1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1993-1998
-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TypeFamilies #-}
-- | Typechecking transformation rules
module GHC.Tc.Gen.Rule ( tcRules ) where
import GhcPrelude
import GHC.Hs
import GHC.Tc.Types
import GHC.Tc.Utils.Monad
import GHC.Tc.Solver
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.TcType
import GHC.Tc.Gen.HsType
import GHC.Tc.Gen.Expr
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.Unify( buildImplicationFor )
import GHC.Tc.Types.Evidence( mkTcCoVarCo )
import GHC.Core.Type
import GHC.Core.TyCon( isTypeFamilyTyCon )
import GHC.Types.Id
import GHC.Types.Var( EvVar )
import GHC.Types.Var.Set
import GHC.Types.Basic ( RuleName )
import GHC.Types.SrcLoc
import Outputable
import FastString
import Bag
{-
Note [Typechecking rules]
~~~~~~~~~~~~~~~~~~~~~~~~~
We *infer* the typ of the LHS, and use that type to *check* the type of
the RHS. That means that higher-rank rules work reasonably well. Here's
an example (test simplCore/should_compile/rule2.hs) produced by Roman:
foo :: (forall m. m a -> m b) -> m a -> m b
foo f = ...
bar :: (forall m. m a -> m a) -> m a -> m a
bar f = ...
{-# RULES "foo/bar" foo = bar #-}
He wanted the rule to typecheck.
Note [TcLevel in type checking rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Bringing type variables into scope naturally bumps the TcLevel. Thus, we type
check the term-level binders in a bumped level, and we must accordingly bump
the level whenever these binders are in scope.
Note [Re-quantify type variables in rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this example from #17710:
foo :: forall k (a :: k) (b :: k). Proxy a -> Proxy b
foo x = Proxy
{-# RULES "foo" forall (x :: Proxy (a :: k)). foo x = Proxy #-}
Written out in more detail, the "foo" rewrite rule looks like this:
forall k (a :: k). forall (x :: Proxy (a :: k)). foo @k @a @b0 x = Proxy @k @b0
Where b0 is a unification variable. Where should b0 be quantified? We have to
quantify it after k, since (b0 :: k). But generalization usually puts inferred
type variables (such as b0) at the /front/ of the telescope! This creates a
conflict.
One option is to simply throw an error, per the principles of
Note [Naughty quantification candidates] in GHC.Tc.Utils.TcMType. This is what would happen
if we were generalising over a normal type signature. On the other hand, the
types in a rewrite rule aren't quite "normal", since the notions of specified
and inferred type variables aren't applicable.
A more permissive design (and the design that GHC uses) is to simply requantify
all of the type variables. That is, we would end up with this:
forall k (a :: k) (b :: k). forall (x :: Proxy (a :: k)). foo @k @a @b x = Proxy @k @b
It's a bit strange putting the generalized variable `b` after the user-written
variables `k` and `a`. But again, the notion of specificity is not relevant to
rewrite rules, since one cannot "visibly apply" a rewrite rule. This design not
only makes "foo" typecheck, but it also makes the implementation simpler.
See also Note [Generalising in tcTyFamInstEqnGuts] in GHC.Tc.TyCl, which
explains a very similar design when generalising over a type family instance
equation.
