1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- | Template Haskell splices
module GHC.Tc.Gen.Splice(
tcSpliceExpr, tcTypedBracket, tcUntypedBracket,
-- runQuasiQuoteExpr, runQuasiQuotePat,
-- runQuasiQuoteDecl, runQuasiQuoteType,
runAnnotation,
runMetaE, runMetaP, runMetaT, runMetaD, runQuasi,
tcTopSpliceExpr, lookupThName_maybe,
defaultRunMeta, runMeta', runRemoteModFinalizers,
finishTH, runTopSplice
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Hs
import GHC.Types.Annotations
import GHC.Driver.Finder
import GHC.Types.Name
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcType
import GHC.Core.Multiplicity
import GHC.Utils.Outputable
import GHC.Tc.Gen.Expr
import GHC.Types.SrcLoc
import GHC.Builtin.Names.TH
import GHC.Tc.Utils.Unify
import GHC.Tc.Utils.Env
import GHC.Tc.Types.Origin
import GHC.Core.Coercion( etaExpandCoAxBranch )
import GHC.SysTools.FileCleanup ( newTempName, TempFileLifetime(..) )
import Control.Monad
import GHCi.Message
import GHCi.RemoteTypes
import GHC.Runtime.Interpreter
import GHC.Runtime.Interpreter.Types
import GHC.Driver.Main
-- These imports are the reason that GHC.Tc.Gen.Splice
-- is very high up the module hierarchy
import GHC.Rename.Splice( traceSplice, SpliceInfo(..))
import GHC.Types.Name.Reader
import GHC.Driver.Types
import GHC.ThToHs
import GHC.Rename.Expr
import GHC.Rename.Env
import GHC.Rename.Utils ( HsDocContext(..) )
import GHC.Rename.Fixity ( lookupFixityRn_help )
import GHC.Rename.HsType
import GHC.Tc.Utils.Zonk
import GHC.Tc.Solver
import GHC.Core.Type as Type
import GHC.Types.Name.Set
import GHC.Tc.Utils.TcMType
import GHC.Tc.Gen.HsType
import GHC.IfaceToCore
import GHC.Core.TyCo.Rep as TyCoRep
import GHC.Tc.Instance.Family
import GHC.Core.FamInstEnv
import GHC.Core.InstEnv as InstEnv
import GHC.Tc.Utils.Instantiate
import GHC.Types.Name.Env
import GHC.Builtin.Names
import GHC.Builtin.Types
import GHC.Types.Name.Occurrence as OccName
import GHC.Driver.Hooks
import GHC.Types.Var
import GHC.Unit.Module
import GHC.Iface.Load
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Core.Coercion.Axiom
import GHC.Core.PatSyn
import GHC.Core.ConLike
import GHC.Core.DataCon as DataCon
import GHC.Tc.Types.Evidence
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.HsToCore.Expr
import GHC.HsToCore.Monad
import GHC.Serialized
import GHC.Utils.Error
import GHC.Utils.Misc
import GHC.Types.Unique
import GHC.Types.Var.Set
import Data.List ( find )
import Data.Maybe
import GHC.Data.FastString
import GHC.Types.Basic as BasicTypes hiding( SuccessFlag(..) )
import GHC.Data.Maybe( MaybeErr(..) )
import GHC.Driver.Session
import GHC.Utils.Panic as Panic
import GHC.Utils.Lexeme
import qualified GHC.Data.EnumSet as EnumSet
import GHC.Driver.Plugins
import GHC.Data.Bag
import qualified Language.Haskell.TH as TH
-- THSyntax gives access to internal functions and data types
import qualified Language.Haskell.TH.Syntax as TH
#if defined(HAVE_INTERNAL_INTERPRETER)
-- Because GHC.Desugar might not be in the base library of the bootstrapping compiler
import GHC.Desugar ( AnnotationWrapper(..) )
import Unsafe.Coerce ( unsafeCoerce )
#endif
import Control.Exception
import Data.Binary
import Data.Binary.Get
import qualified Data.ByteString as B
import qualified Data.ByteString.Lazy as LB
import Data.Dynamic ( fromDynamic, toDyn )
import qualified Data.Map as Map
import Data.Typeable ( typeOf, Typeable, TypeRep, typeRep )
