1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
|
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1998
-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ViewPatterns #-}
-- | Typechecking @foreign@ declarations
--
-- A foreign declaration is used to either give an externally
-- implemented function a Haskell type (and calling interface) or
-- give a Haskell function an external calling interface. Either way,
-- the range of argument and result types these functions can accommodate
-- is restricted to what the outside world understands (read C), and this
-- module checks to see if a foreign declaration has got a legal type.
module GHC.Tc.Gen.Foreign
( tcForeignImports
, tcForeignExports
-- Low-level exports for hooks
, isForeignImport, isForeignExport
, tcFImport, tcFExport
, tcForeignImports'
, tcCheckFIType, checkCTarget, checkForeignArgs, checkForeignRes
, normaliseFfiType
, nonIOok, mustBeIO
, checkSafe, noCheckSafe
, tcForeignExports'
, tcCheckFEType
) where
import GHC.Prelude
import GHC.Hs
import GHC.Tc.Errors.Types
import GHC.Tc.Utils.Monad
import GHC.Tc.Gen.HsType
import GHC.Tc.Gen.Expr
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcType
import GHC.Tc.Instance.Family
import GHC.Core.FamInstEnv
import GHC.Core.Coercion
import GHC.Core.Reduction
import GHC.Core.Type
import GHC.Core.Multiplicity
import GHC.Core.DataCon
import GHC.Core.TyCon
import GHC.Core.TyCon.RecWalk
import GHC.Types.ForeignCall
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Name.Reader
import GHC.Types.SrcLoc
import GHC.Builtin.Names
import GHC.Builtin.Types.Prim( isArrowTyCon )
import GHC.Driver.Session
import GHC.Driver.Backend
import GHC.Utils.Error
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Platform
import GHC.Data.Bag
import GHC.Driver.Hooks
import qualified GHC.LanguageExtensions as LangExt
import Control.Monad ( zipWithM )
import Control.Monad.Trans.Writer.CPS
( WriterT, runWriterT, tell )
import Control.Monad.Trans.Class
( lift )
-- Defines a binding
isForeignImport :: forall name. UnXRec name => LForeignDecl name -> Bool
isForeignImport (unXRec @name -> ForeignImport {}) = True
isForeignImport _ = False
-- Exports a binding
isForeignExport :: forall name. UnXRec name => LForeignDecl name -> Bool
isForeignExport (unXRec @name -> ForeignExport {}) = True
isForeignExport _ = False
{-
Note [Don't recur in normaliseFfiType']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
normaliseFfiType' is the workhorse for normalising a type used in a foreign
declaration. If we have
newtype Age = MkAge Int
we want to see that Age -> IO () is the same as Int -> IO (). But, we don't
need to recur on any type parameters, because no parameterized types (with
interesting parameters) are marshalable! The full list of marshalable types
is in the body of boxedMarshalableTyCon in GHC.Tc.Utils.TcType. The only members of that
list not at kind * are Ptr, FunPtr, and StablePtr, all of which get marshaled
the same way regardless of type parameter. So, no need to recur into
parameters.
Similarly, we don't need to look in AppTy's, because nothing headed by
an AppTy will be marshalable.
-}
-- normaliseFfiType takes the type from an FFI declaration, and
-- evaluates any type synonyms, type functions, and newtypes. However,
-- we are only allowed to look through newtypes if the constructor is
-- in scope. We return a bag of all the newtype constructors thus found.
