1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RecordWildCards #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
-- | Typecheck some @Matches@
module GHC.Tc.Gen.Match
( tcMatchesFun
, tcGRHS
, tcGRHSsPat
, tcMatchesCase
, tcMatchLambda
, TcMatchCtxt(..)
, TcStmtChecker
, TcExprStmtChecker
, TcCmdStmtChecker
, tcStmts
, tcStmtsAndThen
, tcDoStmts
, tcBody
, tcDoStmt
, tcGuardStmt
)
where
import GHC.Prelude
import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcSyntaxOp, tcInferRho, tcInferRhoNC
, tcMonoExpr, tcMonoExprNC, tcExpr
, tcCheckMonoExpr, tcCheckMonoExprNC
, tcCheckPolyExpr, tcCheckId )
import GHC.Types.Basic (LexicalFixity(..))
import GHC.Hs
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Env
import GHC.Tc.Gen.Pat
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.TcType
import GHC.Tc.Gen.Bind
import GHC.Tc.Utils.Unify
import GHC.Tc.Types.Origin
import GHC.Core.Multiplicity
import GHC.Core.UsageEnv
import GHC.Types.Name
import GHC.Builtin.Types
import GHC.Types.Id
import GHC.Core.TyCon
import GHC.Builtin.Types.Prim
import GHC.Tc.Types.Evidence
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Types.SrcLoc
-- Create chunkified tuple tybes for monad comprehensions
import GHC.Core.Make
import Control.Monad
import Control.Arrow ( second )
#include "HsVersions.h"
{-
************************************************************************
* *
\subsection{tcMatchesFun, tcMatchesCase}
* *
************************************************************************
@tcMatchesFun@ typechecks a @[Match]@ list which occurs in a
@FunMonoBind@. The second argument is the name of the function, which
is used in error messages. It checks that all the equations have the
same number of arguments before using @tcMatches@ to do the work.
-}
tcMatchesFun :: Located Name
-> MatchGroup GhcRn (LHsExpr GhcRn)
-> ExpRhoType -- Expected type of function
-> TcM (HsWrapper, MatchGroup GhcTcId (LHsExpr GhcTcId))
-- Returns type of body
tcMatchesFun fn@(L _ fun_name) matches exp_ty
= do { -- Check that they all have the same no of arguments
-- Location is in the monad, set the caller so that
-- any inter-equation error messages get some vaguely
-- sensible location. Note: we have to do this odd
-- ann-grabbing, because we don't always have annotations in
-- hand when we call tcMatchesFun...
traceTc "tcMatchesFun" (ppr fun_name $$ ppr exp_ty)
; checkArgs fun_name matches
; matchExpectedFunTys herald ctxt arity exp_ty $ \ pat_tys rhs_ty ->
-- NB: exp_type may be polymorphic, but
-- matchExpectedFunTys can cope with that
tcScalingUsage Many $
-- toplevel bindings and let bindings are, at the
-- moment, always unrestricted. The value being bound
-- must, accordingly, be unrestricted. Hence them
-- being scaled by Many. When let binders come with a
-- multiplicity, then @tcMatchesFun@ will have to take
-- a multiplicity argument, and scale accordingly.
tcMatches match_ctxt pat_tys rhs_ty matches }
where
arity = matchGroupArity matches
herald = text "The equation(s) for"
<+> quotes (ppr fun_name) <+> text "have"
ctxt = GenSigCtxt -- Was: FunSigCtxt fun_name True
-- But that's wrong for f :: Int -> forall a. blah
what = FunRhs { mc_fun = fn, mc_fixity = Prefix, mc_strictness = strictness }
match_ctxt = MC { mc_what = what, mc_body = tcBody }
strictness
| [L _ match] <- unLoc $ mg_alts matches
, FunRhs{ mc_strictness = SrcStrict } <- m_ctxt match
= SrcStrict
| otherwise
= NoSrcStrict
{-
@tcMatchesCase@ doesn't do the argument-count check because the
parser guarantees that each equation has exactly one argument.
-}
tcMatchesCase :: (Outputable (body GhcRn)) =>
TcMatchCtxt body -- Case context
-> Scaled TcSigmaType -- Type of scrutinee
-> MatchGroup GhcRn (Located (body GhcRn)) -- The case alternatives
-> ExpRhoType -- Type of whole case expressions
-> TcM (MatchGroup GhcTcId (Located (body GhcTcId)))
-- Translated alternatives
-- wrapper goes from MatchGroup's ty to expected ty
tcMatchesCase ctxt (Scaled scrut_mult scrut_ty) matches res_ty
= tcMatches ctxt [Scaled scrut_mult (mkCheckExpType scrut_ty)] res_ty matches
tcMatchLambda :: SDoc -- see Note [Herald for matchExpectedFunTys] in GHC.Tc.Utils.Unify
-> TcMatchCtxt HsExpr
-> MatchGroup GhcRn (LHsExpr GhcRn)
-> ExpRhoType
-> TcM (HsWrapper, MatchGroup GhcTcId (LHsExpr GhcTcId))
tcMatchLambda herald match_ctxt match res_ty
= matchExpectedFunTys herald GenSigCtxt n_pats res_ty $ \ pat_tys rhs_ty ->
tcMatches match_ctxt pat_tys rhs_ty match
where
n_pats | isEmptyMatchGroup match = 1 -- must be lambda-case
| otherwise = matchGroupArity match
-- @tcGRHSsPat@ typechecks @[GRHSs]@ that occur in a @PatMonoBind@.
tcGRHSsPat :: GRHSs GhcRn (LHsExpr GhcRn) -> TcRhoType
-> TcM (GRHSs GhcTcId (LHsExpr GhcTcId))
-- Used for pattern bindings
tcGRHSsPat grhss res_ty = tcGRHSs match_ctxt grhss (mkCheckExpType res_ty)
where
match_ctxt = MC { mc_what = PatBindRhs,
mc_body = tcBody }
{-
************************************************************************
* *
\subsection{tcMatch}
* *
************************************************************************
Note [Case branches must never infer a non-tau type]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
case ... of
... -> \(x :: forall a. a -> a) -> x
... -> \y -> y
Should that type-check? The problem is that, if we check the second branch
first, then we'll get a type (b -> b) for the branches, which won't unify
with the polytype in the first branch. If we check the first branch first,
then everything is OK. This order-dependency is terrible. So we want only
proper tau-types in branches (unless a sigma-type is pushed down).
