1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
|
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- | Typechecking patterns
module GHC.Tc.Gen.Pat
( tcLetPat
, newLetBndr
, LetBndrSpec(..)
, tcCheckPat, tcCheckPat_O, tcInferPat
, tcPats
, addDataConStupidTheta
, badFieldCon
, polyPatSig
)
where
import GHC.Prelude
import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcSyntaxOp, tcSyntaxOpGen, tcInferRho )
import GHC.Hs
import GHC.Rename.Utils
import GHC.Tc.Utils.Zonk
import GHC.Tc.Gen.Sig( TcPragEnv, lookupPragEnv, addInlinePrags )
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Instantiate
import GHC.Types.Id
import GHC.Types.Var
import GHC.Types.Name
import GHC.Types.Name.Reader
import GHC.Core.Multiplicity
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcMType
import GHC.Tc.Validity( arityErr )
import GHC.Core.TyCo.Ppr ( pprTyVars )
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Unify
import GHC.Tc.Gen.HsType
import GHC.Builtin.Types
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Origin
import GHC.Core.TyCon
import GHC.Core.Type
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Core.ConLike
import GHC.Builtin.Names
import GHC.Types.Basic hiding (SuccessFlag(..))
import GHC.Driver.Session
import GHC.Types.SrcLoc
import GHC.Types.Var.Set
import GHC.Utils.Misc
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import qualified GHC.LanguageExtensions as LangExt
import Control.Arrow ( second )
import Control.Monad
import GHC.Data.List.SetOps ( getNth )
{-
************************************************************************
* *
External interface
* *
************************************************************************
-}
tcLetPat :: (Name -> Maybe TcId)
-> LetBndrSpec
-> LPat GhcRn -> Scaled ExpSigmaType
-> TcM a
-> TcM (LPat GhcTc, a)
tcLetPat sig_fn no_gen pat pat_ty thing_inside
= do { bind_lvl <- getTcLevel
; let ctxt = LetPat { pc_lvl = bind_lvl
, pc_sig_fn = sig_fn
, pc_new = no_gen }
penv = PE { pe_lazy = True
, pe_ctxt = ctxt
, pe_orig = PatOrigin }
; tc_lpat pat_ty penv pat thing_inside }
-----------------
tcPats :: HsMatchContext GhcRn
-> [LPat GhcRn] -- Patterns,
-> [Scaled ExpSigmaType] -- and their types
-> TcM a -- and the checker for the body
-> TcM ([LPat GhcTc], a)
-- This is the externally-callable wrapper function
-- Typecheck the patterns, extend the environment to bind the variables,
-- do the thing inside, use any existentially-bound dictionaries to
-- discharge parts of the returning LIE, and deal with pattern type
-- signatures
-- 1. Initialise the PatState
-- 2. Check the patterns
-- 3. Check the body
-- 4. Check that no existentials escape
tcPats ctxt pats pat_tys thing_inside
= tc_lpats pat_tys penv pats thing_inside
where
penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = PatOrigin }
tcInferPat :: HsMatchContext GhcRn -> LPat GhcRn
-> TcM a
-> TcM ((LPat GhcTc, a), TcSigmaType)
tcInferPat ctxt pat thing_inside
= tcInfer $ \ exp_ty ->
tc_lpat (unrestricted exp_ty) penv pat thing_inside
where
penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = PatOrigin }
tcCheckPat :: HsMatchContext GhcRn
-> LPat GhcRn -> Scaled TcSigmaType
-> TcM a -- Checker for body
-> TcM (LPat GhcTc, a)
tcCheckPat ctxt = tcCheckPat_O ctxt PatOrigin
-- | A variant of 'tcPat' that takes a custom origin
tcCheckPat_O :: HsMatchContext GhcRn
-> CtOrigin -- ^ origin to use if the type needs inst'ing
-> LPat GhcRn -> Scaled TcSigmaType
-> TcM a -- Checker for body
-> TcM (LPat GhcTc, a)
tcCheckPat_O ctxt orig pat (Scaled pat_mult pat_ty) thing_inside
= tc_lpat (Scaled pat_mult (mkCheckExpType pat_ty)) penv pat thing_inside
where
penv = PE { pe_lazy = False, pe_ctxt = LamPat ctxt, pe_orig = orig }
{-
************************************************************************
* *
PatEnv, PatCtxt, LetBndrSpec
* *
************************************************************************
-}
data PatEnv
= PE { pe_lazy :: Bool -- True <=> lazy context, so no existentials allowed
, pe_ctxt :: PatCtxt -- Context in which the whole pattern appears
, pe_orig :: CtOrigin -- origin to use if the pat_ty needs inst'ing
}
data PatCtxt
= LamPat -- Used for lambdas, case etc
(HsMatchContext GhcRn)
| LetPat -- Used only for let(rec) pattern bindings
-- See Note [Typing patterns in pattern bindings]
{ pc_lvl :: TcLevel
-- Level of the binding group
, pc_sig_fn :: Name -> Maybe TcId
-- Tells the expected type
-- for binders with a signature
, pc_new :: LetBndrSpec
-- How to make a new binder
} -- for binders without signatures
data LetBndrSpec
= LetLclBndr -- We are going to generalise, and wrap in an AbsBinds
-- so clone a fresh binder for the local monomorphic Id
| LetGblBndr TcPragEnv -- Generalisation plan is NoGen, so there isn't going
-- to be an AbsBinds; So we must bind the global version
-- of the binder right away.
-- And here is the inline-pragma information
instance Outputable LetBndrSpec where
ppr LetLclBndr = text "LetLclBndr"
ppr (LetGblBndr {}) = text "LetGblBndr"
makeLazy :: PatEnv -> PatEnv
makeLazy penv = penv { pe_lazy = True }
inPatBind :: PatEnv -> Bool
inPatBind (PE { pe_ctxt = LetPat {} }) = True
inPatBind (PE { pe_ctxt = LamPat {} }) = False
{- *********************************************************************
* *
Binders
* *
********************************************************************* -}
tcPatBndr :: PatEnv -> Name -> Scaled ExpSigmaType -> TcM (HsWrapper, TcId)
-- (coi, xp) = tcPatBndr penv x pat_ty
-- Then coi : pat_ty ~ typeof(xp)
--
tcPatBndr penv@(PE { pe_ctxt = LetPat { pc_lvl = bind_lvl
, pc_sig_fn = sig_fn
, pc_new = no_gen } })
bndr_name exp_pat_ty
-- For the LetPat cases, see
-- Note [Typechecking pattern bindings] in GHC.Tc.Gen.Bind
| Just bndr_id <- sig_fn bndr_name -- There is a signature
= do { wrap <- tc_sub_type penv (scaledThing exp_pat_ty) (idType bndr_id)
-- See Note [Subsumption check at pattern variables]
; traceTc "tcPatBndr(sig)" (ppr bndr_id $$ ppr (idType bndr_id) $$ ppr exp_pat_ty)
; return (wrap, bndr_id) }
| otherwise -- No signature
= do { (co, bndr_ty) <- case scaledThing exp_pat_ty of
Check pat_ty -> promoteTcType bind_lvl pat_ty
Infer infer_res -> assert (bind_lvl == ir_lvl infer_res) $
-- If we were under a constructor that bumped the
-- level, we'd be in checking mode (see tcConArg)
-- hence this assertion
do { bndr_ty <- inferResultToType infer_res
; return (mkTcNomReflCo bndr_ty, bndr_ty) }
; let bndr_mult = scaledMult exp_pat_ty
; bndr_id <- newLetBndr no_gen bndr_name bndr_mult bndr_ty
; traceTc "tcPatBndr(nosig)" (vcat [ ppr bind_lvl
, ppr exp_pat_ty, ppr bndr_ty, ppr co
, ppr bndr_id ])
; return (mkWpCastN co, bndr_id) }
tcPatBndr _ bndr_name pat_ty
= do { let pat_mult = scaledMult pat_ty
; pat_ty <- expTypeToType (scaledThing pat_ty)
; traceTc "tcPatBndr(not let)" (ppr bndr_name $$ ppr pat_ty)
; return (idHsWrapper, mkLocalIdOrCoVar bndr_name pat_mult pat_ty) }
-- We should not have "OrCoVar" here, this is a bug (#17545)
-- Whether or not there is a sig is irrelevant,
-- as this is local
newLetBndr :: LetBndrSpec -> Name -> Mult -> TcType -> TcM TcId
-- Make up a suitable Id for the pattern-binder.