import Data.Data (Data)
import Data.Proxy ( Proxy (..) )
{-
************************************************************************
* *
\subsection{Main interface + stubs for the non-GHCI case
* *
************************************************************************
-}
tcTypedBracket :: HsExpr GhcRn -> HsBracket GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
tcUntypedBracket :: HsExpr GhcRn -> HsBracket GhcRn -> [PendingRnSplice] -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcSpliceExpr :: HsSplice GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
-- None of these functions add constraints to the LIE
-- runQuasiQuoteExpr :: HsQuasiQuote RdrName -> RnM (LHsExpr RdrName)
-- runQuasiQuotePat :: HsQuasiQuote RdrName -> RnM (LPat RdrName)
-- runQuasiQuoteType :: HsQuasiQuote RdrName -> RnM (LHsType RdrName)
-- runQuasiQuoteDecl :: HsQuasiQuote RdrName -> RnM [LHsDecl RdrName]
runAnnotation :: CoreAnnTarget -> LHsExpr GhcRn -> TcM Annotation
{-
************************************************************************
* *
\subsection{Quoting an expression}
* *
************************************************************************
-}
-- See Note [How brackets and nested splices are handled]
-- tcTypedBracket :: HsBracket Name -> TcRhoType -> TcM (HsExpr TcId)
tcTypedBracket rn_expr brack@(TExpBr _ expr) res_ty
= addErrCtxt (quotationCtxtDoc brack) $
do { cur_stage <- getStage
; ps_ref <- newMutVar []
; lie_var <- getConstraintVar -- Any constraints arising from nested splices
-- should get thrown into the constraint set
-- from outside the bracket
-- Make a new type variable for the type of the overall quote
; m_var <- mkTyVarTy <$> mkMetaTyVar
-- Make sure the type variable satisfies Quote
; ev_var <- emitQuoteWanted m_var
-- Bundle them together so they can be used in GHC.HsToCore.Quote for desugaring
-- brackets.
; let wrapper = QuoteWrapper ev_var m_var
-- Typecheck expr to make sure it is valid,
-- Throw away the typechecked expression but return its type.
-- We'll typecheck it again when we splice it in somewhere
; (_tc_expr, expr_ty) <- setStage (Brack cur_stage (TcPending ps_ref lie_var wrapper)) $
tcScalingUsage Many $
-- Scale by Many, TH lifting is currently nonlinear (#18465)
tcInferRhoNC expr
-- NC for no context; tcBracket does that
; let rep = getRuntimeRep expr_ty
; meta_ty <- tcTExpTy m_var expr_ty
; ps' <- readMutVar ps_ref
; texpco <- tcLookupId unsafeCodeCoerceName
; tcWrapResultO (Shouldn'tHappenOrigin "TExpBr")
rn_expr
(unLoc (mkHsApp (mkLHsWrap (applyQuoteWrapper wrapper)
(nlHsTyApp texpco [rep, expr_ty]))
(noLoc (HsTcBracketOut noExtField (Just wrapper) brack ps'))))
meta_ty res_ty }
tcTypedBracket _ other_brack _
= pprPanic "tcTypedBracket" (ppr other_brack)
-- tcUntypedBracket :: HsBracket Name -> [PendingRnSplice] -> ExpRhoType -> TcM (HsExpr TcId)
-- See Note [Typechecking Overloaded Quotes]
tcUntypedBracket rn_expr brack ps res_ty
= do { traceTc "tc_bracket untyped" (ppr brack $$ ppr ps)
-- Create the type m Exp for expression bracket, m Type for a type
-- bracket and so on. The brack_info is a Maybe because the
-- VarBracket ('a) isn't overloaded, but also shouldn't contain any
-- splices.
; (brack_info, expected_type) <- brackTy brack
-- Match the expected type with the type of all the internal
-- splices. They might have further constrained types and if they do
-- we want to reflect that in the overall type of the bracket.