This is what expTypeToType ensures: it replaces an Infer with a fresh
tau-type.
An even trickier case looks like
f x True = x undefined
f x False = x ()
Here, we see that the arguments must also be non-Infer. Thus, we must
use expTypeToType on the output of matchExpectedFunTys, not the input.
But we make a special case for a one-branch case. This is so that
f = \(x :: forall a. a -> a) -> x
still gets assigned a polytype.
-}
-- | When the MatchGroup has multiple RHSs, convert an Infer ExpType in the
-- expected type into TauTvs.
-- See Note [Case branches must never infer a non-tau type]
tauifyMultipleMatches :: [LMatch id body]
-> [Scaled ExpType] -> TcM [Scaled ExpType]
tauifyMultipleMatches group exp_tys
| isSingletonMatchGroup group = return exp_tys
| otherwise = mapM (\(Scaled m t) ->
fmap (Scaled m) (tauifyExpType t)) exp_tys
-- NB: In the empty-match case, this ensures we fill in the ExpType
-- | Type-check a MatchGroup.
tcMatches :: (Outputable (body GhcRn)) => TcMatchCtxt body
-> [Scaled ExpSigmaType] -- Expected pattern types
-> ExpRhoType -- Expected result-type of the Match.
-> MatchGroup GhcRn (Located (body GhcRn))
-> TcM (MatchGroup GhcTcId (Located (body GhcTcId)))
data TcMatchCtxt body -- c.f. TcStmtCtxt, also in this module
= MC { mc_what :: HsMatchContext GhcRn, -- What kind of thing this is
mc_body :: Located (body GhcRn) -- Type checker for a body of
-- an alternative
-> ExpRhoType
-> TcM (Located (body GhcTcId)) }
tcMatches ctxt pat_tys rhs_ty (MG { mg_alts = L l matches
, mg_origin = origin })
= do { (Scaled _ rhs_ty):pat_tys <- tauifyMultipleMatches matches ((Scaled One rhs_ty):pat_tys) -- return type has implicitly multiplicity 1, it doesn't matter all that much in this case since it isn't used and is eliminated immediately.
-- See Note [Case branches must never infer a non-tau type]
; umatches <- mapM (tcCollectingUsage . tcMatch ctxt pat_tys rhs_ty) matches
; let (usages,matches') = unzip umatches
; tcEmitBindingUsage $ supUEs usages
; pat_tys <- mapM (\(Scaled m t) -> fmap (Scaled m) (readExpType t)) pat_tys
; rhs_ty <- readExpType rhs_ty
; return (MG { mg_alts = L l matches'
, mg_ext = MatchGroupTc pat_tys rhs_ty
, mg_origin = origin }) }
-------------
tcMatch :: (Outputable (body GhcRn)) => TcMatchCtxt body
-> [Scaled ExpSigmaType] -- Expected pattern types
-> ExpRhoType -- Expected result-type of the Match.
-> LMatch GhcRn (Located (body GhcRn))
-> TcM (LMatch GhcTcId (Located (body GhcTcId)))
tcMatch ctxt pat_tys rhs_ty match
= wrapLocM (tc_match ctxt pat_tys rhs_ty) match
where
tc_match ctxt pat_tys rhs_ty
match@(Match { m_pats = pats, m_grhss = grhss })
= add_match_ctxt match $
do { (pats', grhss') <- tcPats (mc_what ctxt) pats pat_tys $
tcGRHSs ctxt grhss rhs_ty
; return (Match { m_ext = noExtField
, m_ctxt = mc_what ctxt, m_pats = pats'
, m_grhss = grhss' }) }
-- For (\x -> e), tcExpr has already said "In the expression \x->e"
-- so we don't want to add "In the lambda abstraction \x->e"
add_match_ctxt match thing_inside
= case mc_what ctxt of
LambdaExpr -> thing_inside
_ -> addErrCtxt (pprMatchInCtxt match) thing_inside
-------------
tcGRHSs :: TcMatchCtxt body -> GRHSs GhcRn (Located (body GhcRn)) -> ExpRhoType
-> TcM (GRHSs GhcTcId (Located (body GhcTcId)))
-- Notice that we pass in the full res_ty, so that we get
-- good inference from simple things like
-- f = \(x::forall a.a->a) -> <stuff>
-- We used to force it to be a monotype when there was more than one guard
-- but we don't need to do that any more
tcGRHSs ctxt (GRHSs _ grhss (L l binds)) res_ty
= do { (binds', ugrhss)
<- tcLocalBinds binds $
mapM (tcCollectingUsage . wrapLocM (tcGRHS ctxt res_ty)) grhss
; let (usages, grhss') = unzip ugrhss
; tcEmitBindingUsage $ supUEs usages
; return (GRHSs noExtField grhss' (L l binds')) }
-------------
tcGRHS :: TcMatchCtxt body -> ExpRhoType -> GRHS GhcRn (Located (body GhcRn))
-> TcM (GRHS GhcTcId (Located (body GhcTcId)))
tcGRHS ctxt res_ty (GRHS _ guards rhs)
= do { (guards', rhs')
<- tcStmtsAndThen stmt_ctxt tcGuardStmt guards res_ty $
mc_body ctxt rhs
; return (GRHS noExtField guards' rhs') }
where
stmt_ctxt = PatGuard (mc_what ctxt)
{-
************************************************************************
* *
\subsection{@tcDoStmts@ typechecks a {\em list} of do statements}
* *
************************************************************************
-}
tcDoStmts :: HsStmtContext GhcRn
-> Located [LStmt GhcRn (LHsExpr GhcRn)]
-> ExpRhoType
-> TcM (HsExpr GhcTcId) -- Returns a HsDo
tcDoStmts ListComp (L l stmts) res_ty
= do { res_ty <- expTypeToType res_ty
; (co, elt_ty) <- matchExpectedListTy res_ty
; let list_ty = mkListTy elt_ty
; stmts' <- tcStmts ListComp (tcLcStmt listTyCon) stmts
(mkCheckExpType elt_ty)
; return $ mkHsWrapCo co (HsDo list_ty ListComp (L l stmts')) }
tcDoStmts DoExpr (L l stmts) res_ty
= do { stmts' <- tcStmts DoExpr tcDoStmt stmts res_ty
; res_ty <- readExpType res_ty
; return (HsDo res_ty DoExpr (L l stmts')) }