-- See Note [Typechecking pattern bindings], item (4) in GHC.Tc.Gen.Bind
--
-- In the polymorphic case when we are going to generalise
-- (plan InferGen, no_gen = LetLclBndr), generate a "monomorphic version"
-- of the Id; the original name will be bound to the polymorphic version
-- by the AbsBinds
-- In the monomorphic case when we are not going to generalise
-- (plan NoGen, no_gen = LetGblBndr) there is no AbsBinds,
-- and we use the original name directly
newLetBndr LetLclBndr name w ty
= do { mono_name <- cloneLocalName name
; return (mkLocalId mono_name w ty) }
newLetBndr (LetGblBndr prags) name w ty
= addInlinePrags (mkLocalId name w ty) (lookupPragEnv prags name)
tc_sub_type :: PatEnv -> ExpSigmaType -> TcSigmaType -> TcM HsWrapper
-- tcSubTypeET with the UserTypeCtxt specialised to GenSigCtxt
-- Used during typechecking patterns
tc_sub_type penv t1 t2 = tcSubTypePat (pe_orig penv) GenSigCtxt t1 t2
{- Note [Subsumption check at pattern variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we come across a variable with a type signature, we need to do a
subsumption, not equality, check against the context type. e.g.
data T = MkT (forall a. a->a)
f :: forall b. [b]->[b]
MkT f = blah
Since 'blah' returns a value of type T, its payload is a polymorphic
function of type (forall a. a->a). And that's enough to bind the
less-polymorphic function 'f', but we need some impedance matching
to witness the instantiation.
************************************************************************
* *
The main worker functions
* *
************************************************************************
Note [Nesting]
~~~~~~~~~~~~~~
tcPat takes a "thing inside" over which the pattern scopes. This is partly
so that tcPat can extend the environment for the thing_inside, but also
so that constraints arising in the thing_inside can be discharged by the
pattern.
This does not work so well for the ErrCtxt carried by the monad: we don't
want the error-context for the pattern to scope over the RHS.
Hence the getErrCtxt/setErrCtxt stuff in tcMultiple
-}
--------------------
type Checker inp out = forall r.
PatEnv
-> inp
-> TcM r -- Thing inside
-> TcM ( out
, r -- Result of thing inside
)
tcMultiple :: Checker inp out -> Checker [inp] [out]
tcMultiple tc_pat penv args thing_inside
= do { err_ctxt <- getErrCtxt
; let loop _ []
= do { res <- thing_inside
; return ([], res) }
loop penv (arg:args)
= do { (p', (ps', res))
<- tc_pat penv arg $
setErrCtxt err_ctxt $
loop penv args
-- setErrCtxt: restore context before doing the next pattern
-- See note [Nesting] above
; return (p':ps', res) }
; loop penv args }
--------------------
tc_lpat :: Scaled ExpSigmaType
-> Checker (LPat GhcRn) (LPat GhcTc)
tc_lpat pat_ty penv (L span pat) thing_inside
= setSrcSpanA span $
do { (pat', res) <- maybeWrapPatCtxt pat (tc_pat pat_ty penv pat)
thing_inside
; return (L span pat', res) }
tc_lpats :: [Scaled ExpSigmaType]
-> Checker [LPat GhcRn] [LPat GhcTc]
tc_lpats tys penv pats
= assertPpr (equalLength pats tys) (ppr pats $$ ppr tys) $
tcMultiple (\ penv' (p,t) -> tc_lpat t penv' p)
penv
(zipEqual "tc_lpats" pats tys)
--------------------
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
checkManyPattern :: Scaled a -> TcM HsWrapper
checkManyPattern pat_ty = tcSubMult NonLinearPatternOrigin Many (scaledMult pat_ty)
tc_pat :: Scaled ExpSigmaType
-- ^ Fully refined result type
-> Checker (Pat GhcRn) (Pat GhcTc)
-- ^ Translated pattern
tc_pat pat_ty penv ps_pat thing_inside = case ps_pat of
VarPat x (L l name) -> do
{ (wrap, id) <- tcPatBndr penv name pat_ty
; (res, mult_wrap) <- tcCheckUsage name (scaledMult pat_ty) $
tcExtendIdEnv1 name id thing_inside
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat (wrap <.> mult_wrap) (VarPat x (L l id)) pat_ty, res) }
ParPat x pat -> do
{ (pat', res) <- tc_lpat pat_ty penv pat thing_inside
; return (ParPat x pat', res) }
BangPat x pat -> do
{ (pat', res) <- tc_lpat pat_ty penv pat thing_inside
; return (BangPat x pat', res) }
LazyPat x pat -> do
{ mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
; (pat', (res, pat_ct))
<- tc_lpat pat_ty (makeLazy penv) pat $
captureConstraints thing_inside
-- Ignore refined penv', revert to penv
; emitConstraints pat_ct
-- captureConstraints/extendConstraints:
-- see Note [Hopping the LIE in lazy patterns]
-- Check that the expected pattern type is itself lifted
; pat_ty <- readExpType (scaledThing pat_ty)
; _ <- unifyType Nothing (tcTypeKind pat_ty) liftedTypeKind
; return (mkHsWrapPat mult_wrap (LazyPat x pat') pat_ty, res) }
WildPat _ -> do
{ mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
; res <- thing_inside
; pat_ty <- expTypeToType (scaledThing pat_ty)
; return (mkHsWrapPat mult_wrap (WildPat pat_ty) pat_ty, res) }
AsPat x (L nm_loc name) pat -> do
{ mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
; (wrap, bndr_id) <- setSrcSpanA nm_loc (tcPatBndr penv name pat_ty)
; (pat', res) <- tcExtendIdEnv1 name bndr_id $
tc_lpat (pat_ty `scaledSet`(mkCheckExpType $ idType bndr_id))
penv pat thing_inside
-- NB: if we do inference on:
-- \ (y@(x::forall a. a->a)) = e
-- we'll fail. The as-pattern infers a monotype for 'y', which then
-- fails to unify with the polymorphic type for 'x'. This could
-- perhaps be fixed, but only with a bit more work.
--
-- If you fix it, don't forget the bindInstsOfPatIds!