-- Always returns a Representational coercion
normaliseFfiType :: Type -> TcM (Reduction, Bag GlobalRdrElt)
normaliseFfiType ty
= do fam_envs <- tcGetFamInstEnvs
normaliseFfiType' fam_envs ty
normaliseFfiType' :: FamInstEnvs -> Type -> TcM (Reduction, Bag GlobalRdrElt)
normaliseFfiType' env ty0 = runWriterT $ go Representational initRecTc ty0
where
go :: Role -> RecTcChecker -> Type -> WriterT (Bag GlobalRdrElt) TcM Reduction
go role rec_nts ty
| Just ty' <- coreView ty -- Expand synonyms
= go role rec_nts ty'
| Just (tc, tys) <- splitTyConApp_maybe ty
= go_tc_app role rec_nts tc tys
| (bndrs, inner_ty) <- splitForAllForAllTyBinders ty
, not (null bndrs)
= do redn <- go role rec_nts inner_ty
return $ mkHomoForAllRedn bndrs redn
| otherwise -- see Note [Don't recur in normaliseFfiType']
= return $ mkReflRedn role ty
go_tc_app :: Role -> RecTcChecker -> TyCon -> [Type]
-> WriterT (Bag GlobalRdrElt) TcM Reduction
go_tc_app role rec_nts tc tys
| isArrowTyCon tc -- Recurse through arrows, or at least the top
= children_only -- level arrows. Remember, the default case is
-- "don't recurse" (see last eqn for go_tc_app)
| tc_key `elem` [ioTyConKey, funPtrTyConKey]
-- We don't want to look through the IO newtype, even if it is
-- in scope, so we have a special case for it:
= children_only
| isNewTyCon tc -- Expand newtypes
, Just rec_nts' <- checkRecTc rec_nts tc
-- See Note [Expanding newtypes and products] in GHC.Core.TyCon.RecWalk
-- We can't just use isRecursiveTyCon; sometimes recursion is ok:
-- newtype T = T (Ptr T)
-- Here, we don't reject the type for being recursive.
-- If this is a recursive newtype then it will normally
-- be rejected later as not being a valid FFI type.
= do { rdr_env <- lift $ getGlobalRdrEnv
; case checkNewtypeFFI rdr_env tc of
Nothing -> nothing
Just gre ->
do { redn <- go role rec_nts' nt_rhs
; tell (unitBag gre)
; return $ nt_co `mkTransRedn` redn } }
| isFamilyTyCon tc -- Expand open tycons
, Reduction co ty <- normaliseTcApp env role tc tys
, not (isReflexiveCo co)
= do redn <- go role rec_nts ty
return $ co `mkTransRedn` redn
| otherwise
= nothing -- see Note [Don't recur in normaliseFfiType']
where
tc_key = getUnique tc
children_only
= do { args <- unzipRedns <$>
zipWithM ( \ ty r -> go r rec_nts ty )
tys (tyConRoleListX role tc)
; return $ mkTyConAppRedn role tc args }
nt_co = mkUnbranchedAxInstCo role (newTyConCo tc) tys []
nt_rhs = newTyConInstRhs tc tys
ty = mkTyConApp tc tys
nothing = return $ mkReflRedn role ty
checkNewtypeFFI :: GlobalRdrEnv -> TyCon -> Maybe GlobalRdrElt
checkNewtypeFFI rdr_env tc
| Just con <- tyConSingleDataCon_maybe tc
, Just gre <- lookupGRE_Name rdr_env (dataConName con)
= Just gre -- See Note [Newtype constructor usage in foreign declarations]
| otherwise
= Nothing
{-
Note [Newtype constructor usage in foreign declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
GHC automatically "unwraps" newtype constructors in foreign import/export
declarations. In effect that means that a newtype data constructor is
used even though it is not mentioned expclitly in the source, so we don't
want to report it as "defined but not used" or "imported but not used".
eg newtype D = MkD Int
foreign import foo :: D -> IO ()
Here 'MkD' is used. See #7408.
GHC also expands type functions during this process, so it's not enough
just to look at the free variables of the declaration.
eg type instance F Bool = D
foreign import bar :: F Bool -> IO ()
Here again 'MkD' is used.
So we really have wait until the type checker to decide what is used.
That's why tcForeignImports and tecForeignExports return a (Bag GRE)
for the newtype constructors they see. Then GHC.Tc.Module can add them
to the module's usages.