tcDoStmts MDoExpr (L l stmts) res_ty
= do { stmts' <- tcStmts MDoExpr tcDoStmt stmts res_ty
; res_ty <- readExpType res_ty
; return (HsDo res_ty MDoExpr (L l stmts')) }
tcDoStmts MonadComp (L l stmts) res_ty
= do { stmts' <- tcStmts MonadComp tcMcStmt stmts res_ty
; res_ty <- readExpType res_ty
; return (HsDo res_ty MonadComp (L l stmts')) }
tcDoStmts ctxt _ _ = pprPanic "tcDoStmts" (pprStmtContext ctxt)
tcBody :: LHsExpr GhcRn -> ExpRhoType -> TcM (LHsExpr GhcTcId)
tcBody body res_ty
= do { traceTc "tcBody" (ppr res_ty)
; tcMonoExpr body res_ty
}
{-
************************************************************************
* *
\subsection{tcStmts}
* *
************************************************************************
-}
type TcExprStmtChecker = TcStmtChecker HsExpr ExpRhoType
type TcCmdStmtChecker = TcStmtChecker HsCmd TcRhoType
type TcStmtChecker body rho_type
= forall thing. HsStmtContext GhcRn
-> Stmt GhcRn (Located (body GhcRn))
-> rho_type -- Result type for comprehension
-> (rho_type -> TcM thing) -- Checker for what follows the stmt
-> TcM (Stmt GhcTcId (Located (body GhcTcId)), thing)
tcStmts :: (Outputable (body GhcRn)) => HsStmtContext GhcRn
-> TcStmtChecker body rho_type -- NB: higher-rank type
-> [LStmt GhcRn (Located (body GhcRn))]
-> rho_type
-> TcM [LStmt GhcTcId (Located (body GhcTcId))]
tcStmts ctxt stmt_chk stmts res_ty
= do { (stmts', _) <- tcStmtsAndThen ctxt stmt_chk stmts res_ty $
const (return ())
; return stmts' }
tcStmtsAndThen :: (Outputable (body GhcRn)) => HsStmtContext GhcRn
-> TcStmtChecker body rho_type -- NB: higher-rank type
-> [LStmt GhcRn (Located (body GhcRn))]
-> rho_type
-> (rho_type -> TcM thing)
-> TcM ([LStmt GhcTcId (Located (body GhcTcId))], thing)
-- Note the higher-rank type. stmt_chk is applied at different
-- types in the equations for tcStmts
tcStmtsAndThen _ _ [] res_ty thing_inside
= do { thing <- thing_inside res_ty
; return ([], thing) }
-- LetStmts are handled uniformly, regardless of context
tcStmtsAndThen ctxt stmt_chk (L loc (LetStmt x (L l binds)) : stmts)
res_ty thing_inside
= do { (binds', (stmts',thing)) <- tcLocalBinds binds $
tcStmtsAndThen ctxt stmt_chk stmts res_ty thing_inside
; return (L loc (LetStmt x (L l binds')) : stmts', thing) }
-- Don't set the error context for an ApplicativeStmt. It ought to be
-- possible to do this with a popErrCtxt in the tcStmt case for
-- ApplicativeStmt, but it did something strange and broke a test (ado002).
tcStmtsAndThen ctxt stmt_chk (L loc stmt : stmts) res_ty thing_inside
| ApplicativeStmt{} <- stmt
= do { (stmt', (stmts', thing)) <-
stmt_chk ctxt stmt res_ty $ \ res_ty' ->
tcStmtsAndThen ctxt stmt_chk stmts res_ty' $
thing_inside
; return (L loc stmt' : stmts', thing) }
-- For the vanilla case, handle the location-setting part
| otherwise
= do { (stmt', (stmts', thing)) <-
setSrcSpan loc $
addErrCtxt (pprStmtInCtxt ctxt stmt) $
stmt_chk ctxt stmt res_ty $ \ res_ty' ->
popErrCtxt $
tcStmtsAndThen ctxt stmt_chk stmts res_ty' $
thing_inside
; return (L loc stmt' : stmts', thing) }
---------------------------------------------------
-- Pattern guards
---------------------------------------------------
tcGuardStmt :: TcExprStmtChecker
tcGuardStmt _ (BodyStmt _ guard _ _) res_ty thing_inside
= do { guard' <- tcCheckMonoExpr guard boolTy
; thing <- thing_inside res_ty
; return (BodyStmt boolTy guard' noSyntaxExpr noSyntaxExpr, thing) }
tcGuardStmt ctxt (BindStmt _ pat rhs) res_ty thing_inside
= do { (rhs', rhs_ty) <- tcInferRhoNC rhs
-- Stmt has a context already
; (pat', thing) <- tcCheckPat_O (StmtCtxt ctxt) (lexprCtOrigin rhs)
pat (unrestricted rhs_ty) $
thing_inside res_ty
; return (mkTcBindStmt pat' rhs', thing) }
tcGuardStmt _ stmt _ _
= pprPanic "tcGuardStmt: unexpected Stmt" (ppr stmt)
---------------------------------------------------
-- List comprehensions
-- (no rebindable syntax)
---------------------------------------------------
-- Dealt with separately, rather than by tcMcStmt, because
-- a) We have special desugaring rules for list comprehensions,
-- which avoid creating intermediate lists. They in turn
-- assume that the bind/return operations are the regular
-- polymorphic ones, and in particular don't have any
-- coercion matching stuff in them. It's hard to avoid the
-- potential for non-trivial coercions in tcMcStmt
tcLcStmt :: TyCon -- The list type constructor ([])
-> TcExprStmtChecker
tcLcStmt _ _ (LastStmt x body noret _) elt_ty thing_inside
= do { body' <- tcMonoExprNC body elt_ty
; thing <- thing_inside (panic "tcLcStmt: thing_inside")
; return (LastStmt x body' noret noSyntaxExpr, thing) }
-- A generator, pat <- rhs
tcLcStmt m_tc ctxt (BindStmt _ pat rhs) elt_ty thing_inside
= do { pat_ty <- newFlexiTyVarTy liftedTypeKind
; rhs' <- tcCheckMonoExpr rhs (mkTyConApp m_tc [pat_ty])
; (pat', thing) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $
thing_inside elt_ty
; return (mkTcBindStmt pat' rhs', thing) }
-- A boolean guard