; ps' <- case quoteWrapperTyVarTy <$> brack_info of
Just m_var -> mapM (tcPendingSplice m_var) ps
Nothing -> ASSERT(null ps) return []
; traceTc "tc_bracket done untyped" (ppr expected_type)
-- Unify the overall type of the bracket with the expected result
-- type
; tcWrapResultO BracketOrigin rn_expr
(HsTcBracketOut noExtField brack_info brack ps')
expected_type res_ty
}
-- | A type variable with kind * -> * named "m"
mkMetaTyVar :: TcM TyVar
mkMetaTyVar =
newNamedFlexiTyVar (fsLit "m") (mkVisFunTyMany liftedTypeKind liftedTypeKind)
-- | For a type 'm', emit the constraint 'Quote m'.
emitQuoteWanted :: Type -> TcM EvVar
emitQuoteWanted m_var = do
quote_con <- tcLookupTyCon quoteClassName
emitWantedEvVar BracketOrigin $
mkTyConApp quote_con [m_var]
---------------
-- | Compute the expected type of a quotation, and also the QuoteWrapper in
-- the case where it is an overloaded quotation. All quotation forms are
-- overloaded aprt from Variable quotations ('foo)
brackTy :: HsBracket GhcRn -> TcM (Maybe QuoteWrapper, Type)
brackTy b =
let mkTy n = do
-- New polymorphic type variable for the bracket
m_var <- mkTyVarTy <$> mkMetaTyVar
-- Emit a Quote constraint for the bracket
ev_var <- emitQuoteWanted m_var
-- Construct the final expected type of the quote, for example
-- m Exp or m Type
final_ty <- mkAppTy m_var <$> tcMetaTy n
-- Return the evidence variable and metavariable to be used during
-- desugaring.
let wrapper = QuoteWrapper ev_var m_var
return (Just wrapper, final_ty)
in
case b of
(VarBr {}) -> (Nothing,) <$> tcMetaTy nameTyConName
-- Result type is Var (not Quote-monadic)
(ExpBr {}) -> mkTy expTyConName -- Result type is m Exp
(TypBr {}) -> mkTy typeTyConName -- Result type is m Type
(DecBrG {}) -> mkTy decsTyConName -- Result type is m [Dec]
(PatBr {}) -> mkTy patTyConName -- Result type is m Pat
(DecBrL {}) -> panic "tcBrackTy: Unexpected DecBrL"
(TExpBr {}) -> panic "tcUntypedBracket: Unexpected TExpBr"
---------------
-- | Typechecking a pending splice from a untyped bracket
tcPendingSplice :: TcType -- Metavariable for the expected overall type of the
-- quotation.
-> PendingRnSplice
-> TcM PendingTcSplice
tcPendingSplice m_var (PendingRnSplice flavour splice_name expr)
-- See Note [Typechecking Overloaded Quotes]
= do { meta_ty <- tcMetaTy meta_ty_name
-- Expected type of splice, e.g. m Exp
; let expected_type = mkAppTy m_var meta_ty
; expr' <- tcScalingUsage Many $ tcCheckPolyExpr expr expected_type
-- Scale by Many, TH lifting is currently nonlinear (#18465)
; return (PendingTcSplice splice_name expr') }
where
meta_ty_name = case flavour of
UntypedExpSplice -> expTyConName
UntypedPatSplice -> patTyConName
UntypedTypeSplice -> typeTyConName
UntypedDeclSplice -> decsTyConName
---------------
-- Takes a m and tau and returns the type m (TExp tau)
tcTExpTy :: TcType -> TcType -> TcM TcType
tcTExpTy m_ty exp_ty
= do { unless (isTauTy exp_ty) $ addErr (err_msg exp_ty)
; codeCon <- tcLookupTyCon codeTyConName
; let rep = getRuntimeRep exp_ty
; return (mkTyConApp codeCon [rep, m_ty, exp_ty]) }
where
err_msg ty
= vcat [ text "Illegal polytype:" <+> ppr ty
, text "The type of a Typed Template Haskell expression must" <+>
text "not have any quantification." ]
quotationCtxtDoc :: HsBracket GhcRn -> SDoc
quotationCtxtDoc br_body
= hang (text "In the Template Haskell quotation")
2 (ppr br_body)
-- The whole of the rest of the file is the else-branch (ie stage2 only)
{-
Note [How top-level splices are handled]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Top-level splices (those not inside a [| .. |] quotation bracket) are handled
very straightforwardly:
1. tcTopSpliceExpr: typecheck the body e of the splice $(e)
2. runMetaT: desugar, compile, run it, and convert result back to
GHC.Hs syntax RdrName (of the appropriate flavour, eg HsType RdrName,
HsExpr RdrName etc)
3. treat the result as if that's what you saw in the first place
e.g for HsType, rename and kind-check
for HsExpr, rename and type-check
(The last step is different for decls, because they can *only* be
top-level: we return the result of step 2.)