************************************************************************
* *
\subsection{Imports}
* *
************************************************************************
-}
tcForeignImports :: [LForeignDecl GhcRn]
-> TcM ([Id], [LForeignDecl GhcTc], Bag GlobalRdrElt)
tcForeignImports decls = do
hooks <- getHooks
case tcForeignImportsHook hooks of
Nothing -> tcForeignImports' decls
Just h -> h decls
tcForeignImports' :: [LForeignDecl GhcRn]
-> TcM ([Id], [LForeignDecl GhcTc], Bag GlobalRdrElt)
-- For the (Bag GlobalRdrElt) result,
-- see Note [Newtype constructor usage in foreign declarations]
tcForeignImports' decls
= do { (ids, decls, gres) <- mapAndUnzip3M tcFImport $
filter isForeignImport decls
; return (ids, decls, unionManyBags gres) }
tcFImport :: LForeignDecl GhcRn
-> TcM (Id, LForeignDecl GhcTc, Bag GlobalRdrElt)
tcFImport (L dloc fo@(ForeignImport { fd_name = L nloc nm, fd_sig_ty = hs_ty
, fd_fi = imp_decl }))
= setSrcSpanA dloc $ addErrCtxt (foreignDeclCtxt fo) $
do { sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty
; (Reduction norm_co norm_sig_ty, gres) <- normaliseFfiType sig_ty
; let
-- Drop the foralls before inspecting the
-- structure of the foreign type.
-- Use splitFunTys, which splits (=>) as well as (->)
-- so that for foreign import foo :: Eq a => a -> blah
-- we get "unacceptable argument Eq a" rather than
-- "unacceptable result Eq a => a -> blah"
-- Not a big deal. We could make a better error message specially
-- for overloaded functions, but doesn't seem worth it
(arg_tys, res_ty) = splitFunTys (dropForAlls norm_sig_ty)
id = mkLocalId nm ManyTy sig_ty
-- Use a LocalId to obey the invariant that locally-defined
-- things are LocalIds. However, it does not need zonking,
-- (so GHC.Tc.Utils.Zonk.zonkForeignExports ignores it).
; imp_decl' <- tcCheckFIType arg_tys res_ty imp_decl
-- Can't use sig_ty here because sig_ty :: Type and
-- we need HsType Id hence the undefined
; let fi_decl = ForeignImport { fd_name = L nloc id
, fd_sig_ty = undefined
, fd_i_ext = mkSymCo norm_co
, fd_fi = imp_decl' }
; return (id, L dloc fi_decl, gres) }
tcFImport d = pprPanic "tcFImport" (ppr d)
-- ------------ Checking types for foreign import ----------------------
tcCheckFIType :: [Scaled Type] -> Type -> ForeignImport GhcRn -> TcM (ForeignImport GhcTc)
tcCheckFIType arg_tys res_ty idecl@(CImport src (L lc cconv) safety mh l@(CLabel _))
-- Foreign import label
= do checkCg (Right idecl) backendValidityOfCImport
-- NB check res_ty not sig_ty!
-- In case sig_ty is (forall a. ForeignPtr a)
check (isFFILabelTy (mkScaledFunTys arg_tys res_ty))
(TcRnIllegalForeignType Nothing)
cconv' <- checkCConv (Right idecl) cconv
return (CImport src (L lc cconv') safety mh l)
tcCheckFIType arg_tys res_ty idecl@(CImport src (L lc cconv) safety mh CWrapper) = do
-- Foreign wrapper (former f.e.d.)
-- The type must be of the form ft -> IO (FunPtr ft), where ft is a valid
-- foreign type. For legacy reasons ft -> IO (Ptr ft) is accepted, too.