tcLcStmt _ _ (BodyStmt _ rhs _ _) elt_ty thing_inside
= do { rhs' <- tcCheckMonoExpr rhs boolTy
; thing <- thing_inside elt_ty
; return (BodyStmt boolTy rhs' noSyntaxExpr noSyntaxExpr, thing) }
-- ParStmt: See notes with tcMcStmt
tcLcStmt m_tc ctxt (ParStmt _ bndr_stmts_s _ _) elt_ty thing_inside
= do { (pairs', thing) <- loop bndr_stmts_s
; return (ParStmt unitTy pairs' noExpr noSyntaxExpr, thing) }
where
-- loop :: [([LStmt GhcRn], [GhcRn])]
-- -> TcM ([([LStmt GhcTcId], [GhcTcId])], thing)
loop [] = do { thing <- thing_inside elt_ty
; return ([], thing) } -- matching in the branches
loop (ParStmtBlock x stmts names _ : pairs)
= do { (stmts', (ids, pairs', thing))
<- tcStmtsAndThen ctxt (tcLcStmt m_tc) stmts elt_ty $ \ _elt_ty' ->
do { ids <- tcLookupLocalIds names
; (pairs', thing) <- loop pairs
; return (ids, pairs', thing) }
; return ( ParStmtBlock x stmts' ids noSyntaxExpr : pairs', thing ) }
tcLcStmt m_tc ctxt (TransStmt { trS_form = form, trS_stmts = stmts
, trS_bndrs = bindersMap
, trS_by = by, trS_using = using }) elt_ty thing_inside
= do { let (bndr_names, n_bndr_names) = unzip bindersMap
unused_ty = pprPanic "tcLcStmt: inner ty" (ppr bindersMap)
-- The inner 'stmts' lack a LastStmt, so the element type
-- passed in to tcStmtsAndThen is never looked at
; (stmts', (bndr_ids, by'))
<- tcStmtsAndThen (TransStmtCtxt ctxt) (tcLcStmt m_tc) stmts unused_ty $ \_ -> do
{ by' <- traverse tcInferRho by
; bndr_ids <- tcLookupLocalIds bndr_names
; return (bndr_ids, by') }
; let m_app ty = mkTyConApp m_tc [ty]
--------------- Typecheck the 'using' function -------------
-- using :: ((a,b,c)->t) -> m (a,b,c) -> m (a,b,c)m (ThenForm)
-- :: ((a,b,c)->t) -> m (a,b,c) -> m (m (a,b,c))) (GroupForm)
-- n_app :: Type -> Type -- Wraps a 'ty' into '[ty]' for GroupForm
; let n_app = case form of
ThenForm -> (\ty -> ty)
_ -> m_app
by_arrow :: Type -> Type -- Wraps 'ty' to '(a->t) -> ty' if the By is present
by_arrow = case by' of
Nothing -> \ty -> ty
Just (_,e_ty) -> \ty -> (alphaTy `mkVisFunTyMany` e_ty) `mkVisFunTyMany` ty
tup_ty = mkBigCoreVarTupTy bndr_ids
poly_arg_ty = m_app alphaTy
poly_res_ty = m_app (n_app alphaTy)
using_poly_ty = mkInfForAllTy alphaTyVar $
by_arrow $
poly_arg_ty `mkVisFunTyMany` poly_res_ty
; using' <- tcCheckPolyExpr using using_poly_ty
; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using'
-- 'stmts' returns a result of type (m1_ty tuple_ty),
-- typically something like [(Int,Bool,Int)]
-- We don't know what tuple_ty is yet, so we use a variable
; let mk_n_bndr :: Name -> TcId -> TcId
mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name Many (n_app (idType bndr_id))
-- Ensure that every old binder of type `b` is linked up with its
-- new binder which should have type `n b`
-- See Note [GroupStmt binder map] in GHC.Hs.Expr
n_bndr_ids = zipWith mk_n_bndr n_bndr_names bndr_ids
bindersMap' = bndr_ids `zip` n_bndr_ids
-- Type check the thing in the environment with
-- these new binders and return the result
; thing <- tcExtendIdEnv n_bndr_ids (thing_inside elt_ty)
; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap'
, trS_by = fmap fst by', trS_using = final_using
, trS_ret = noSyntaxExpr
, trS_bind = noSyntaxExpr
, trS_fmap = noExpr
, trS_ext = unitTy
, trS_form = form }, thing) }
tcLcStmt _ _ stmt _ _
= pprPanic "tcLcStmt: unexpected Stmt" (ppr stmt)
---------------------------------------------------
-- Monad comprehensions
-- (supports rebindable syntax)
---------------------------------------------------
tcMcStmt :: TcExprStmtChecker
tcMcStmt _ (LastStmt x body noret return_op) res_ty thing_inside
= do { (body', return_op')
<- tcSyntaxOp MCompOrigin return_op [SynRho] res_ty $
\ [a_ty] [mult]->
tcScalingUsage mult $ tcCheckMonoExprNC body a_ty
; thing <- thing_inside (panic "tcMcStmt: thing_inside")
; return (LastStmt x body' noret return_op', thing) }
-- Generators for monad comprehensions ( pat <- rhs )
--
-- [ body | q <- gen ] -> gen :: m a
-- q :: a
--
tcMcStmt ctxt (BindStmt xbsrn pat rhs) res_ty thing_inside
-- (>>=) :: rhs_ty -> (pat_ty -> new_res_ty) -> res_ty
= do { ((rhs', pat_mult, pat', thing, new_res_ty), bind_op')
<- tcSyntaxOp MCompOrigin (xbsrn_bindOp xbsrn)
[SynRho, SynFun SynAny SynRho] res_ty $
\ [rhs_ty, pat_ty, new_res_ty] [rhs_mult, fun_mult, pat_mult] ->
do { rhs' <- tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty
; (pat', thing) <- tcScalingUsage fun_mult $ tcCheckPat (StmtCtxt ctxt) pat (Scaled pat_mult pat_ty) $
thing_inside (mkCheckExpType new_res_ty)
; return (rhs', pat_mult, pat', thing, new_res_ty) }
-- If (but only if) the pattern can fail, typecheck the 'fail' operator
; fail_op' <- fmap join . forM (xbsrn_failOp xbsrn) $ \fail ->
tcMonadFailOp (MCompPatOrigin pat) pat' fail new_res_ty
; let xbstc = XBindStmtTc
{ xbstc_bindOp = bind_op'
, xbstc_boundResultType = new_res_ty
, xbstc_boundResultMult = pat_mult
, xbstc_failOp = fail_op'
}
; return (BindStmt xbstc pat' rhs', thing) }
-- Boolean expressions.
