosedReason -> [SDoc]
causes NotLetBoundReason = [text "is not let-bound."]
causes (NotTypeClosed vs) =
[ text "has a non-closed type because it contains the"
, text "type variables:" <+>
pprVarSet vs (hsep . punctuate comma . map (quotes . ppr))
]
causes (NotClosed n reason) =
let msg = text "uses" <+> quotes (ppr n) <+> text "which"
in case reason of
NotClosed _ _ -> msg : causes reason
_ -> let (xs0, xs1) = splitAt 1 $ causes reason
in fmap (msg <+>) xs0 ++ xs1
-- Note [Not-closed error messages]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- When variables in a static form are not closed, we go through the trouble
-- of explaining why they aren't.
--
-- Thus, the following program
--
-- > {-# LANGUAGE StaticPointers #-}
-- > module M where
-- >
-- > f x = static g
-- > where
-- > g = h
-- > h = x
--
-- produces the error
--
-- 'g' is used in a static form but it is not closed because it
-- uses 'h' which uses 'x' which is not let-bound.
--
-- And a program like
--
-- > {-# LANGUAGE StaticPointers #-}
-- > module M where
-- >
-- > import Data.Typeable
-- > import GHC.StaticPtr
-- >
-- > f :: Typeable a => a -> StaticPtr TypeRep
-- > f x = const (static (g undefined)) (h x)
-- > where
-- > g = h
-- > h = typeOf
--
-- produces the error
--
-- 'g' is used in a static form but it is not closed because it
-- uses 'h' which has a non-closed type because it contains the
-- type variables: 'a'
--
-- Note [Checking closedness]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~
--
-- @checkClosed@ checks if a binding is closed and returns a reason if it is
-- not.
--
-- The bindings define a graph where the nodes are ids, and there is an edge
-- from @id1@ to @id2@ if the rhs of @id1@ contains @id2@ among its free
-- variables.
--
-- When @n@ is not closed, it has to exist in the graph some node reachable
-- from @n@ that it is not a let-bound variable or that it has a non-closed
-- type. Thus, the "reason" is a path from @n@ to this offending node.
--
-- When @n@ is not closed, we traverse the graph reachable from @n@ to build
-- the reason.
--
|