-- The use of the latter form is DEPRECATED, though.
checkCg (Right idecl) backendValidityOfCImport
cconv' <- checkCConv (Right idecl) cconv
case arg_tys of
[Scaled arg1_mult arg1_ty] -> do
checkNoLinearFFI arg1_mult
checkForeignArgs isFFIExternalTy arg1_tys
checkForeignRes nonIOok checkSafe isFFIExportResultTy res1_ty
checkForeignRes mustBeIO checkSafe (isFFIDynTy arg1_ty) res_ty
where
(arg1_tys, res1_ty) = tcSplitFunTys arg1_ty
_ -> addErrTc (TcRnIllegalForeignType Nothing OneArgExpected)
return (CImport src (L lc cconv') safety mh CWrapper)
tcCheckFIType arg_tys res_ty idecl@(CImport src (L lc cconv) (L ls safety) mh
(CFunction target))
| isDynamicTarget target = do -- Foreign import dynamic
checkCg (Right idecl) backendValidityOfCImport
cconv' <- checkCConv (Right idecl) cconv
case arg_tys of -- The first arg must be Ptr or FunPtr
[] ->
addErrTc (TcRnIllegalForeignType Nothing AtLeastOneArgExpected)
(Scaled arg1_mult arg1_ty:arg_tys) -> do
dflags <- getDynFlags
let curried_res_ty = mkScaledFunTys arg_tys res_ty
checkNoLinearFFI arg1_mult
check (isFFIDynTy curried_res_ty arg1_ty)
(TcRnIllegalForeignType (Just Arg))
checkForeignArgs (isFFIArgumentTy dflags safety) arg_tys
checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) res_ty
return $ CImport src (L lc cconv') (L ls safety) mh (CFunction target)
| cconv == PrimCallConv = do
dflags <- getDynFlags
checkTc (xopt LangExt.GHCForeignImportPrim dflags)
(TcRnForeignImportPrimExtNotSet idecl)
checkCg (Right idecl) backendValidityOfCImport
checkCTarget idecl target
checkTc (playSafe safety)
(TcRnForeignImportPrimSafeAnn idecl)
checkForeignArgs (isFFIPrimArgumentTy dflags) arg_tys
-- prim import result is more liberal, allows (#,,#)
checkForeignRes nonIOok checkSafe (isFFIPrimResultTy dflags) res_ty
return (CImport src (L lc cconv) (L ls safety) mh (CFunction target))
| otherwise = do -- Normal foreign import
checkCg (Right idecl) backendValidityOfCImport
cconv' <- checkCConv (Right idecl) cconv
checkCTarget idecl target
dflags <- getDynFlags
checkForeignArgs (isFFIArgumentTy dflags safety) arg_tys
checkForeignRes nonIOok checkSafe (isFFIImportResultTy dflags) res_ty
checkMissingAmpersand idecl (map scaledThing arg_tys) res_ty
case target of
StaticTarget _ _ _ False
| not (null arg_tys) ->
addErrTc (TcRnForeignFunctionImportAsValue idecl)
_ -> return ()
return $ CImport src (L lc cconv') (L ls safety) mh (CFunction target)
-- This makes a convenient place to check
-- that the C identifier is valid for C
checkCTarget :: ForeignImport GhcRn -> CCallTarget -> TcM ()
checkCTarget idecl (StaticTarget _ str _ _) = do
checkCg (Right idecl) backendValidityOfCImport
checkTc (isCLabelString str) (TcRnInvalidCIdentifier str)
checkCTarget _ DynamicTarget = panic "checkCTarget DynamicTarget"
checkMissingAmpersand :: ForeignImport GhcRn -> [Type] -> Type -> TcM ()
checkMissingAmpersand idecl arg_tys res_ty
| null arg_tys && isFunPtrTy res_ty
= addDiagnosticTc $ TcRnFunPtrImportWithoutAmpersand idecl
| otherwise
= return ()
{-
************************************************************************
* *
\subsection{Exports}
* *
************************************************************************
-}
tcForeignExports :: [LForeignDecl GhcRn]