-}
tcRules :: [LRuleDecls GhcRn] -> TcM [LRuleDecls GhcTcId]
tcRules decls = mapM (wrapLocM tcRuleDecls) decls
tcRuleDecls :: RuleDecls GhcRn -> TcM (RuleDecls GhcTcId)
tcRuleDecls (HsRules { rds_src = src
, rds_rules = decls })
= do { tc_decls <- mapM (wrapLocM tcRule) decls
; return $ HsRules { rds_ext = noExtField
, rds_src = src
, rds_rules = tc_decls } }
tcRuleDecls (XRuleDecls nec) = noExtCon nec
tcRule :: RuleDecl GhcRn -> TcM (RuleDecl GhcTcId)
tcRule (HsRule { rd_ext = ext
, rd_name = rname@(L _ (_,name))
, rd_act = act
, rd_tyvs = ty_bndrs
, rd_tmvs = tm_bndrs
, rd_lhs = lhs
, rd_rhs = rhs })
= addErrCtxt (ruleCtxt name) $
do { traceTc "---- Rule ------" (pprFullRuleName rname)
-- Note [Typechecking rules]
; (tc_lvl, stuff) <- pushTcLevelM $
generateRuleConstraints ty_bndrs tm_bndrs lhs rhs
; let (id_bndrs, lhs', lhs_wanted
, rhs', rhs_wanted, rule_ty) = stuff
; traceTc "tcRule 1" (vcat [ pprFullRuleName rname
, ppr lhs_wanted
, ppr rhs_wanted ])
; (lhs_evs, residual_lhs_wanted)
<- simplifyRule name tc_lvl lhs_wanted rhs_wanted
-- SimplfyRule Plan, step 4
-- Now figure out what to quantify over
-- c.f. GHC.Tc.Solver.simplifyInfer
-- We quantify over any tyvars free in *either* the rule
-- *or* the bound variables. The latter is important. Consider
-- ss (x,(y,z)) = (x,z)
-- RULE: forall v. fst (ss v) = fst v
-- The type of the rhs of the rule is just a, but v::(a,(b,c))
--
-- We also need to get the completely-unconstrained tyvars of
-- the LHS, lest they otherwise get defaulted to Any; but we do that
-- during zonking (see GHC.Tc.Utils.Zonk.zonkRule)
; let tpl_ids = lhs_evs ++ id_bndrs
-- See Note [Re-quantify type variables in rules]
; forall_tkvs <- candidateQTyVarsOfTypes (rule_ty : map idType tpl_ids)
; qtkvs <- quantifyTyVars forall_tkvs
; traceTc "tcRule" (vcat [ pprFullRuleName rname
, ppr forall_tkvs
, ppr qtkvs
, ppr rule_ty
, vcat [ ppr id <+> dcolon <+> ppr (idType id) | id <- tpl_ids ]
])
-- SimplfyRule Plan, step 5
-- Simplify the LHS and RHS constraints:
-- For the LHS constraints we must solve the remaining constraints
-- (a) so that we report insoluble ones
-- (b) so that we bind any soluble ones
; let skol_info = RuleSkol name
; (lhs_implic, lhs_binds) <- buildImplicationFor tc_lvl skol_info qtkvs
lhs_evs residual_lhs_wanted
; (rhs_implic, rhs_binds) <- buildImplicationFor tc_lvl skol_info qtkvs
lhs_evs rhs_wanted
; emitImplications (lhs_implic `unionBags` rhs_implic)
; return $ HsRule { rd_ext = ext
, rd_name = rname
, rd_act = act
, rd_tyvs = ty_bndrs -- preserved for ppr-ing
, rd_tmvs = map (noLoc . RuleBndr noExtField . noLoc)
(qtkvs ++ tpl_ids)
, rd_lhs = mkHsDictLet lhs_binds lhs'
, rd_rhs = mkHsDictLet rhs_binds rhs' } }
tcRule (XRuleDecl nec) = noExtCon nec
generateRuleConstraints :: Maybe [LHsTyVarBndr GhcRn] -> [LRuleBndr GhcRn]
-> LHsExpr GhcRn -> LHsExpr GhcRn
-> TcM ( [TcId]
, LHsExpr GhcTc, WantedConstraints
, LHsExpr GhcTc, WantedConstraints
, TcType )
generateRuleConstraints ty_bndrs tm_bndrs lhs rhs
= do { ((tv_bndrs, id_bndrs), bndr_wanted) <- captureConstraints $
tcRuleBndrs ty_bndrs tm_bndrs
-- bndr_wanted constraints can include wildcard hole
-- constraints, which we should not forget about.