Note [How brackets and nested splices are handled]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Nested splices (those inside a [| .. |] quotation bracket),
are treated quite differently.
Remember, there are two forms of bracket
typed [|| e ||]
and untyped [| e |]
The life cycle of a typed bracket:
* Starts as HsBracket
* When renaming:
* Set the ThStage to (Brack s RnPendingTyped)
* Rename the body
* Result is still a HsBracket
* When typechecking:
* Set the ThStage to (Brack s (TcPending ps_var lie_var))
* Typecheck the body, and throw away the elaborated result
* Nested splices (which must be typed) are typechecked, and
the results accumulated in ps_var; their constraints
accumulate in lie_var
* Result is a HsTcBracketOut rn_brack pending_splices
where rn_brack is the incoming renamed bracket
The life cycle of a un-typed bracket:
* Starts as HsBracket
* When renaming:
* Set the ThStage to (Brack s (RnPendingUntyped ps_var))
* Rename the body
* Nested splices (which must be untyped) are renamed, and the
results accumulated in ps_var
* Result is still (HsRnBracketOut rn_body pending_splices)
* When typechecking a HsRnBracketOut
* Typecheck the pending_splices individually
* Ignore the body of the bracket; just check that the context
expects a bracket of that type (e.g. a [p| pat |] bracket should
be in a context needing a (Q Pat)
* Result is a HsTcBracketOut rn_brack pending_splices
where rn_brack is the incoming renamed bracket
In both cases, desugaring happens like this:
* HsTcBracketOut is desugared by GHC.HsToCore.Quote.dsBracket. It
a) Extends the ds_meta environment with the PendingSplices
attached to the bracket
b) Converts the quoted (HsExpr Name) to a CoreExpr that, when
run, will produce a suitable TH expression/type/decl. This
is why we leave the *renamed* expression attached to the bracket:
the quoted expression should not be decorated with all the goop
added by the type checker
* Each splice carries a unique Name, called a "splice point", thus
${n}(e). The name is initialised to an (Unqual "splice") when the
splice is created; the renamer gives it a unique.
* When GHC.HsToCore.Quote (used to desugar the body of the bracket) comes across
a splice, it looks up the splice's Name, n, in the ds_meta envt,
to find an (HsExpr Id) that should be substituted for the splice;
it just desugars it to get a CoreExpr (GHC.HsToCore.Quote.repSplice).
Example:
Source: f = [| Just $(g 3) |]
The [| |] part is a HsBracket
Typechecked: f = [| Just ${s7}(g 3) |]{s7 = g Int 3}
The [| |] part is a HsBracketOut, containing *renamed*
(not typechecked) expression
The "s7" is the "splice point"; the (g Int 3) part
is a typechecked expression
Desugared: f = do { s7 <- g Int 3
; return (ConE "Data.Maybe.Just" s7) }
Note [Template Haskell state diagram]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here are the ThStages, s, their corresponding level numbers
(the result of (thLevel s)), and their state transitions.
The top level of the program is stage Comp:
Start here
|
V
----------- $ ------------ $
| Comp | ---------> | Splice | -----|
| 1 | | 0 | <----|
----------- ------------
^ | ^ |
$ | | [||] $ | | [||]
| v | v
-------------- ----------------
| Brack Comp | | Brack Splice |
| 2 | | 1 |
-------------- ----------------
* Normal top-level declarations start in state Comp
(which has level 1).
Annotations start in state Splice, since they are
treated very like a splice (only without a '$')
* Code compiled in state Splice (and only such code)
will be *run at compile time*, with the result replacing
the splice
* The original paper used level -1 instead of 0, etc.
* The original paper did not allow a splice within a
splice, but there is no reason not to. This is the
$ transition in the top right.
Note [Template Haskell levels]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Imported things are impLevel (= 0)
* However things at level 0 are not *necessarily* imported.
eg $( \b -> ... ) here b is bound at level 0
* In GHCi, variables bound by a previous command are treated
as impLevel, because we have bytecode for them.