-> TcM (LHsBinds GhcTc, [LForeignDecl GhcTc], Bag GlobalRdrElt)
tcForeignExports decls = do
hooks <- getHooks
case tcForeignExportsHook hooks of
Nothing -> tcForeignExports' decls
Just h -> h decls
tcForeignExports' :: [LForeignDecl GhcRn]
-> TcM (LHsBinds GhcTc, [LForeignDecl GhcTc], Bag GlobalRdrElt)
-- For the (Bag GlobalRdrElt) result,
-- see Note [Newtype constructor usage in foreign declarations]
tcForeignExports' decls
= foldlM combine (emptyLHsBinds, [], emptyBag) (filter isForeignExport decls)
where
combine (binds, fs, gres1) (L loc fe) = do
(b, f, gres2) <- setSrcSpanA loc (tcFExport fe)
return (b `consBag` binds, L loc f : fs, gres1 `unionBags` gres2)
tcFExport :: ForeignDecl GhcRn
-> TcM (LHsBind GhcTc, ForeignDecl GhcTc, Bag GlobalRdrElt)
tcFExport fo@(ForeignExport { fd_name = L loc nm, fd_sig_ty = hs_ty, fd_fe = spec })
= addErrCtxt (foreignDeclCtxt fo) $ do
sig_ty <- tcHsSigType (ForSigCtxt nm) hs_ty
rhs <- tcCheckPolyExpr (nlHsVar nm) sig_ty
(Reduction norm_co norm_sig_ty, gres) <- normaliseFfiType sig_ty
spec' <- tcCheckFEType norm_sig_ty spec
-- we're exporting a function, but at a type possibly more
-- constrained than its declared/inferred type. Hence the need
-- to create a local binding which will call the exported function
-- at a particular type (and, maybe, overloading).
-- We need to give a name to the new top-level binding that
-- is *stable* (i.e. the compiler won't change it later),
-- because this name will be referred to by the C code stub.
id <- mkStableIdFromName nm sig_ty (locA loc) mkForeignExportOcc
return ( mkVarBind id rhs
, ForeignExport { fd_name = L loc id
, fd_sig_ty = undefined
, fd_e_ext = norm_co
, fd_fe = spec' }
, gres)
tcFExport d = pprPanic "tcFExport" (ppr d)
-- ------------ Checking argument types for foreign export ----------------------
tcCheckFEType :: Type -> ForeignExport GhcRn -> TcM (ForeignExport GhcTc)
tcCheckFEType sig_ty edecl@(CExport src (L l (CExportStatic esrc str cconv))) = do
checkCg (Left edecl) backendValidityOfCExport
checkTc (isCLabelString str) (TcRnInvalidCIdentifier str)
cconv' <- checkCConv (Left edecl) cconv
checkForeignArgs isFFIExternalTy arg_tys
checkForeignRes nonIOok noCheckSafe isFFIExportResultTy res_ty
return (CExport src (L l (CExportStatic esrc str cconv')))
where
-- Drop the foralls before inspecting
-- the structure of the foreign type.
(arg_tys, res_ty) = tcSplitFunTys (dropForAlls sig_ty)
{-
************************************************************************
* *
\subsection{Miscellaneous}
* *
************************************************************************
-}
------------ Checking argument types for foreign import ----------------------
checkForeignArgs :: (Type -> Validity' IllegalForeignTypeReason) -> [Scaled Type] -> TcM ()
checkForeignArgs pred tys = mapM_ go tys
where
go (Scaled mult ty) = checkNoLinearFFI mult >>
check (pred ty) (TcRnIllegalForeignType (Just Arg))
checkNoLinearFFI :: Mult -> TcM () -- No linear types in FFI (#18472)
checkNoLinearFFI ManyTy = return ()
checkNoLinearFFI _ = addErrTc $ TcRnIllegalForeignType (Just Arg)
LinearTypesNotAllowed
------------ Checking result types for foreign calls ----------------------
-- | Check that the type has the form
-- (IO t) or (t) , and that t satisfies the given predicate.