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat (wrap <.> mult_wrap) (AsPat x (L nm_loc bndr_id) pat') pat_ty, res) }
ViewPat _ expr pat -> do
{ mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
--
-- It should be possible to have view patterns at linear (or otherwise
-- non-Many) multiplicity. But it is not clear at the moment what
-- restriction need to be put in place, if any, for linear view
-- patterns to desugar to type-correct Core.
; (expr',expr_ty) <- tcInferRho expr
-- Note [View patterns and polymorphism]
-- Expression must be a function
; let herald = text "A view pattern expression expects"
; (expr_wrap1, Scaled _mult inf_arg_ty, inf_res_sigma)
<- matchActualFunTySigma herald (Just (ppr expr)) (1,[]) expr_ty
-- See Note [View patterns and polymorphism]
-- expr_wrap1 :: expr_ty "->" (inf_arg_ty -> inf_res_sigma)
-- Check that overall pattern is more polymorphic than arg type
; expr_wrap2 <- tc_sub_type penv (scaledThing pat_ty) inf_arg_ty
-- expr_wrap2 :: pat_ty "->" inf_arg_ty
-- Pattern must have inf_res_sigma
; (pat', res) <- tc_lpat (pat_ty `scaledSet` mkCheckExpType inf_res_sigma) penv pat thing_inside
; let Scaled w h_pat_ty = pat_ty
; pat_ty <- readExpType h_pat_ty
; let expr_wrap2' = mkWpFun expr_wrap2 idHsWrapper
(Scaled w pat_ty) inf_res_sigma doc
-- expr_wrap2' :: (inf_arg_ty -> inf_res_sigma) "->"
-- (pat_ty -> inf_res_sigma)
expr_wrap = expr_wrap2' <.> expr_wrap1 <.> mult_wrap
doc = text "When checking the view pattern function:" <+> (ppr expr)
; return (ViewPat pat_ty (mkLHsWrap expr_wrap expr') pat', res)}
{- Note [View patterns and polymorphism]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this exotic example:
pair :: forall a. Bool -> a -> forall b. b -> (a,b)
f :: Int -> blah
f (pair True -> x) = ...here (x :: forall b. b -> (Int,b))
The expression (pair True) should have type
pair True :: Int -> forall b. b -> (Int,b)
so that it is ready to consume the incoming Int. It should be an
arrow type (t1 -> t2); hence using (tcInferRho expr).
Then, when taking that arrow apart we want to get a *sigma* type
(forall b. b->(Int,b)), because that's what we want to bind 'x' to.
Fortunately that's what matchExpectedFunTySigma returns anyway.
-}
-- Type signatures in patterns
-- See Note [Pattern coercions] below
SigPat _ pat sig_ty -> do
{ (inner_ty, tv_binds, wcs, wrap) <- tcPatSig (inPatBind penv)
sig_ty (scaledThing pat_ty)
-- Using tcExtendNameTyVarEnv is appropriate here
-- because we're not really bringing fresh tyvars into scope.
-- We're *naming* existing tyvars. Note that it is OK for a tyvar
-- from an outer scope to mention one of these tyvars in its kind.
; (pat', res) <- tcExtendNameTyVarEnv wcs $
tcExtendNameTyVarEnv tv_binds $
tc_lpat (pat_ty `scaledSet` mkCheckExpType inner_ty) penv pat thing_inside
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat wrap (SigPat inner_ty pat' sig_ty) pat_ty, res) }
------------------------
-- Lists, tuples, arrays
ListPat Nothing pats -> do
{ (coi, elt_ty) <- matchExpectedPatTy matchExpectedListTy penv (scaledThing pat_ty)
; (pats', res) <- tcMultiple (tc_lpat (pat_ty `scaledSet` mkCheckExpType elt_ty))
penv pats thing_inside
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat coi
(ListPat (ListPatTc elt_ty Nothing) pats') pat_ty, res)
}
ListPat (Just e) pats -> do
{ tau_pat_ty <- expTypeToType (scaledThing pat_ty)
; ((pats', res, elt_ty), e')
<- tcSyntaxOpGen ListOrigin e [SynType (mkCheckExpType tau_pat_ty)]
SynList $
\ [elt_ty] _ ->
do { (pats', res) <- tcMultiple (tc_lpat (pat_ty `scaledSet` mkCheckExpType elt_ty))
penv pats thing_inside
; return (pats', res, elt_ty) }
; return (ListPat (ListPatTc elt_ty (Just (tau_pat_ty,e'))) pats', res)
}
TuplePat _ pats boxity -> do
{ let arity = length pats
tc = tupleTyCon boxity arity
-- NB: tupleTyCon does not flatten 1-tuples
-- See Note [Don't flatten tuples from HsSyn] in GHC.Core.Make
; checkTupSize arity
; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc)
penv (scaledThing pat_ty)
-- Unboxed tuples have RuntimeRep vars, which we discard:
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
; let con_arg_tys = case boxity of Unboxed -> drop arity arg_tys
Boxed -> arg_tys
; (pats', res) <- tc_lpats (map (scaledSet pat_ty . mkCheckExpType) con_arg_tys)
penv pats thing_inside
; dflags <- getDynFlags
-- Under flag control turn a pattern (x,y,z) into ~(x,y,z)
-- so that we can experiment with lazy tuple-matching.
-- This is a pretty odd place to make the switch, but
-- it was easy to do.
; let
unmangled_result = TuplePat con_arg_tys pats' boxity
-- pat_ty /= pat_ty iff coi /= IdCo
possibly_mangled_result
| gopt Opt_IrrefutableTuples dflags &&
isBoxed boxity = LazyPat noExtField (noLocA unmangled_result)
| otherwise = unmangled_result
; pat_ty <- readExpType (scaledThing pat_ty)
; massert (con_arg_tys `equalLength` pats) -- Syntactically enforced
; return (mkHsWrapPat coi possibly_mangled_result pat_ty, res)
}
SumPat _ pat alt arity -> do
{ let tc = sumTyCon arity
; (coi, arg_tys) <- matchExpectedPatTy (matchExpectedTyConApp tc)
penv (scaledThing pat_ty)
; -- Drop levity vars, we don't care about them here
let con_arg_tys = drop arity arg_tys
; (pat', res) <- tc_lpat (pat_ty `scaledSet` mkCheckExpType (con_arg_tys `getNth` (alt - 1)))
penv pat thing_inside
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat coi (SumPat con_arg_tys pat' alt arity) pat_ty
, res)
}
------------------------
-- Data constructors
ConPat _ con arg_pats ->
tcConPat penv con pat_ty arg_pats thing_inside
------------------------
-- Literal patterns
LitPat x simple_lit -> do
{ let lit_ty = hsLitType simple_lit
; wrap <- tc_sub_type penv (scaledThing pat_ty) lit_ty
; res <- thing_inside
; pat_ty <- readExpType (scaledThing pat_ty)
; return ( mkHsWrapPat wrap (LitPat x (convertLit simple_lit)) pat_ty
, res) }
------------------------
-- Overloaded patterns: n, and n+k
-- In the case of a negative literal (the more complicated case),
-- we get
--
-- case v of (-5) -> blah
--
-- becoming
--
-- if v == (negate (fromInteger 5)) then blah else ...
--
-- There are two bits of rebindable syntax:
-- (==) :: pat_ty -> neg_lit_ty -> Bool
-- negate :: lit_ty -> neg_lit_ty
-- where lit_ty is the type of the overloaded literal 5.