-- It may mention the skolem type variables bound by
-- the RULE. c.f. #10072
; tcExtendTyVarEnv tv_bndrs $
tcExtendIdEnv id_bndrs $
do { -- See Note [Solve order for RULES]
((lhs', rule_ty), lhs_wanted) <- captureConstraints (tcInferRho lhs)
; (rhs', rhs_wanted) <- captureConstraints $
tcMonoExpr rhs (mkCheckExpType rule_ty)
; let all_lhs_wanted = bndr_wanted `andWC` lhs_wanted
; return (id_bndrs, lhs', all_lhs_wanted, rhs', rhs_wanted, rule_ty) } }
-- See Note [TcLevel in type checking rules]
tcRuleBndrs :: Maybe [LHsTyVarBndr GhcRn] -> [LRuleBndr GhcRn]
-> TcM ([TcTyVar], [Id])
tcRuleBndrs (Just bndrs) xs
= do { (tys1,(tys2,tms)) <- bindExplicitTKBndrs_Skol bndrs $
tcRuleTmBndrs xs
; return (tys1 ++ tys2, tms) }
tcRuleBndrs Nothing xs
= tcRuleTmBndrs xs
-- See Note [TcLevel in type checking rules]
tcRuleTmBndrs :: [LRuleBndr GhcRn] -> TcM ([TcTyVar],[Id])
tcRuleTmBndrs [] = return ([],[])
tcRuleTmBndrs (L _ (RuleBndr _ (L _ name)) : rule_bndrs)
= do { ty <- newOpenFlexiTyVarTy
; (tyvars, tmvars) <- tcRuleTmBndrs rule_bndrs
; return (tyvars, mkLocalId name ty : tmvars) }
tcRuleTmBndrs (L _ (RuleBndrSig _ (L _ name) rn_ty) : rule_bndrs)
-- e.g x :: a->a
-- The tyvar 'a' is brought into scope first, just as if you'd written
-- a::*, x :: a->a
-- If there's an explicit forall, the renamer would have already reported an
-- error for each out-of-scope type variable used
= do { let ctxt = RuleSigCtxt name
; (_ , tvs, id_ty) <- tcHsPatSigType ctxt rn_ty
; let id = mkLocalId name id_ty
-- See Note [Pattern signature binders] in GHC.Tc.Gen.HsType
-- The type variables scope over subsequent bindings; yuk
; (tyvars, tmvars) <- tcExtendNameTyVarEnv tvs $
tcRuleTmBndrs rule_bndrs
; return (map snd tvs ++ tyvars, id : tmvars) }
tcRuleTmBndrs (L _ (XRuleBndr nec) : _) = noExtCon nec
ruleCtxt :: FastString -> SDoc
ruleCtxt name = text "When checking the transformation rule" <+>
doubleQuotes (ftext name)
{-
*********************************************************************************
* *
Constraint simplification for rules
* *
***********************************************************************************
Note [The SimplifyRule Plan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Example. Consider the following left-hand side of a rule
f (x == y) (y > z) = ...
If we typecheck this expression we get constraints
d1 :: Ord a, d2 :: Eq a
We do NOT want to "simplify" to the LHS
forall x::a, y::a, z::a, d1::Ord a.
f ((==) (eqFromOrd d1) x y) ((>) d1 y z) = ...
Instead we want
forall x::a, y::a, z::a, d1::Ord a, d2::Eq a.
f ((==) d2 x y) ((>) d1 y z) = ...
Here is another example:
fromIntegral :: (Integral a, Num b) => a -> b
{-# RULES "foo" fromIntegral = id :: Int -> Int #-}
In the rule, a=b=Int, and Num Int is a superclass of Integral Int. But
we *dont* want to get
forall dIntegralInt.
fromIntegral Int Int dIntegralInt (scsel dIntegralInt) = id Int
because the scsel will mess up RULE matching. Instead we want
forall dIntegralInt, dNumInt.
fromIntegral Int Int dIntegralInt dNumInt = id Int
Even if we have
g (x == y) (y == z) = ..
where the two dictionaries are *identical*, we do NOT WANT
forall x::a, y::a, z::a, d1::Eq a
f ((==) d1 x y) ((>) d1 y z) = ...
because that will only match if the dict args are (visibly) equal.
Instead we want to quantify over the dictionaries separately.
In short, simplifyRuleLhs must *only* squash equalities, leaving
all dicts unchanged, with absolutely no sharing.