* Variables are bound at the "current level"
* The current level starts off at outerLevel (= 1)
* The level is decremented by splicing $(..)
incremented by brackets [| |]
incremented by name-quoting 'f
* When a variable is used, checkWellStaged compares
bind: binding level, and
use: current level at usage site
Generally
bind > use Always error (bound later than used)
[| \x -> $(f x) |]
bind = use Always OK (bound same stage as used)
[| \x -> $(f [| x |]) |]
bind < use Inside brackets, it depends
Inside splice, OK
Inside neither, OK
For (bind < use) inside brackets, there are three cases:
- Imported things OK f = [| map |]
- Top-level things OK g = [| f |]
- Non-top-level Only if there is a liftable instance
h = \(x:Int) -> [| x |]
To track top-level-ness we use the ThBindEnv in TcLclEnv
For example:
f = ...
g1 = $(map ...) is OK
g2 = $(f ...) is not OK; because we haven't compiled f yet
Note [Typechecking Overloaded Quotes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The main function for typechecking untyped quotations is `tcUntypedBracket`.
Consider an expression quote, `[| e |]`, its type is `forall m . Quote m => m Exp`.
When we typecheck it we therefore create a template of a metavariable `m` applied to `Exp` and
emit a constraint `Quote m`. All this is done in the `brackTy` function.
`brackTy` also selects the correct contents type for the quotation (Exp, Type, Decs etc).
The meta variable and the constraint evidence variable are
returned together in a `QuoteWrapper` and then passed along to two further places
during compilation:
1. Typechecking nested splices (immediately in tcPendingSplice)
2. Desugaring quotations (see GHC.HsToCore.Quote)
`tcPendingSplice` takes the `m` type variable as an argument and checks
each nested splice against this variable `m`. During this
process the variable `m` can either be fixed to a specific value or further constrained by the
nested splices.
Once we have checked all the nested splices, the quote type is checked against
the expected return type.
The process is very simple and like typechecking a list where the quotation is
like the container and the splices are the elements of the list which must have
a specific type.
After the typechecking process is completed, the evidence variable for `Quote m`
and the type `m` is stored in a `QuoteWrapper` which is passed through the pipeline
and used when desugaring quotations.
Typechecking typed quotations is a similar idea but the `QuoteWrapper` is stored
in the `PendingStuff` as the nested splices are gathered up in a different way
to untyped splices. Untyped splices are found in the renamer but typed splices are
not typechecked and extracted until during typechecking.
-}
-- | We only want to produce warnings for TH-splices if the user requests so.
-- See Note [Warnings for TH splices].
getThSpliceOrigin :: TcM Origin
getThSpliceOrigin = do
warn <- goptM Opt_EnableThSpliceWarnings
if warn then return FromSource else return Generated
{- Note [Warnings for TH splices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We only produce warnings for TH splices when the user requests so
(-fenable-th-splice-warnings). There are multiple reasons:
* It's not clear that the user that compiles a splice is the author of the code
that produces the warning. Think of the situation where she just splices in
code from a third-party library that produces incomplete pattern matches.
In this scenario, the user isn't even able to fix that warning.
* Gathering information for producing the warnings (pattern-match check
warnings in particular) is costly. There's no point in doing so if the user
is not interested in those warnings.
That's why we store Origin flags in the Haskell AST. The functions from ThToHs
take such a flag and depending on whether TH splice warnings were enabled or
not, we pass FromSource (if the user requests warnings) or Generated
(otherwise). This is implemented in getThSpliceOrigin.
For correct pattern-match warnings it's crucial that we annotate the Origin
consistently (#17270). In the future we could offer the Origin as part of the
TH AST. That would enable us to give quotes from the current module get
FromSource origin, and/or third library authors to tag certain parts of
generated code as FromSource to enable warnings.
That effort is tracked in #14838.
-}
{-
************************************************************************
* *
\subsection{Splicing an expression}
* *
************************************************************************
-}
tcSpliceExpr splice@(HsTypedSplice _ _ name expr) res_ty
= addErrCtxt (spliceCtxtDoc splice) $
setSrcSpan (getLoc expr) $ do
{ stage <- getStage
; case stage of
Splice {} -> tcTopSplice expr res_ty
Brack pop_stage pend -> tcNestedSplice pop_stage pend name expr res_ty
RunSplice _ ->
-- See Note [RunSplice ThLevel] in "GHC.Tc.Types".
pprPanic ("tcSpliceExpr: attempted to typecheck a splice when " ++
"running another splice") (ppr splice)
Comp -> tcTopSplice expr res_ty
}
tcSpliceExpr splice _
= pprPanic "tcSpliceExpr" (ppr splice)
{- Note [Collecting modFinalizers in typed splices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
'qAddModFinalizer' of the @Quasi TcM@ instance adds finalizers in the local
environment (see Note [Delaying modFinalizers in untyped splices] in
GHC.Rename.Splice). Thus after executing the splice, we move the finalizers to the
finalizer list in the global environment and set them to use the current local
environment (with 'addModFinalizersWithLclEnv').