--
-- When there is no negation, neg_lit_ty and lit_ty are the same
NPat _ (L l over_lit) mb_neg eq -> do
{ mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
--
-- It may be possible to refine linear pattern so that they work in
-- linear environments. But it is not clear how useful this is.
; let orig = LiteralOrigin over_lit
; ((lit', mb_neg'), eq')
<- tcSyntaxOp orig eq [SynType (scaledThing pat_ty), SynAny]
(mkCheckExpType boolTy) $
\ [neg_lit_ty] _ ->
let new_over_lit lit_ty = newOverloadedLit over_lit
(mkCheckExpType lit_ty)
in case mb_neg of
Nothing -> (, Nothing) <$> new_over_lit neg_lit_ty
Just neg -> -- Negative literal
-- The 'negate' is re-mappable syntax
second Just <$>
(tcSyntaxOp orig neg [SynRho] (mkCheckExpType neg_lit_ty) $
\ [lit_ty] _ -> new_over_lit lit_ty)
-- applied to a closed literal: linearity doesn't matter as
-- literals are typed in an empty environment, hence have
-- all multiplicities.
; res <- thing_inside
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat mult_wrap (NPat pat_ty (L l lit') mb_neg' eq') pat_ty, res) }
{-
Note [NPlusK patterns]
~~~~~~~~~~~~~~~~~~~~~~
From
case v of x + 5 -> blah
we get
if v >= 5 then (\x -> blah) (v - 5) else ...
There are two bits of rebindable syntax:
(>=) :: pat_ty -> lit1_ty -> Bool
(-) :: pat_ty -> lit2_ty -> var_ty
lit1_ty and lit2_ty could conceivably be different.
var_ty is the type inferred for x, the variable in the pattern.
Note that we need to type-check the literal twice, because it is used
twice, and may be used at different types. The second HsOverLit stored in the
AST is used for the subtraction operation.
-}
-- See Note [NPlusK patterns]
NPlusKPat _ (L nm_loc name)
(L loc lit) _ ge minus -> do
{ mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
; let pat_exp_ty = scaledThing pat_ty
orig = LiteralOrigin lit
; (lit1', ge')
<- tcSyntaxOp orig ge [SynType pat_exp_ty, SynRho]
(mkCheckExpType boolTy) $
\ [lit1_ty] _ ->
newOverloadedLit lit (mkCheckExpType lit1_ty)
; ((lit2', minus_wrap, bndr_id), minus')
<- tcSyntaxOpGen orig minus [SynType pat_exp_ty, SynRho] SynAny $
\ [lit2_ty, var_ty] _ ->
do { lit2' <- newOverloadedLit lit (mkCheckExpType lit2_ty)
; (wrap, bndr_id) <- setSrcSpanA nm_loc $
tcPatBndr penv name (unrestricted $ mkCheckExpType var_ty)
-- co :: var_ty ~ idType bndr_id
-- minus_wrap is applicable to minus'
; return (lit2', wrap, bndr_id) }
; pat_ty <- readExpType pat_exp_ty
-- The Report says that n+k patterns must be in Integral
-- but it's silly to insist on this in the RebindableSyntax case
; unlessM (xoptM LangExt.RebindableSyntax) $
do { icls <- tcLookupClass integralClassName
; instStupidTheta orig [mkClassPred icls [pat_ty]] }
; res <- tcExtendIdEnv1 name bndr_id thing_inside
; let minus'' = case minus' of
NoSyntaxExprTc -> pprPanic "tc_pat NoSyntaxExprTc" (ppr minus')
-- this should be statically avoidable
-- Case (3) from Note [NoSyntaxExpr] in "GHC.Hs.Expr"
SyntaxExprTc { syn_expr = minus'_expr
, syn_arg_wraps = minus'_arg_wraps
, syn_res_wrap = minus'_res_wrap }
-> SyntaxExprTc { syn_expr = minus'_expr
, syn_arg_wraps = minus'_arg_wraps
, syn_res_wrap = minus_wrap <.> minus'_res_wrap }
-- Oy. This should really be a record update, but
-- we get warnings if we try. #17783
pat' = NPlusKPat pat_ty (L nm_loc bndr_id) (L loc lit1') lit2'
ge' minus''
; return (mkHsWrapPat mult_wrap pat' pat_ty, res) }
-- HsSpliced is an annotation produced by 'GHC.Rename.Splice.rnSplicePat'.
-- Here we get rid of it and add the finalizers to the global environment.
--
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice.
SplicePat _ splice -> case splice of
(HsSpliced _ mod_finalizers (HsSplicedPat pat)) -> do
{ addModFinalizersWithLclEnv mod_finalizers
; tc_pat pat_ty penv pat thing_inside }
_ -> panic "invalid splice in splice pat"
{-
Note [Hopping the LIE in lazy patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a lazy pattern, we must *not* discharge constraints from the RHS
from dictionaries bound in the pattern. E.g.
f ~(C x) = 3
We can't discharge the Num constraint from dictionaries bound by
the pattern C!
So we have to make the constraints from thing_inside "hop around"
the pattern. Hence the captureConstraints and emitConstraints.
The same thing ensures that equality constraints in a lazy match
are not made available in the RHS of the match. For example
data T a where { T1 :: Int -> T Int; ... }
f :: T a -> Int -> a
f ~(T1 i) y = y
It's obviously not sound to refine a to Int in the right
hand side, because the argument might not match T1 at all!
Finally, a lazy pattern should not bind any existential type variables
because they won't be in scope when we do the desugaring
************************************************************************
* *
Pattern signatures (pat :: type)
* *
************************************************************************
-}
tcPatSig :: Bool -- True <=> pattern binding
-> HsPatSigType GhcRn
-> ExpSigmaType
-> TcM (TcType, -- The type to use for "inside" the signature
[(Name,TcTyVar)], -- The new bit of type environment, binding
-- the scoped type variables
[(Name,TcTyVar)], -- The wildcards
HsWrapper) -- Coercion due to unification with actual ty
-- Of shape: res_ty ~ sig_ty
tcPatSig in_pat_bind sig res_ty
= do { (sig_wcs, sig_tvs, sig_ty) <- tcHsPatSigType PatSigCtxt HM_Sig sig OpenKind
-- sig_tvs are the type variables free in 'sig',
-- and not already in scope. These are the ones
-- that should be brought into scope
; if null sig_tvs then do {
-- Just do the subsumption check and return
wrap <- addErrCtxtM (mk_msg sig_ty) $
tcSubTypePat PatSigOrigin PatSigCtxt res_ty sig_ty
; return (sig_ty, [], sig_wcs, wrap)
} else do
-- Type signature binds at least one scoped type variable
-- A pattern binding cannot bind scoped type variables
-- It is more convenient to make the test here
-- than in the renamer
{ when in_pat_bind (addErr (patBindSigErr sig_tvs))
-- Now do a subsumption check of the pattern signature against res_ty
; wrap <- addErrCtxtM (mk_msg sig_ty) $
tcSubTypePat PatSigOrigin PatSigCtxt res_ty sig_ty
-- Phew!