Also note that we can't solve the LHS constraints in isolation:
Example foo :: Ord a => a -> a
foo_spec :: Int -> Int
{-# RULE "foo" foo = foo_spec #-}
Here, it's the RHS that fixes the type variable
HOWEVER, under a nested implication things are different
Consider
f :: (forall a. Eq a => a->a) -> Bool -> ...
{-# RULES "foo" forall (v::forall b. Eq b => b->b).
f b True = ...
#-}
Here we *must* solve the wanted (Eq a) from the given (Eq a)
resulting from skolemising the argument type of g. So we
revert to SimplCheck when going under an implication.
--------- So the SimplifyRule Plan is this -----------------------
* Step 0: typecheck the LHS and RHS to get constraints from each
* Step 1: Simplify the LHS and RHS constraints all together in one bag
We do this to discover all unification equalities
* Step 2: Zonk the ORIGINAL (unsimplified) LHS constraints, to take
advantage of those unifications
* Setp 3: Partition the LHS constraints into the ones we will
quantify over, and the others.
See Note [RULE quantification over equalities]
* Step 4: Decide on the type variables to quantify over
* Step 5: Simplify the LHS and RHS constraints separately, using the
quantified constraints as givens
Note [Solve order for RULES]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In step 1 above, we need to be a bit careful about solve order.
Consider
f :: Int -> T Int
type instance T Int = Bool
RULE f 3 = True
From the RULE we get
lhs-constraints: T Int ~ alpha
rhs-constraints: Bool ~ alpha
where 'alpha' is the type that connects the two. If we glom them
all together, and solve the RHS constraint first, we might solve
with alpha := Bool. But then we'd end up with a RULE like
RULE: f 3 |> (co :: T Int ~ Bool) = True
which is terrible. We want
RULE: f 3 = True |> (sym co :: Bool ~ T Int)
So we are careful to solve the LHS constraints first, and *then* the
RHS constraints. Actually much of this is done by the on-the-fly
constraint solving, so the same order must be observed in
tcRule.
Note [RULE quantification over equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Deciding which equalities to quantify over is tricky:
* We do not want to quantify over insoluble equalities (Int ~ Bool)
(a) because we prefer to report a LHS type error
(b) because if such things end up in 'givens' we get a bogus
"inaccessible code" error
* But we do want to quantify over things like (a ~ F b), where
F is a type function.
The difficulty is that it's hard to tell what is insoluble!
So we see whether the simplification step yielded any type errors,
and if so refrain from quantifying over *any* equalities.
Note [Quantifying over coercion holes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Equality constraints from the LHS will emit coercion hole Wanteds.
These don't have a name, so we can't quantify over them directly.
Instead, because we really do want to quantify here, invent a new
EvVar for the coercion, fill the hole with the invented EvVar, and
then quantify over the EvVar. Not too tricky -- just some
impedance matching, really.
Note [Simplify cloned constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
At this stage, we're simplifying constraints only for insolubility
and for unification. Note that all the evidence is quickly discarded.
We use a clone of the real constraint. If we don't do this,
then RHS coercion-hole constraints get filled in, only to get filled
in *again* when solving the implications emitted from tcRule. That's
terrible, so we avoid the problem by cloning the constraints.
-}
simplifyRule :: RuleName
-> TcLevel -- Level at which to solve the constraints
-> WantedConstraints -- Constraints from LHS
-> WantedConstraints -- Constraints from RHS
-> TcM ( [EvVar] -- Quantify over these LHS vars
, WantedConstraints) -- Residual un-quantified LHS constraints
-- See Note [The SimplifyRule Plan]
-- NB: This consumes all simple constraints on the LHS, but not
-- any LHS implication constraints.
simplifyRule name tc_lvl lhs_wanted rhs_wanted
= do {
-- Note [The SimplifyRule Plan] step 1
-- First solve the LHS and *then* solve the RHS
-- Crucially, this performs unifications
-- Why clone? See Note [Simplify cloned constraints]
; lhs_clone <- cloneWC lhs_wanted
; rhs_clone <- cloneWC rhs_wanted
; setTcLevel tc_lvl $
runTcSDeriveds $
do { _ <- solveWanteds lhs_clone
; _ <- solveWanteds rhs_clone
-- Why do them separately?