-}
tcNestedSplice :: ThStage -> PendingStuff -> Name
-> LHsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
-- See Note [How brackets and nested splices are handled]
-- A splice inside brackets
tcNestedSplice pop_stage (TcPending ps_var lie_var q@(QuoteWrapper _ m_var)) splice_name expr res_ty
= do { res_ty <- expTypeToType res_ty
; let rep = getRuntimeRep res_ty
; meta_exp_ty <- tcTExpTy m_var res_ty
; expr' <- setStage pop_stage $
setConstraintVar lie_var $
tcCheckMonoExpr expr meta_exp_ty
; untype_code <- tcLookupId unTypeCodeName
; let expr'' = mkHsApp
(mkLHsWrap (applyQuoteWrapper q)
(nlHsTyApp untype_code [rep, res_ty])) expr'
; ps <- readMutVar ps_var
; writeMutVar ps_var (PendingTcSplice splice_name expr'' : ps)
-- The returned expression is ignored; it's in the pending splices
-- But we still return a plausible expression
-- (a) in case we print it in debug messages, and
-- (b) because we test whether it is tagToEnum in Tc.Gen.Expr.tcApp
; return (HsSpliceE noExtField $
HsSpliced noExtField (ThModFinalizers []) $
HsSplicedExpr (unLoc expr'')) }
tcNestedSplice _ _ splice_name _ _
= pprPanic "tcNestedSplice: rename stage found" (ppr splice_name)
tcTopSplice :: LHsExpr GhcRn -> ExpRhoType -> TcM (HsExpr GhcTc)
tcTopSplice expr res_ty
= do { -- Typecheck the expression,
-- making sure it has type Q (T res_ty)
res_ty <- expTypeToType res_ty
; q_type <- tcMetaTy qTyConName
-- Top level splices must still be of type Q (TExp a)
; meta_exp_ty <- tcTExpTy q_type res_ty
; q_expr <- tcTopSpliceExpr Typed $
tcCheckMonoExpr expr meta_exp_ty
; lcl_env <- getLclEnv
; let delayed_splice
= DelayedSplice lcl_env expr res_ty q_expr
; return (HsSpliceE noExtField (XSplice (HsSplicedT delayed_splice)))
}
-- This is called in the zonker
-- See Note [Running typed splices in the zonker]
runTopSplice :: DelayedSplice -> TcM (HsExpr GhcTc)
runTopSplice (DelayedSplice lcl_env orig_expr res_ty q_expr)
= setLclEnv lcl_env $ do {
zonked_ty <- zonkTcType res_ty
; zonked_q_expr <- zonkTopLExpr q_expr
-- See Note [Collecting modFinalizers in typed splices].
; modfinalizers_ref <- newTcRef []
-- Run the expression
; expr2 <- setStage (RunSplice modfinalizers_ref) $
runMetaE zonked_q_expr
; mod_finalizers <- readTcRef modfinalizers_ref
; addModFinalizersWithLclEnv $ ThModFinalizers mod_finalizers
-- We use orig_expr here and not q_expr when tracing as a call to
-- unsafeTExpCoerce is added to the original expression by the
-- typechecker when typed quotes are type checked.