; return (sig_ty, sig_tvs, sig_wcs, wrap)
} }
where
mk_msg sig_ty tidy_env
= do { (tidy_env, sig_ty) <- zonkTidyTcType tidy_env sig_ty
; res_ty <- readExpType res_ty -- should be filled in by now
; (tidy_env, res_ty) <- zonkTidyTcType tidy_env res_ty
; let msg = vcat [ hang (text "When checking that the pattern signature:")
4 (ppr sig_ty)
, nest 2 (hang (text "fits the type of its context:")
2 (ppr res_ty)) ]
; return (tidy_env, msg) }
patBindSigErr :: [(Name,TcTyVar)] -> SDoc
patBindSigErr sig_tvs
= hang (text "You cannot bind scoped type variable" <> plural sig_tvs
<+> pprQuotedList (map fst sig_tvs))
2 (text "in a pattern binding signature")
{- *********************************************************************
* *
Most of the work for constructors is here
(the rest is in the ConPatIn case of tc_pat)
* *
************************************************************************
[Pattern matching indexed data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following declarations:
data family Map k :: * -> *
data instance Map (a, b) v = MapPair (Map a (Pair b v))
and a case expression
case x :: Map (Int, c) w of MapPair m -> ...
As explained by [Wrappers for data instance tycons] in GHC.Types.Id.Make, the
worker/wrapper types for MapPair are
$WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
$wMapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v
So, the type of the scrutinee is Map (Int, c) w, but the tycon of MapPair is
:R123Map, which means the straight use of boxySplitTyConApp would give a type
error. Hence, the smart wrapper function boxySplitTyConAppWithFamily calls
boxySplitTyConApp with the family tycon Map instead, which gives us the family
type list {(Int, c), w}. To get the correct split for :R123Map, we need to
unify the family type list {(Int, c), w} with the instance types {(a, b), v}
(provided by tyConFamInst_maybe together with the family tycon). This
unification yields the substitution [a -> Int, b -> c, v -> w], which gives us
the split arguments for the representation tycon :R123Map as {Int, c, w}
In other words, boxySplitTyConAppWithFamily implicitly takes the coercion
Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}
moving between representation and family type into account. To produce type
correct Core, this coercion needs to be used to case the type of the scrutinee
from the family to the representation type. This is achieved by
unwrapFamInstScrutinee using a CoPat around the result pattern.
Now it might appear seem as if we could have used the previous GADT type
refinement infrastructure of refineAlt and friends instead of the explicit
unification and CoPat generation. However, that would be wrong. Why? The
whole point of GADT refinement is that the refinement is local to the case
alternative. In contrast, the substitution generated by the unification of
the family type list and instance types needs to be propagated to the outside.
Imagine that in the above example, the type of the scrutinee would have been
(Map x w), then we would have unified {x, w} with {(a, b), v}, yielding the
substitution [x -> (a, b), v -> w]. In contrast to GADT matching, the
instantiation of x with (a, b) must be global; ie, it must be valid in *all*
alternatives of the case expression, whereas in the GADT case it might vary
between alternatives.
RIP GADT refinement: refinements have been replaced by the use of explicit
equality constraints that are used in conjunction with implication constraints
to express the local scope of GADT refinements.
Note [Freshen existentials]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is essential that these existentials are freshened.
Otherwise, if we have something like
case (a :: Ex, b :: Ex) of (MkEx ..., MkEx ...) -> ...
we'll give both unpacked existential variables the
same name, leading to shadowing.
-}
-- Running example:
-- MkT :: forall a b c. (a~[b]) => b -> c -> T a
-- with scrutinee of type (T ty)
tcConPat :: PatEnv -> LocatedN Name
-> Scaled ExpSigmaType -- Type of the pattern
-> HsConPatDetails GhcRn -> TcM a
-> TcM (Pat GhcTc, a)
tcConPat penv con_lname@(L _ con_name) pat_ty arg_pats thing_inside
= do { con_like <- tcLookupConLike con_name
; case con_like of
RealDataCon data_con -> tcDataConPat penv con_lname data_con
pat_ty arg_pats thing_inside
PatSynCon pat_syn -> tcPatSynPat penv con_lname pat_syn
pat_ty arg_pats thing_inside
}
tcDataConPat :: PatEnv -> LocatedN Name -> DataCon
-> Scaled ExpSigmaType -- Type of the pattern
-> HsConPatDetails GhcRn -> TcM a
-> TcM (Pat GhcTc, a)
tcDataConPat penv (L con_span con_name) data_con pat_ty_scaled
arg_pats thing_inside
= do { let tycon = dataConTyCon data_con
-- For data families this is the representation tycon
(univ_tvs, ex_tvs, eq_spec, theta, arg_tys, _)
= dataConFullSig data_con
header = L con_span (RealDataCon data_con)
-- Instantiate the constructor type variables [a->ty]
-- This may involve doing a family-instance coercion,
-- and building a wrapper
; (wrap, ctxt_res_tys) <- matchExpectedConTy penv tycon pat_ty_scaled
; pat_ty <- readExpType (scaledThing pat_ty_scaled)
-- Add the stupid theta
; setSrcSpanA con_span $ addDataConStupidTheta data_con ctxt_res_tys
; let all_arg_tys = eqSpecPreds eq_spec ++ theta ++ (map scaledThing arg_tys)
; checkExistentials ex_tvs all_arg_tys penv
; tenv1 <- instTyVarsWith PatOrigin univ_tvs ctxt_res_tys
-- NB: Do not use zipTvSubst! See #14154
-- We want to create a well-kinded substitution, so
-- that the instantiated type is well-kinded
; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX tenv1 ex_tvs
-- Get location from monad, not from ex_tvs
-- This freshens: See Note [Freshen existentials]
-- Why "super"? See Note [Binding when lookup up instances]
-- in GHC.Core.InstEnv.
; let arg_tys' = substScaledTys tenv arg_tys
pat_mult = scaledMult pat_ty_scaled
arg_tys_scaled = map (scaleScaled pat_mult) arg_tys'
; traceTc "tcConPat" (vcat [ ppr con_name
, pprTyVars univ_tvs
, pprTyVars ex_tvs
, ppr eq_spec
, ppr theta
, pprTyVars ex_tvs'
, ppr ctxt_res_tys
, ppr arg_tys'
, ppr arg_pats ])
; if null ex_tvs && null eq_spec && null theta
then do { -- The common case; no class bindings etc
-- (see Note [Arrows and patterns])
(arg_pats', res) <- tcConArgs (RealDataCon data_con) arg_tys_scaled
tenv penv arg_pats thing_inside
; let res_pat = ConPat { pat_con = header
, pat_args = arg_pats'
, pat_con_ext = ConPatTc
{ cpt_tvs = [], cpt_dicts = []
, cpt_binds = emptyTcEvBinds
, cpt_arg_tys = ctxt_res_tys
, cpt_wrap = idHsWrapper
}
}
; return (mkHsWrapPat wrap res_pat pat_ty, res) }
else do -- The general case, with existential,
-- and local equality constraints
{ let theta' = substTheta tenv (eqSpecPreds eq_spec ++ theta)
-- order is *important* as we generate the list of
-- dictionary binders from theta'
no_equalities = null eq_spec && not (any isEqPred theta)
skol_info = PatSkol (RealDataCon data_con) mc
mc = case pe_ctxt penv of
LamPat mc -> mc
LetPat {} -> PatBindRhs
; gadts_on <- xoptM LangExt.GADTs
; families_on <- xoptM LangExt.TypeFamilies
; checkTc (no_equalities || gadts_on || families_on)
(text "A pattern match on a GADT requires the" <+>
text "GADTs or TypeFamilies language extension")
-- #2905 decided that a *pattern-match* of a GADT
-- should require the GADT language flag.