-- When calling this function, any newtype wrappers (should) have been
-- already dealt with by normaliseFfiType.
--
-- We also check that the Safe Haskell condition of FFI imports having
-- results in the IO monad holds.
--
checkForeignRes :: Bool -> Bool -> (Type -> Validity' IllegalForeignTypeReason) -> Type -> TcM ()
checkForeignRes non_io_result_ok check_safe pred_res_ty ty
| Just (_, res_ty) <- tcSplitIOType_maybe ty
= -- Got an IO result type, that's always fine!
check (pred_res_ty res_ty)
(TcRnIllegalForeignType (Just Result))
-- We disallow nested foralls in foreign types
-- (at least, for the time being). See #16702.
| isForAllTy ty
= addErrTc $ TcRnIllegalForeignType (Just Result) UnexpectedNestedForall
-- Case for non-IO result type with FFI Import
| not non_io_result_ok
= addErrTc $ TcRnIllegalForeignType (Just Result) IOResultExpected
| otherwise
= do { dflags <- getDynFlags
; case pred_res_ty ty of
-- Handle normal typecheck fail, we want to handle this first and
-- only report safe haskell errors if the normal type check is OK.
NotValid msg -> addErrTc $ TcRnIllegalForeignType (Just Result) msg
-- handle safe infer fail
_ | check_safe && safeInferOn dflags
-> recordUnsafeInfer emptyMessages
-- handle safe language typecheck fail
_ | check_safe && safeLanguageOn dflags
-> addErrTc (TcRnIllegalForeignType (Just Result) SafeHaskellMustBeInIO)
-- success! non-IO return is fine
_ -> return () }
nonIOok, mustBeIO :: Bool
nonIOok = True
mustBeIO = False
checkSafe, noCheckSafe :: Bool
checkSafe = True
noCheckSafe = False
checkCg :: Either (ForeignExport GhcRn) (ForeignImport GhcRn)
-> (Backend -> Validity' ExpectedBackends) -> TcM ()
checkCg decl check = do
dflags <- getDynFlags
let bcknd = backend dflags
case check bcknd of
IsValid -> return ()
NotValid expectedBcknds ->
addErrTc $ TcRnIllegalForeignDeclBackend decl bcknd expectedBcknds
-- Calling conventions
checkCConv :: Either (ForeignExport GhcRn) (ForeignImport GhcRn)
-> CCallConv -> TcM CCallConv
checkCConv _ CCallConv = return CCallConv
checkCConv _ CApiConv = return CApiConv
checkCConv decl StdCallConv = do
dflags <- getDynFlags
let platform = targetPlatform dflags
if platformArch platform == ArchX86
then return StdCallConv
else do -- This is a warning, not an error. see #3336
let msg = TcRnUnsupportedCallConv decl StdCallConvUnsupported
addDiagnosticTc msg
return CCallConv
checkCConv decl PrimCallConv = do
addErrTc $ TcRnUnsupportedCallConv decl PrimCallConvUnsupported
return PrimCallConv
checkCConv decl JavaScriptCallConv = do
dflags <- getDynFlags
if platformArch (targetPlatform dflags) == ArchJavaScript
then return JavaScriptCallConv
else do
addErrTc $ TcRnUnsupportedCallConv decl JavaScriptCallConvUnsupported
return JavaScriptCallConv
-- Warnings
check :: Validity' IllegalForeignTypeReason
-> (IllegalForeignTypeReason -> TcRnMessage)
-> TcM ()
check IsValid _ = return ()
check (NotValid reason) mkMessage = addErrTc (mkMessage reason)
foreignDeclCtxt :: ForeignDecl GhcRn -> SDoc
foreignDeclCtxt fo
= hang (text "When checking declaration:")
2 (ppr fo)
|