--
-- [ body | stmts, expr ] -> expr :: m Bool
--
tcMcStmt _ (BodyStmt _ rhs then_op guard_op) res_ty thing_inside
= do { -- Deal with rebindable syntax:
-- guard_op :: test_ty -> rhs_ty
-- then_op :: rhs_ty -> new_res_ty -> res_ty
-- Where test_ty is, for example, Bool
; ((thing, rhs', rhs_ty, guard_op'), then_op')
<- tcSyntaxOp MCompOrigin then_op [SynRho, SynRho] res_ty $
\ [rhs_ty, new_res_ty] [rhs_mult, fun_mult] ->
do { (rhs', guard_op')
<- tcScalingUsage rhs_mult $
tcSyntaxOp MCompOrigin guard_op [SynAny]
(mkCheckExpType rhs_ty) $
\ [test_ty] [test_mult] ->
tcScalingUsage test_mult $ tcCheckMonoExpr rhs test_ty
; thing <- tcScalingUsage fun_mult $ thing_inside (mkCheckExpType new_res_ty)
; return (thing, rhs', rhs_ty, guard_op') }
; return (BodyStmt rhs_ty rhs' then_op' guard_op', thing) }
-- Grouping statements
--
-- [ body | stmts, then group by e using f ]
-- -> e :: t
-- f :: forall a. (a -> t) -> m a -> m (m a)
-- [ body | stmts, then group using f ]
-- -> f :: forall a. m a -> m (m a)
-- We type [ body | (stmts, group by e using f), ... ]
-- f <optional by> [ (a,b,c) | stmts ] >>= \(a,b,c) -> ...body....
--
-- We type the functions as follows:
-- f <optional by> :: m1 (a,b,c) -> m2 (a,b,c) (ThenForm)
-- :: m1 (a,b,c) -> m2 (n (a,b,c)) (GroupForm)
-- (>>=) :: m2 (a,b,c) -> ((a,b,c) -> res) -> res (ThenForm)
-- :: m2 (n (a,b,c)) -> (n (a,b,c) -> res) -> res (GroupForm)
--
tcMcStmt ctxt (TransStmt { trS_stmts = stmts, trS_bndrs = bindersMap
, trS_by = by, trS_using = using, trS_form = form
, trS_ret = return_op, trS_bind = bind_op
, trS_fmap = fmap_op }) res_ty thing_inside
= do { m1_ty <- newFlexiTyVarTy typeToTypeKind
; m2_ty <- newFlexiTyVarTy typeToTypeKind
; tup_ty <- newFlexiTyVarTy liftedTypeKind
; by_e_ty <- newFlexiTyVarTy liftedTypeKind -- The type of the 'by' expression (if any)
-- n_app :: Type -> Type -- Wraps a 'ty' into '(n ty)' for GroupForm
; n_app <- case form of
ThenForm -> return (\ty -> ty)
_ -> do { n_ty <- newFlexiTyVarTy typeToTypeKind
; return (n_ty `mkAppTy`) }
; let by_arrow :: Type -> Type
-- (by_arrow res) produces ((alpha->e_ty) -> res) ('by' present)
-- or res ('by' absent)
by_arrow = case by of
Nothing -> \res -> res
Just {} -> \res -> (alphaTy `mkVisFunTyMany` by_e_ty) `mkVisFunTyMany` res
poly_arg_ty = m1_ty `mkAppTy` alphaTy
using_arg_ty = m1_ty `mkAppTy` tup_ty
poly_res_ty = m2_ty `mkAppTy` n_app alphaTy
using_res_ty = m2_ty `mkAppTy` n_app tup_ty
using_poly_ty = mkInfForAllTy alphaTyVar $
by_arrow $
poly_arg_ty `mkVisFunTyMany` poly_res_ty
-- 'stmts' returns a result of type (m1_ty tuple_ty),
-- typically something like [(Int,Bool,Int)]
-- We don't know what tuple_ty is yet, so we use a variable
; let (bndr_names, n_bndr_names) = unzip bindersMap
; (stmts', (bndr_ids, by', return_op')) <-
tcStmtsAndThen (TransStmtCtxt ctxt) tcMcStmt stmts
(mkCheckExpType using_arg_ty) $ \res_ty' -> do
{ by' <- case by of
Nothing -> return Nothing
Just e -> do { e' <- tcCheckMonoExpr e by_e_ty
; return (Just e') }
-- Find the Ids (and hence types) of all old binders
; bndr_ids <- tcLookupLocalIds bndr_names
-- 'return' is only used for the binders, so we know its type.
-- return :: (a,b,c,..) -> m (a,b,c,..)
; (_, return_op') <- tcSyntaxOp MCompOrigin return_op
[synKnownType (mkBigCoreVarTupTy bndr_ids)]
res_ty' $ \ _ _ -> return ()
; return (bndr_ids, by', return_op') }
--------------- Typecheck the 'bind' function -------------
-- (>>=) :: m2 (n (a,b,c)) -> ( n (a,b,c) -> new_res_ty ) -> res_ty
; new_res_ty <- newFlexiTyVarTy liftedTypeKind
; (_, bind_op') <- tcSyntaxOp MCompOrigin bind_op
[ synKnownType using_res_ty
, synKnownType (n_app tup_ty `mkVisFunTyMany` new_res_ty) ]
res_ty $ \ _ _ -> return ()
--------------- Typecheck the 'fmap' function -------------
; fmap_op' <- case form of
ThenForm -> return noExpr
_ -> fmap unLoc . tcCheckPolyExpr (noLoc fmap_op) $
mkInfForAllTy alphaTyVar $
mkInfForAllTy betaTyVar $
(alphaTy `mkVisFunTyMany` betaTy)
`mkVisFunTyMany` (n_app alphaTy)
`mkVisFunTyMany` (n_app betaTy)
--------------- Typecheck the 'using' function -------------
-- using :: ((a,b,c)->t) -> m1 (a,b,c) -> m2 (n (a,b,c))
; using' <- tcCheckPolyExpr using using_poly_ty
; let final_using = fmap (mkHsWrap (WpTyApp tup_ty)) using'
--------------- Building the bindersMap ----------------
; let mk_n_bndr :: Name -> TcId -> TcId
mk_n_bndr n_bndr_name bndr_id = mkLocalId n_bndr_name Many (n_app (idType bndr_id))
-- Ensure that every old binder of type `b` is linked up with its
-- new binder which should have type `n b`
-- See Note [GroupStmt binder map] in GHC.Hs.Expr
n_bndr_ids = zipWithEqual "tcMcStmt" mk_n_bndr n_bndr_names bndr_ids
bindersMap' = bndr_ids `zip` n_bndr_ids
-- Type check the thing in the environment with
-- these new binders and return the result
; thing <- tcExtendIdEnv n_bndr_ids $
thing_inside (mkCheckExpType new_res_ty)
; return (TransStmt { trS_stmts = stmts', trS_bndrs = bindersMap'
, trS_by = by', trS_using = final_using
, trS_ret = return_op', trS_bind = bind_op'
, trS_ext = n_app tup_ty
, trS_fmap = fmap_op', trS_form = form }, thing) }
-- A parallel set of comprehensions
-- [ (g x, h x) | ... ; let g v = ...