-- Re TypeFamilies see also #7156
; given <- newEvVars theta'
; (ev_binds, (arg_pats', res))
<- checkConstraints skol_info ex_tvs' given $
tcConArgs (RealDataCon data_con) arg_tys_scaled tenv penv arg_pats thing_inside
; let res_pat = ConPat
{ pat_con = header
, pat_args = arg_pats'
, pat_con_ext = ConPatTc
{ cpt_tvs = ex_tvs'
, cpt_dicts = given
, cpt_binds = ev_binds
, cpt_arg_tys = ctxt_res_tys
, cpt_wrap = idHsWrapper
}
}
; return (mkHsWrapPat wrap res_pat pat_ty, res)
} }
tcPatSynPat :: PatEnv -> LocatedN Name -> PatSyn
-> Scaled ExpSigmaType -- Type of the pattern
-> HsConPatDetails GhcRn -> TcM a
-> TcM (Pat GhcTc, a)
tcPatSynPat penv (L con_span con_name) pat_syn pat_ty arg_pats thing_inside
= do { let (univ_tvs, req_theta, ex_tvs, prov_theta, arg_tys, ty) = patSynSig pat_syn
; (subst, univ_tvs') <- newMetaTyVars univ_tvs
; let all_arg_tys = ty : prov_theta ++ (map scaledThing arg_tys)
; checkExistentials ex_tvs all_arg_tys penv
; (tenv, ex_tvs') <- tcInstSuperSkolTyVarsX subst ex_tvs
-- This freshens: Note [Freshen existentials]
; let ty' = substTy tenv ty
arg_tys' = substScaledTys tenv arg_tys
pat_mult = scaledMult pat_ty
arg_tys_scaled = map (scaleScaled pat_mult) arg_tys'
prov_theta' = substTheta tenv prov_theta
req_theta' = substTheta tenv req_theta
; mult_wrap <- checkManyPattern pat_ty
-- See Note [Wrapper returned from tcSubMult] in GHC.Tc.Utils.Unify.
; wrap <- tc_sub_type penv (scaledThing pat_ty) ty'
; traceTc "tcPatSynPat" (ppr pat_syn $$
ppr pat_ty $$
ppr ty' $$
ppr ex_tvs' $$
ppr prov_theta' $$
ppr req_theta' $$
ppr arg_tys')
; prov_dicts' <- newEvVars prov_theta'
; let skol_info = case pe_ctxt penv of
LamPat mc -> PatSkol (PatSynCon pat_syn) mc
LetPat {} -> UnkSkol -- Doesn't matter
; req_wrap <- instCall (OccurrenceOf con_name) (mkTyVarTys univ_tvs') req_theta'
-- Origin (OccurrenceOf con_name):
-- see Note [Call-stack tracing of pattern synonyms]
; traceTc "instCall" (ppr req_wrap)
; traceTc "checkConstraints {" Outputable.empty
; (ev_binds, (arg_pats', res))
<- checkConstraints skol_info ex_tvs' prov_dicts' $
tcConArgs (PatSynCon pat_syn) arg_tys_scaled tenv penv arg_pats thing_inside
; traceTc "checkConstraints }" (ppr ev_binds)
; let res_pat = ConPat { pat_con = L con_span $ PatSynCon pat_syn
, pat_args = arg_pats'
, pat_con_ext = ConPatTc
{ cpt_tvs = ex_tvs'
, cpt_dicts = prov_dicts'
, cpt_binds = ev_binds
, cpt_arg_tys = mkTyVarTys univ_tvs'
, cpt_wrap = req_wrap
}
}
; pat_ty <- readExpType (scaledThing pat_ty)
; return (mkHsWrapPat (wrap <.> mult_wrap) res_pat pat_ty, res) }
{- Note [Call-stack tracing of pattern synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f :: HasCallStack => blah
pattern Annotated :: HasCallStack => (CallStack, a) -> a
pattern Annotated x <- (f -> x)
When we pattern-match against `Annotated` we will call `f`, and must
pass a call-stack. We may want `Annotated` itself to propagate the call
stack, so we give it a HasCallStack constraint too. But then we expect
to see `Annotated` in the call stack.
This is achieve easily, but a bit trickily. When we instantiate
Annotated's "required" constraints, in tcPatSynPat, give them a
CtOrigin of (OccurrenceOf "Annotated"). That way the special magic
in GHC.Tc.Solver.Canonical.canClassNC which deals with CallStack
constraints will kick in: that logic only fires on constraints
whose Origin is (OccurrenceOf f).
See also Note [Overview of implicit CallStacks] in GHC.Tc.Types.Evidence
and Note [Solving CallStack constraints] in GHC.Tc.Solver.Monad
-}
----------------------------
-- | Convenient wrapper for calling a matchExpectedXXX function
matchExpectedPatTy :: (TcRhoType -> TcM (TcCoercionN, a))
-> PatEnv -> ExpSigmaType -> TcM (HsWrapper, a)
-- See Note [Matching polytyped patterns]
-- Returns a wrapper : pat_ty ~R inner_ty
matchExpectedPatTy inner_match (PE { pe_orig = orig }) pat_ty
= do { pat_ty <- expTypeToType pat_ty
; (wrap, pat_rho) <- topInstantiate orig pat_ty
; (co, res) <- inner_match pat_rho
; traceTc "matchExpectedPatTy" (ppr pat_ty $$ ppr wrap)
; return (mkWpCastN (mkTcSymCo co) <.> wrap, res) }
----------------------------
matchExpectedConTy :: PatEnv
-> TyCon -- The TyCon that this data
-- constructor actually returns
-- In the case of a data family this is
-- the /representation/ TyCon
-> Scaled ExpSigmaType -- The type of the pattern; in the
-- case of a data family this would
-- mention the /family/ TyCon
-> TcM (HsWrapper, [TcSigmaType])
-- See Note [Matching constructor patterns]
-- Returns a wrapper : pat_ty "->" T ty1 ... tyn
matchExpectedConTy (PE { pe_orig = orig }) data_tc exp_pat_ty
| Just (fam_tc, fam_args, co_tc) <- tyConFamInstSig_maybe data_tc
-- Comments refer to Note [Matching constructor patterns]
-- co_tc :: forall a. T [a] ~ T7 a
= do { pat_ty <- expTypeToType (scaledThing exp_pat_ty)
; (wrap, pat_rho) <- topInstantiate orig pat_ty
; (subst, tvs') <- newMetaTyVars (tyConTyVars data_tc)
-- tys = [ty1,ty2]
; traceTc "matchExpectedConTy" (vcat [ppr data_tc,
ppr (tyConTyVars data_tc),
ppr fam_tc, ppr fam_args,
ppr exp_pat_ty,
ppr pat_ty,
ppr pat_rho, ppr wrap])
; co1 <- unifyType Nothing (mkTyConApp fam_tc (substTys subst fam_args)) pat_rho
-- co1 : T (ty1,ty2) ~N pat_rho
-- could use tcSubType here... but it's the wrong way round
-- for actual vs. expected in error messages.