-- See Note [Solve order for RULES]
; return () }
-- Note [The SimplifyRule Plan] step 2
; lhs_wanted <- zonkWC lhs_wanted
; let (quant_cts, residual_lhs_wanted) = getRuleQuantCts lhs_wanted
-- Note [The SimplifyRule Plan] step 3
; quant_evs <- mapM mk_quant_ev (bagToList quant_cts)
; traceTc "simplifyRule" $
vcat [ text "LHS of rule" <+> doubleQuotes (ftext name)
, text "lhs_wanted" <+> ppr lhs_wanted
, text "rhs_wanted" <+> ppr rhs_wanted
, text "quant_cts" <+> ppr quant_cts
, text "residual_lhs_wanted" <+> ppr residual_lhs_wanted
]
; return (quant_evs, residual_lhs_wanted) }
where
mk_quant_ev :: Ct -> TcM EvVar
mk_quant_ev ct
| CtWanted { ctev_dest = dest, ctev_pred = pred } <- ctEvidence ct
= case dest of
EvVarDest ev_id -> return ev_id
HoleDest hole -> -- See Note [Quantifying over coercion holes]
do { ev_id <- newEvVar pred
; fillCoercionHole hole (mkTcCoVarCo ev_id)
; return ev_id }
mk_quant_ev ct = pprPanic "mk_quant_ev" (ppr ct)
getRuleQuantCts :: WantedConstraints -> (Cts, WantedConstraints)
-- Extract all the constraints we can quantify over,
-- also returning the depleted WantedConstraints
--
-- NB: we must look inside implications, because with
-- -fdefer-type-errors we generate implications rather eagerly;
-- see GHC.Tc.Utils.Unify.implicationNeeded. Not doing so caused #14732.
--
-- Unlike simplifyInfer, we don't leave the WantedConstraints unchanged,
-- and attempt to solve them from the quantified constraints. That
-- nearly works, but fails for a constraint like (d :: Eq Int).
-- We /do/ want to quantify over it, but the short-cut solver
-- (see GHC.Tc.Solver.Interact Note [Shortcut solving]) ignores the quantified
-- and instead solves from the top level.
--
-- So we must partition the WantedConstraints ourselves
-- Not hard, but tiresome.
getRuleQuantCts wc
= float_wc emptyVarSet wc
where
float_wc :: TcTyCoVarSet -> WantedConstraints -> (Cts, WantedConstraints)
float_wc skol_tvs (WC { wc_simple = simples, wc_impl = implics })
= ( simple_yes `andCts` implic_yes
, WC { wc_simple = simple_no, wc_impl = implics_no })
where
(simple_yes, simple_no) = partitionBag (rule_quant_ct skol_tvs) simples
(implic_yes, implics_no) = mapAccumBagL (float_implic skol_tvs)
emptyBag implics
float_implic :: TcTyCoVarSet -> Cts -> Implication -> (Cts, Implication)
float_implic skol_tvs yes1 imp
= (yes1 `andCts` yes2, imp { ic_wanted = no })
where
(yes2, no) = float_wc new_skol_tvs (ic_wanted imp)
new_skol_tvs = skol_tvs `extendVarSetList` ic_skols imp
rule_quant_ct :: TcTyCoVarSet -> Ct -> Bool
rule_quant_ct skol_tvs ct
| EqPred _ t1 t2 <- classifyPredType (ctPred ct)
, not (ok_eq t1 t2)
= False -- Note [RULE quantification over equalities]
| isHoleCt ct
= False -- Don't quantify over type holes, obviously
| otherwise
= tyCoVarsOfCt ct `disjointVarSet` skol_tvs
ok_eq t1 t2
| t1 `tcEqType` t2 = False
| otherwise = is_fun_app t1 || is_fun_app t2
is_fun_app ty -- ty is of form (F tys) where F is a type function
= case tyConAppTyCon_maybe ty of
Just tc -> isTypeFamilyTyCon tc
Nothing -> False
|