-- | ... ; let h v = ... ]
--
-- It's possible that g,h are overloaded, so we need to feed the LIE from the
-- (g x, h x) up through both lots of bindings (so we get the bindLocalMethods).
-- Similarly if we had an existential pattern match:
--
-- data T = forall a. Show a => C a
--
-- [ (show x, show y) | ... ; C x <- ...
-- | ... ; C y <- ... ]
--
-- Then we need the LIE from (show x, show y) to be simplified against
-- the bindings for x and y.
--
-- It's difficult to do this in parallel, so we rely on the renamer to
-- ensure that g,h and x,y don't duplicate, and simply grow the environment.
-- So the binders of the first parallel group will be in scope in the second
-- group. But that's fine; there's no shadowing to worry about.
--
-- Note: The `mzip` function will get typechecked via:
--
-- ParStmt [st1::t1, st2::t2, st3::t3]
--
-- mzip :: m st1
-- -> (m st2 -> m st3 -> m (st2, st3)) -- recursive call
-- -> m (st1, (st2, st3))
--
tcMcStmt ctxt (ParStmt _ bndr_stmts_s mzip_op bind_op) res_ty thing_inside
= do { m_ty <- newFlexiTyVarTy typeToTypeKind
; let mzip_ty = mkInfForAllTys [alphaTyVar, betaTyVar] $
(m_ty `mkAppTy` alphaTy)
`mkVisFunTyMany`
(m_ty `mkAppTy` betaTy)
`mkVisFunTyMany`
(m_ty `mkAppTy` mkBoxedTupleTy [alphaTy, betaTy])
; mzip_op' <- unLoc `fmap` tcCheckPolyExpr (noLoc mzip_op) mzip_ty
-- type dummies since we don't know all binder types yet
; id_tys_s <- (mapM . mapM) (const (newFlexiTyVarTy liftedTypeKind))
[ names | ParStmtBlock _ _ names _ <- bndr_stmts_s ]
-- Typecheck bind:
; let tup_tys = [ mkBigCoreTupTy id_tys | id_tys <- id_tys_s ]
tuple_ty = mk_tuple_ty tup_tys
; (((blocks', thing), inner_res_ty), bind_op')
<- tcSyntaxOp MCompOrigin bind_op
[ synKnownType (m_ty `mkAppTy` tuple_ty)
, SynFun (synKnownType tuple_ty) SynRho ] res_ty $
\ [inner_res_ty] _ ->
do { stuff <- loop m_ty (mkCheckExpType inner_res_ty)
tup_tys bndr_stmts_s
; return (stuff, inner_res_ty) }
; return (ParStmt inner_res_ty blocks' mzip_op' bind_op', thing) }
where
mk_tuple_ty tys = foldr1 (\tn tm -> mkBoxedTupleTy [tn, tm]) tys
-- loop :: Type -- m_ty
-- -> ExpRhoType -- inner_res_ty
-- -> [TcType] -- tup_tys
-- -> [ParStmtBlock Name]
-- -> TcM ([([LStmt GhcTcId], [GhcTcId])], thing)
loop _ inner_res_ty [] [] = do { thing <- thing_inside inner_res_ty
; return ([], thing) }
-- matching in the branches
loop m_ty inner_res_ty (tup_ty_in : tup_tys_in)
(ParStmtBlock x stmts names return_op : pairs)
= do { let m_tup_ty = m_ty `mkAppTy` tup_ty_in
; (stmts', (ids, return_op', pairs', thing))
<- tcStmtsAndThen ctxt tcMcStmt stmts (mkCheckExpType m_tup_ty) $
\m_tup_ty' ->
do { ids <- tcLookupLocalIds names
; let tup_ty = mkBigCoreVarTupTy ids
; (_, return_op') <-
tcSyntaxOp MCompOrigin return_op
[synKnownType tup_ty] m_tup_ty' $
\ _ _ -> return ()
; (pairs', thing) <- loop m_ty inner_res_ty tup_tys_in pairs
; return (ids, return_op', pairs', thing) }
; return (ParStmtBlock x stmts' ids return_op' : pairs', thing) }
loop _ _ _ _ = panic "tcMcStmt.loop"
tcMcStmt _ stmt _ _
= pprPanic "tcMcStmt: unexpected Stmt" (ppr stmt)
---------------------------------------------------
-- Do-notation
-- (supports rebindable syntax)
---------------------------------------------------
tcDoStmt :: TcExprStmtChecker
tcDoStmt _ (LastStmt x body noret _) res_ty thing_inside
= do { body' <- tcMonoExprNC body res_ty
; thing <- thing_inside (panic "tcDoStmt: thing_inside")
; return (LastStmt x body' noret noSyntaxExpr, thing) }
tcDoStmt ctxt (BindStmt xbsrn pat rhs) res_ty thing_inside
= do { -- Deal with rebindable syntax:
-- (>>=) :: rhs_ty ->_rhs_mult (pat_ty ->_pat_mult new_res_ty) ->_fun_mult res_ty
-- This level of generality is needed for using do-notation
-- in full generality; see #1537
((rhs', pat_mult, pat', new_res_ty, thing), bind_op')
<- tcSyntaxOp DoOrigin (xbsrn_bindOp xbsrn) [SynRho, SynFun SynAny SynRho] res_ty $
\ [rhs_ty, pat_ty, new_res_ty] [rhs_mult,fun_mult,pat_mult] ->
do { rhs' <-tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty
; (pat', thing) <- tcScalingUsage fun_mult $ tcCheckPat (StmtCtxt ctxt) pat (Scaled pat_mult pat_ty) $
thing_inside (mkCheckExpType new_res_ty)
; return (rhs', pat_mult, pat', new_res_ty, thing) }
-- If (but only if) the pattern can fail, typecheck the 'fail' operator
; fail_op' <- fmap join . forM (xbsrn_failOp xbsrn) $ \fail ->
tcMonadFailOp (DoPatOrigin pat) pat' fail new_res_ty
; let xbstc = XBindStmtTc
{ xbstc_bindOp = bind_op'
, xbstc_boundResultType = new_res_ty