; let tys' = mkTyVarTys tvs'
co2 = mkTcUnbranchedAxInstCo co_tc tys' []
-- co2 : T (ty1,ty2) ~R T7 ty1 ty2
full_co = mkTcSubCo (mkTcSymCo co1) `mkTcTransCo` co2
-- full_co :: pat_rho ~R T7 ty1 ty2
; return ( mkWpCastR full_co <.> wrap, tys') }
| otherwise
= do { pat_ty <- expTypeToType (scaledThing exp_pat_ty)
; (wrap, pat_rho) <- topInstantiate orig pat_ty
; (coi, tys) <- matchExpectedTyConApp data_tc pat_rho
; return (mkWpCastN (mkTcSymCo coi) <.> wrap, tys) }
{-
Note [Matching constructor patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose (coi, tys) = matchExpectedConType data_tc pat_ty
* In the simple case, pat_ty = tc tys
* If pat_ty is a polytype, we want to instantiate it
This is like part of a subsumption check. Eg
f :: (forall a. [a]) -> blah
f [] = blah
* In a type family case, suppose we have
data family T a
data instance T (p,q) = A p | B q
Then we'll have internally generated
data T7 p q = A p | B q
axiom coT7 p q :: T (p,q) ~ T7 p q
So if pat_ty = T (ty1,ty2), we return (coi, [ty1,ty2]) such that
coi = coi2 . coi1 : T7 t ~ pat_ty
coi1 : T (ty1,ty2) ~ pat_ty
coi2 : T7 ty1 ty2 ~ T (ty1,ty2)
For families we do all this matching here, not in the unifier,
because we never want a whisper of the data_tycon to appear in
error messages; it's a purely internal thing
-}
{-
Note [Typechecking type applications in patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How should we typecheck type applications in patterns, such as
f :: Either (Maybe a) [b] -> blah
f (Left @x @[y] (v::Maybe x)) = blah
It's quite straightforward, and very similar to the treatment of
pattern signatures.
* Step 1: bind the newly-in-scope type variables x and y to fresh
unification variables, say x0 and y0.
* Step 2: typecheck those type arguments, @x and @[y], to get the
types x0 and [y0].
* Step 3: Unify those types with the type arguments we expect,
in this case (Maybe a) and [b]. These unifications will
(perhaps after the constraint solver has done its work)
unify x0 := Maybe a
y0 := b
Thus we learn that x stands for (Maybe a) and y for b.
Wrinkles:
* Surprisingly, we can discard the coercions arising from
these unifications. The *only* thing the unification does is
to side-effect those unification variables, so that we know
what type x and y stand for; and cause an error if the equality
is not soluble. It's a bit like a Derived constraint arising
from a functional dependency.
* Exactly the same works for existential arguments
data T where
MkT :: a -> a -> T
f :: T -> blah
f (MkT @x v w) = ...
Here we create a fresh unification variable x0 for x, and
unify it with the fresh existential variable bound by the pattern.
* Note that both here and in pattern signatures the unification may
not even end up unifying the variable. For example
type S a b = a
f :: Maybe a -> Bool
f (Just @(S a b) x) = True :: b
In Step 3 we will unify (S a0 b0 ~ a), which succeeds, but has no
effect on the unification variable b0, to which 'b' is bound.
Later, in the RHS, we find that b0 must be Bool, and unify it there.
All is fine.
-}
tcConArgs :: ConLike
-> [Scaled TcSigmaType]
-> TCvSubst -- Instantiating substitution for constructor type
-> Checker (HsConPatDetails GhcRn) (HsConPatDetails GhcTc)
tcConArgs con_like arg_tys tenv penv con_args thing_inside = case con_args of
PrefixCon type_args arg_pats -> do
{ checkTc (con_arity == no_of_args) -- Check correct arity
(arityErr (text "constructor") con_like con_arity no_of_args)
; let con_binders = conLikeUserTyVarBinders con_like
; checkTc (type_args `leLength` con_binders)
(conTyArgArityErr con_like (length con_binders) (length type_args))
; let pats_w_tys = zipEqual "tcConArgs" arg_pats arg_tys
; (type_args', (arg_pats', res))
<- tcMultiple tcConTyArg penv type_args $
tcMultiple tcConArg penv pats_w_tys thing_inside
-- This unification is straight from Figure 7 of
-- "Type Variables in Patterns", Haskell'18
; _ <- zipWithM (unifyType Nothing) type_args' (substTyVars tenv $
binderVars con_binders)
-- OK to drop coercions here. These unifications are all about
-- guiding inference based on a user-written type annotation
-- See Note [Typechecking type applications in patterns]
; return (PrefixCon type_args arg_pats', res) }
where
con_arity = conLikeArity con_like
no_of_args = length arg_pats
InfixCon p1 p2 -> do
{ checkTc (con_arity == 2) -- Check correct arity
(arityErr (text "constructor") con_like con_arity 2)
; let [arg_ty1,arg_ty2] = arg_tys -- This can't fail after the arity check
; ([p1',p2'], res) <- tcMultiple tcConArg penv [(p1,arg_ty1),(p2,arg_ty2)]
thing_inside
; return (InfixCon p1' p2', res) }
where
con_arity = conLikeArity con_like
RecCon (HsRecFields rpats dd) -> do
{ (rpats', res) <- tcMultiple tc_field penv rpats thing_inside
; return (RecCon (HsRecFields rpats' dd), res) }
where
tc_field :: Checker (LHsRecField GhcRn (LPat GhcRn))
(LHsRecField GhcTc (LPat GhcTc))
tc_field penv
(L l (HsRecField ann (L loc (FieldOcc sel (L lr rdr))) pat pun))
thing_inside
= do { sel' <- tcLookupId sel
; pat_ty <- setSrcSpan loc $ find_field_ty sel
(occNameFS $ rdrNameOcc rdr)
; (pat', res) <- tcConArg penv (pat, pat_ty) thing_inside
; return (L l (HsRecField ann (L loc (FieldOcc sel' (L lr rdr))) pat'
pun), res) }
find_field_ty :: Name -> FieldLabelString -> TcM (Scaled TcType)
find_field_ty sel lbl
= case [ty | (fl, ty) <- field_tys, flSelector fl == sel ] of
-- No matching field; chances are this field label comes from some
-- other record type (or maybe none). If this happens, just fail,
-- otherwise we get crashes later (#8570), and similar:
-- f (R { foo = (a,b) }) = a+b
-- If foo isn't one of R's fields, we don't want to crash when
-- typechecking the "a+b".
[] -> failWith (badFieldCon con_like lbl)
-- The normal case, when the field comes from the right constructor
(pat_ty : extras) -> do
traceTc "find_field" (ppr pat_ty <+> ppr extras)
assert (null extras) (return pat_ty)
field_tys :: [(FieldLabel, Scaled TcType)]
field_tys = zip (conLikeFieldLabels con_like) arg_tys
-- Don't use zipEqual! If the constructor isn't really a record, then
-- dataConFieldLabels will be empty (and each field in the pattern
-- will generate an error below).
tcConTyArg :: Checker (HsPatSigType GhcRn) TcType
tcConTyArg penv rn_ty thing_inside
= do { (sig_wcs, sig_ibs, arg_ty) <- tcHsPatSigType TypeAppCtxt HM_TyAppPat rn_ty AnyKind
-- AnyKind is a bit suspect: it really should be the kind gotten
-- from instantiating the constructor type. But this would be
-- hard to get right, because earlier type patterns might influence
-- the kinds of later patterns. In any case, it all gets checked
-- by the calls to unifyType in tcConArgs, which will also unify
-- kinds.