; traceSplice (SpliceInfo { spliceDescription = "expression"
, spliceIsDecl = False
, spliceSource = Just orig_expr
, spliceGenerated = ppr expr2 })
-- Rename and typecheck the spliced-in expression,
-- making sure it has type res_ty
-- These steps should never fail; this is a *typed* splice
; (res, wcs) <-
captureConstraints $
addErrCtxt (spliceResultDoc zonked_q_expr) $ do
{ (exp3, _fvs) <- rnLExpr expr2
; tcCheckMonoExpr exp3 zonked_ty }
; ev <- simplifyTop wcs
; return $ unLoc (mkHsDictLet (EvBinds ev) res)
}
{-
************************************************************************
* *
\subsection{Error messages}
* *
************************************************************************
-}
spliceCtxtDoc :: HsSplice GhcRn -> SDoc
spliceCtxtDoc splice
= hang (text "In the Template Haskell splice")
2 (pprSplice splice)
spliceResultDoc :: LHsExpr GhcTc -> SDoc
spliceResultDoc expr
= sep [ text "In the result of the splice:"
, nest 2 (char '$' <> ppr expr)
, text "To see what the splice expanded to, use -ddump-splices"]
-------------------
tcTopSpliceExpr :: SpliceType -> TcM (LHsExpr GhcTc) -> TcM (LHsExpr GhcTc)
-- Note [How top-level splices are handled]
-- Type check an expression that is the body of a top-level splice
-- (the caller will compile and run it)
-- Note that set the level to Splice, regardless of the original level,
-- before typechecking the expression. For example:
-- f x = $( ...$(g 3) ... )
-- The recursive call to tcCheckPolyExpr will simply expand the
-- inner escape before dealing with the outer one
tcTopSpliceExpr isTypedSplice tc_action
= checkNoErrs $ -- checkNoErrs: must not try to run the thing
-- if the type checker fails!
unsetGOptM Opt_DeferTypeErrors $
-- Don't defer type errors. Not only are we
-- going to run this code, but we do an unsafe
-- coerce, so we get a seg-fault if, say we
-- splice a type into a place where an expression
-- is expected (#7276)
setStage (Splice isTypedSplice) $
do { -- Typecheck the expression
(expr', wanted) <- captureConstraints tc_action
; const_binds <- simplifyTop wanted
-- Zonk it and tie the knot of dictionary bindings
; return $ mkHsDictLet (EvBinds const_binds) expr' }
{-
************************************************************************
* *
Annotations
* *
************************************************************************
-}
runAnnotation target expr = do
-- Find the classes we want instances for in order to call toAnnotationWrapper
loc <- getSrcSpanM
data_class <- tcLookupClass dataClassName
to_annotation_wrapper_id <- tcLookupId toAnnotationWrapperName
-- Check the instances we require live in another module (we want to execute it..)
-- and check identifiers live in other modules using TH stage checks. tcSimplifyStagedExpr
-- also resolves the LIE constraints to detect e.g. instance ambiguity
zonked_wrapped_expr' <- zonkTopLExpr =<< tcTopSpliceExpr Untyped (
do { (expr', expr_ty) <- tcInferRhoNC expr
-- We manually wrap the typechecked expression in a call to toAnnotationWrapper
-- By instantiating the call >here< it gets registered in the
-- LIE consulted by tcTopSpliceExpr
-- and hence ensures the appropriate dictionary is bound by const_binds
; wrapper <- instCall AnnOrigin [expr_ty] [mkClassPred data_class [expr_ty]]
; let specialised_to_annotation_wrapper_expr
= L loc (mkHsWrap wrapper
(HsVar noExtField (L loc to_annotation_wrapper_id)))
; return (L loc (HsApp noExtField
specialised_to_annotation_wrapper_expr expr'))
})
-- Run the appropriately wrapped expression to get the value of
-- the annotation and its dictionaries. The return value is of
-- type AnnotationWrapper by construction, so this conversion is
-- safe
serialized <- runMetaAW zonked_wrapped_expr'
return Annotation {
ann_target = target,
ann_value = serialized
}
convertAnnotationWrapper :: ForeignHValue -> TcM (Either MsgDoc Serialized)
convertAnnotationWrapper fhv = do
interp <- tcGetInterp
case interp of
ExternalInterp {} -> Right <$> runTH THAnnWrapper fhv
#if defined(HAVE_INTERNAL_INTERPRETER)
InternalInterp -> do