, xbstc_boundResultMult = pat_mult
, xbstc_failOp = fail_op'
}
; return (BindStmt xbstc pat' rhs', thing) }
tcDoStmt ctxt (ApplicativeStmt _ pairs mb_join) res_ty thing_inside
= do { let tc_app_stmts ty = tcApplicativeStmts ctxt pairs ty $
thing_inside . mkCheckExpType
; ((pairs', body_ty, thing), mb_join') <- case mb_join of
Nothing -> (, Nothing) <$> tc_app_stmts res_ty
Just join_op ->
second Just <$>
(tcSyntaxOp DoOrigin join_op [SynRho] res_ty $
\ [rhs_ty] [rhs_mult] -> tcScalingUsage rhs_mult $ tc_app_stmts (mkCheckExpType rhs_ty))
; return (ApplicativeStmt body_ty pairs' mb_join', thing) }
tcDoStmt _ (BodyStmt _ rhs then_op _) res_ty thing_inside
= do { -- Deal with rebindable syntax;
-- (>>) :: rhs_ty -> new_res_ty -> res_ty
; ((rhs', rhs_ty, thing), then_op')
<- tcSyntaxOp DoOrigin then_op [SynRho, SynRho] res_ty $
\ [rhs_ty, new_res_ty] [rhs_mult,fun_mult] ->
do { rhs' <- tcScalingUsage rhs_mult $ tcCheckMonoExprNC rhs rhs_ty
; thing <- tcScalingUsage fun_mult $ thing_inside (mkCheckExpType new_res_ty)
; return (rhs', rhs_ty, thing) }
; return (BodyStmt rhs_ty rhs' then_op' noSyntaxExpr, thing) }
tcDoStmt ctxt (RecStmt { recS_stmts = stmts, recS_later_ids = later_names
, recS_rec_ids = rec_names, recS_ret_fn = ret_op
, recS_mfix_fn = mfix_op, recS_bind_fn = bind_op })
res_ty thing_inside
= do { let tup_names = rec_names ++ filterOut (`elem` rec_names) later_names
; tup_elt_tys <- newFlexiTyVarTys (length tup_names) liftedTypeKind
; let tup_ids = zipWith (\n t -> mkLocalId n Many t) tup_names tup_elt_tys
-- Many because it's a recursive definition
tup_ty = mkBigCoreTupTy tup_elt_tys
; tcExtendIdEnv tup_ids $ do
{ ((stmts', (ret_op', tup_rets)), stmts_ty)
<- tcInfer $ \ exp_ty ->
tcStmtsAndThen ctxt tcDoStmt stmts exp_ty $ \ inner_res_ty ->
do { tup_rets <- zipWithM tcCheckId tup_names
(map mkCheckExpType tup_elt_tys)
-- Unify the types of the "final" Ids (which may
-- be polymorphic) with those of "knot-tied" Ids
; (_, ret_op')
<- tcSyntaxOp DoOrigin ret_op [synKnownType tup_ty]
inner_res_ty $ \_ _ -> return ()
; return (ret_op', tup_rets) }
; ((_, mfix_op'), mfix_res_ty)
<- tcInfer $ \ exp_ty ->
tcSyntaxOp DoOrigin mfix_op
[synKnownType (mkVisFunTyMany tup_ty stmts_ty)] exp_ty $
\ _ _ -> return ()
; ((thing, new_res_ty), bind_op')
<- tcSyntaxOp DoOrigin bind_op
[ synKnownType mfix_res_ty
, SynFun (synKnownType tup_ty) SynRho ]
res_ty $
\ [new_res_ty] _ ->
do { thing <- thing_inside (mkCheckExpType new_res_ty)
; return (thing, new_res_ty) }
; let rec_ids = takeList rec_names tup_ids
; later_ids <- tcLookupLocalIds later_names
; traceTc "tcdo" $ vcat [ppr rec_ids <+> ppr (map idType rec_ids),
ppr later_ids <+> ppr (map idType later_ids)]
; return (RecStmt { recS_stmts = stmts', recS_later_ids = later_ids
, recS_rec_ids = rec_ids, recS_ret_fn = ret_op'
, recS_mfix_fn = mfix_op', recS_bind_fn = bind_op'
, recS_ext = RecStmtTc
{ recS_bind_ty = new_res_ty
, recS_later_rets = []
, recS_rec_rets = tup_rets
, recS_ret_ty = stmts_ty} }, thing)
}}
tcDoStmt _ stmt _ _
= pprPanic "tcDoStmt: unexpected Stmt" (ppr stmt)
---------------------------------------------------
-- MonadFail Proposal warnings
---------------------------------------------------
-- The idea behind issuing MonadFail warnings is that we add them whenever a
-- failable pattern is encountered. However, instead of throwing a type error
-- when the constraint cannot be satisfied, we only issue a warning in
-- "GHC.Tc.Errors".
tcMonadFailOp :: CtOrigin
-> LPat GhcTcId
-> SyntaxExpr GhcRn -- The fail op
-> TcType -- Type of the whole do-expression
-> TcRn (FailOperator GhcTcId) -- Typechecked fail op
-- Get a 'fail' operator expression, to use if the pattern match fails.
-- This won't be used in cases where we've already determined the pattern
-- match can't fail (so the fail op is Nothing), however, it seems that the
-- isIrrefutableHsPat test is still required here for some reason I haven't
-- yet determined.
tcMonadFailOp orig pat fail_op res_ty
| isIrrefutableHsPat pat
= return Nothing
| otherwise
= Just . snd <$> (tcSyntaxOp orig fail_op [synKnownType stringTy]
(mkCheckExpType res_ty) $ \_ _ -> return ())
{-
Note [Treat rebindable syntax first]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When typechecking
do { bar; ... } :: IO ()
we want to typecheck 'bar' in the knowledge that it should be an IO thing,
pushing info from the context into the RHS. To do this, we check the
rebindable syntax first, and push that information into (tcLExprNC rhs).