; when (not (null sig_ibs) && inPatBind penv) $
addErr (text "Binding type variables is not allowed in pattern bindings")
; result <- tcExtendNameTyVarEnv sig_wcs $
tcExtendNameTyVarEnv sig_ibs $
thing_inside
; return (arg_ty, result) }
tcConArg :: Checker (LPat GhcRn, Scaled TcSigmaType) (LPat GhcTc)
tcConArg penv (arg_pat, Scaled arg_mult arg_ty)
= tc_lpat (Scaled arg_mult (mkCheckExpType arg_ty)) penv arg_pat
addDataConStupidTheta :: DataCon -> [TcType] -> TcM ()
-- Instantiate the "stupid theta" of the data con, and throw
-- the constraints into the constraint set
addDataConStupidTheta data_con inst_tys
| null stupid_theta = return ()
| otherwise = instStupidTheta origin inst_theta
where
origin = OccurrenceOf (dataConName data_con)
-- The origin should always report "occurrence of C"
-- even when C occurs in a pattern
stupid_theta = dataConStupidTheta data_con
univ_tvs = dataConUnivTyVars data_con
tenv = zipTvSubst univ_tvs (takeList univ_tvs inst_tys)
-- NB: inst_tys can be longer than the univ tyvars
-- because the constructor might have existentials
inst_theta = substTheta tenv stupid_theta
conTyArgArityErr :: ConLike
-> Int -- expected # of arguments
-> Int -- actual # of arguments
-> SDoc
conTyArgArityErr con_like expected_number actual_number
= text "Too many type arguments in constructor pattern for" <+> quotes (ppr con_like) $$
text "Expected no more than" <+> ppr expected_number <> semi <+> text "got" <+> ppr actual_number
{-
Note [Arrows and patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~
(Oct 07) Arrow notation has the odd property that it involves
"holes in the scope". For example:
expr :: Arrow a => a () Int
expr = proc (y,z) -> do
x <- term -< y
expr' -< x
Here the 'proc (y,z)' binding scopes over the arrow tails but not the
arrow body (e.g 'term'). As things stand (bogusly) all the
constraints from the proc body are gathered together, so constraints
from 'term' will be seen by the tcPat for (y,z). But we must *not*
bind constraints from 'term' here, because the desugarer will not make
these bindings scope over 'term'.
The Right Thing is not to confuse these constraints together. But for
now the Easy Thing is to ensure that we do not have existential or
GADT constraints in a 'proc', and to short-cut the constraint
simplification for such vanilla patterns so that it binds no
constraints. Hence the 'fast path' in tcConPat; but it's also a good
plan for ordinary vanilla patterns to bypass the constraint
simplification step.
************************************************************************
* *
Note [Pattern coercions]
* *
************************************************************************
In principle, these program would be reasonable:
f :: (forall a. a->a) -> Int
f (x :: Int->Int) = x 3
g :: (forall a. [a]) -> Bool
g [] = True
In both cases, the function type signature restricts what arguments can be passed
in a call (to polymorphic ones). The pattern type signature then instantiates this
type. For example, in the first case, (forall a. a->a) <= Int -> Int, and we
generate the translated term
f = \x' :: (forall a. a->a). let x = x' Int in x 3
From a type-system point of view, this is perfectly fine, but it's *very* seldom useful.
And it requires a significant amount of code to implement, because we need to decorate
the translated pattern with coercion functions (generated from the subsumption check
by tcSub).
So for now I'm just insisting on type *equality* in patterns. No subsumption.
Old notes about desugaring, at a time when pattern coercions were handled:
A SigPat is a type coercion and must be handled one at a time. We can't
combine them unless the type of the pattern inside is identical, and we don't
bother to check for that. For example:
data T = T1 Int | T2 Bool
f :: (forall a. a -> a) -> T -> t
f (g::Int->Int) (T1 i) = T1 (g i)
f (g::Bool->Bool) (T2 b) = T2 (g b)
We desugar this as follows:
f = \ g::(forall a. a->a) t::T ->
let gi = g Int
in case t of { T1 i -> T1 (gi i)
other ->
let gb = g Bool
in case t of { T2 b -> T2 (gb b)
other -> fail }}
Note that we do not treat the first column of patterns as a
column of variables, because the coerced variables (gi, gb)
would be of different types. So we get rather grotty code.
But I don't think this is a common case, and if it was we could
doubtless improve it.
Meanwhile, the strategy is:
* treat each SigPat coercion (always non-identity coercions)
as a separate block
* deal with the stuff inside, and then wrap a binding round
the result to bind the new variable (gi, gb, etc)
************************************************************************
* *
\subsection{Errors and contexts}
* *
************************************************************************
Note [Existential check]
~~~~~~~~~~~~~~~~~~~~~~~~
Lazy patterns can't bind existentials. They arise in two ways:
* Let bindings let { C a b = e } in b
* Twiddle patterns f ~(C a b) = e
The pe_lazy field of PatEnv says whether we are inside a lazy
pattern (perhaps deeply)
See also Note [Typechecking pattern bindings] in GHC.Tc.Gen.Bind
-}
maybeWrapPatCtxt :: Pat GhcRn -> (TcM a -> TcM b) -> TcM a -> TcM b
-- Not all patterns are worth pushing a context
maybeWrapPatCtxt pat tcm thing_inside
| not (worth_wrapping pat) = tcm thing_inside
| otherwise = addErrCtxt msg $ tcm $ popErrCtxt thing_inside
-- Remember to pop before doing thing_inside
where
worth_wrapping (VarPat {}) = False
worth_wrapping (ParPat {}) = False
worth_wrapping (AsPat {}) = False
worth_wrapping _ = True
msg = hang (text "In the pattern:") 2 (ppr pat)
-----------------------------------------------
checkExistentials :: [TyVar] -- existentials
-> [Type] -- argument types
-> PatEnv -> TcM ()
-- See Note [Existential check]]
-- See Note [Arrows and patterns]
checkExistentials ex_tvs tys _
| all (not . (`elemVarSet` tyCoVarsOfTypes tys)) ex_tvs = return ()
checkExistentials _ _ (PE { pe_ctxt = LetPat {}}) = return ()
checkExistentials _ _ (PE { pe_ctxt = LamPat ProcExpr }) = failWithTc existentialProcPat
checkExistentials _ _ (PE { pe_lazy = True }) = failWithTc existentialLazyPat
checkExistentials _ _ _ = return ()
existentialLazyPat :: SDoc
existentialLazyPat
= hang (text "An existential or GADT data constructor cannot be used")
2 (text "inside a lazy (~) pattern")
existentialProcPat :: SDoc
existentialProcPat
= text "Proc patterns cannot use existential or GADT data constructors"
badFieldCon :: ConLike -> FieldLabelString -> SDoc
badFieldCon con field
= hsep [text "Constructor" <+> quotes (ppr con),
text "does not have field", quotes (ppr field)]
polyPatSig :: TcType -> SDoc
polyPatSig sig_ty
= hang (text "Illegal polymorphic type signature in pattern:")
2 (ppr sig_ty)
|