Otherwise the error shows up when checking the rebindable syntax, and
the expected/inferred stuff is back to front (see #3613).
Note [typechecking ApplicativeStmt]
join ((\pat1 ... patn -> body) <$> e1 <*> ... <*> en)
fresh type variables:
pat_ty_1..pat_ty_n
exp_ty_1..exp_ty_n
t_1..t_(n-1)
body :: body_ty
(\pat1 ... patn -> body) :: pat_ty_1 -> ... -> pat_ty_n -> body_ty
pat_i :: pat_ty_i
e_i :: exp_ty_i
<$> :: (pat_ty_1 -> ... -> pat_ty_n -> body_ty) -> exp_ty_1 -> t_1
<*>_i :: t_(i-1) -> exp_ty_i -> t_i
join :: tn -> res_ty
-}
tcApplicativeStmts
:: HsStmtContext GhcRn
-> [(SyntaxExpr GhcRn, ApplicativeArg GhcRn)]
-> ExpRhoType -- rhs_ty
-> (TcRhoType -> TcM t) -- thing_inside
-> TcM ([(SyntaxExpr GhcTcId, ApplicativeArg GhcTcId)], Type, t)
tcApplicativeStmts ctxt pairs rhs_ty thing_inside
= do { body_ty <- newFlexiTyVarTy liftedTypeKind
; let arity = length pairs
; ts <- replicateM (arity-1) $ newInferExpType
; exp_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind
; pat_tys <- replicateM arity $ newFlexiTyVarTy liftedTypeKind
; let fun_ty = mkVisFunTysMany pat_tys body_ty
-- NB. do the <$>,<*> operators first, we don't want type errors here
-- i.e. goOps before goArgs
-- See Note [Treat rebindable syntax first]
; let (ops, args) = unzip pairs
; ops' <- goOps fun_ty (zip3 ops (ts ++ [rhs_ty]) exp_tys)
-- Typecheck each ApplicativeArg separately
-- See Note [ApplicativeDo and constraints]
; args' <- mapM (goArg body_ty) (zip3 args pat_tys exp_tys)
-- Bring into scope all the things bound by the args,
-- and typecheck the thing_inside
-- See Note [ApplicativeDo and constraints]
; res <- tcExtendIdEnv (concatMap get_arg_bndrs args') $
thing_inside body_ty
; return (zip ops' args', body_ty, res) }
where
goOps _ [] = return []
goOps t_left ((op,t_i,exp_ty) : ops)
= do { (_, op')
<- tcSyntaxOp DoOrigin op
[synKnownType t_left, synKnownType exp_ty] t_i $
\ _ _ -> return ()
; t_i <- readExpType t_i
; ops' <- goOps t_i ops
; return (op' : ops') }
goArg :: Type -> (ApplicativeArg GhcRn, Type, Type)
-> TcM (ApplicativeArg GhcTcId)
goArg body_ty (ApplicativeArgOne
{ xarg_app_arg_one = fail_op
, app_arg_pattern = pat
, arg_expr = rhs
, ..
}, pat_ty, exp_ty)
= setSrcSpan (combineSrcSpans (getLoc pat) (getLoc rhs)) $
addErrCtxt (pprStmtInCtxt ctxt (mkRnBindStmt pat rhs)) $
do { rhs' <- tcCheckMonoExprNC rhs exp_ty
; (pat', _) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $
return ()
; fail_op' <- fmap join . forM fail_op $ \fail ->
tcMonadFailOp (DoPatOrigin pat) pat' fail body_ty
; return (ApplicativeArgOne
{ xarg_app_arg_one = fail_op'
, app_arg_pattern = pat'
, arg_expr = rhs'
, .. }
) }
goArg _body_ty (ApplicativeArgMany x stmts ret pat, pat_ty, exp_ty)
= do { (stmts', (ret',pat')) <-
tcStmtsAndThen ctxt tcDoStmt stmts (mkCheckExpType exp_ty) $
\res_ty -> do
{ ret' <- tcExpr ret res_ty
; (pat', _) <- tcCheckPat (StmtCtxt ctxt) pat (unrestricted pat_ty) $
return ()
; return (ret', pat')
}
; return (ApplicativeArgMany x stmts' ret' pat') }
get_arg_bndrs :: ApplicativeArg GhcTcId -> [Id]
get_arg_bndrs (ApplicativeArgOne { app_arg_pattern = pat }) = collectPatBinders pat
get_arg_bndrs (ApplicativeArgMany { bv_pattern = pat }) = collectPatBinders pat
{- Note [ApplicativeDo and constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An applicative-do is supposed to take place in parallel, so
constraints bound in one arm can't possibly be available in another
(#13242). Our current rule is this (more details and discussion
on the ticket). Consider
...stmts...
ApplicativeStmts [arg1, arg2, ... argN]
...more stmts...
where argi :: ApplicativeArg. Each 'argi' itself contains one or more Stmts.
Now, we say that:
* Constraints required by the argi can be solved from
constraint bound by ...stmts...
* Constraints and existentials bound by the argi are not available
to solve constraints required either by argj (where i /= j),
or by ...more stmts....
* Within the stmts of each 'argi' individually, however, constraints bound
by earlier stmts can be used to solve later ones.
To achieve this, we just typecheck each 'argi' separately, bring all
the variables they bind into scope, and typecheck the thing_inside.
************************************************************************
* *
\subsection{Errors and contexts}
* *
************************************************************************
@sameNoOfArgs@ takes a @[RenamedMatch]@ and decides whether the same
number of args are used in each equation.
-}
checkArgs :: Name -> MatchGroup GhcRn body -> TcM ()
checkArgs _ (MG { mg_alts = L _ [] })
= return ()
checkArgs fun (MG { mg_alts = L _ (match1:matches) })
| null bad_matches
= return ()
| otherwise
= failWithTc (vcat [ text "Equations for" <+> quotes (ppr fun) <+>
text "have different numbers of arguments"
, nest 2 (ppr (getLoc match1))
, nest 2 (ppr (getLoc (head bad_matches)))])
where
n_args1 = args_in_match match1
bad_matches = [m | m <- matches, args_in_match m /= n_args1]
args_in_match :: LMatch GhcRn body -> Int
args_in_match (L _ (Match { m_pats = pats })) = length pats
|