annotation_wrapper <- liftIO $ wormhole InternalInterp fhv
return $ Right $
case unsafeCoerce annotation_wrapper of
AnnotationWrapper value | let serialized = toSerialized serializeWithData value ->
-- Got the value and dictionaries: build the serialized value and
-- call it a day. We ensure that we seq the entire serialized value
-- in order that any errors in the user-written code for the
-- annotation are exposed at this point. This is also why we are
-- doing all this stuff inside the context of runMeta: it has the
-- facilities to deal with user error in a meta-level expression
seqSerialized serialized `seq` serialized
-- | Force the contents of the Serialized value so weknow it doesn't contain any bottoms
seqSerialized :: Serialized -> ()
seqSerialized (Serialized the_type bytes) = the_type `seq` bytes `seqList` ()
#endif
{-
************************************************************************
* *
\subsection{Running an expression}
* *
************************************************************************
-}
runQuasi :: TH.Q a -> TcM a
runQuasi act = TH.runQ act
runRemoteModFinalizers :: ThModFinalizers -> TcM ()
runRemoteModFinalizers (ThModFinalizers finRefs) = do
let withForeignRefs [] f = f []
withForeignRefs (x : xs) f = withForeignRef x $ \r ->
withForeignRefs xs $ \rs -> f (r : rs)
interp <- tcGetInterp
case interp of
#if defined(HAVE_INTERNAL_INTERPRETER)
InternalInterp -> do
qs <- liftIO (withForeignRefs finRefs $ mapM localRef)
runQuasi $ sequence_ qs
#endif
ExternalInterp conf iserv -> withIServ_ conf iserv $ \i -> do
tcg <- getGblEnv
th_state <- readTcRef (tcg_th_remote_state tcg)
case th_state of
Nothing -> return () -- TH was not started, nothing to do
Just fhv -> do
liftIO $ withForeignRef fhv $ \st ->
withForeignRefs finRefs $ \qrefs ->
writeIServ i (putMessage (RunModFinalizers st qrefs))
() <- runRemoteTH i []
readQResult i
runQResult
:: (a -> String)
-> (Origin -> SrcSpan -> a -> b)
-> (ForeignHValue -> TcM a)
-> SrcSpan
-> ForeignHValue {- TH.Q a -}
-> TcM b
runQResult show_th f runQ expr_span hval
= do { th_result <- runQ hval
; th_origin <- getThSpliceOrigin
; traceTc "Got TH result:" (text (show_th th_result))
; return (f th_origin expr_span th_result) }
-----------------
runMeta :: (MetaHook TcM -> LHsExpr GhcTc -> TcM hs_syn)
-> LHsExpr GhcTc
-> TcM hs_syn
runMeta unwrap e
= do { h <- getHooked runMetaHook defaultRunMeta
; unwrap h e }
defaultRunMeta :: MetaHook TcM
defaultRunMeta (MetaE r)
= fmap r . runMeta' True ppr (runQResult TH.pprint convertToHsExpr runTHExp)
defaultRunMeta (MetaP r)
= fmap r . runMeta' True ppr (runQResult TH.pprint convertToPat runTHPat)
defaultRunMeta (MetaT r)
= fmap r . runMeta' True ppr (runQResult TH.pprint convertToHsType runTHType)
defaultRunMeta (MetaD r)
= fmap r . runMeta' True ppr (runQResult TH.pprint convertToHsDecls runTHDec)
defaultRunMeta (MetaAW r)
= fmap r . runMeta' False (const empty) (const convertAnnotationWrapper)
-- We turn off showing the code in meta-level exceptions because doing so exposes
-- the toAnnotationWrapper function that we slap around the user's code
----------------
runMetaAW :: LHsExpr GhcTc -- Of type AnnotationWrapper
-> TcM Serialized
runMetaAW = runMeta metaRequestAW
runMetaE :: LHsExpr GhcTc -- Of type (Q Exp)
-> TcM (LHsExpr GhcPs)
runMetaE = runMeta metaRequestE
runMetaP :: LHsExpr GhcTc -- Of type (Q Pat)
-> TcM (LPat GhcPs)
runMetaP = runMeta metaRequestP
runMetaT :: LHsExpr GhcTc -- Of type (Q Type)
-> TcM (LHsType GhcPs)
runMetaT = runMeta metaRequestT
runMetaD :: LHsExpr GhcTc -- Of type Q [Dec]
-> TcM [LHsDecl GhcPs]
runMetaD = runMeta metaRequestD
---------------
runMeta' :: Bool -- Whether code should be printed in the exception message
-> (hs_syn -> SDoc) -- how to print the code
-> (SrcSpan -> ForeignHValue -> TcM (Either MsgDoc hs_syn)) -- How to run x
-> LHsExpr GhcTc -- Of type x; typically x = Q TH.Exp, or
-- something like that
-> TcM hs_syn -- Of type t
runMeta' show_code ppr_hs run_and_convert expr
= do { traceTc "About to run" (ppr expr)
; recordThSpliceUse -- seems to be the best place to do this,
-- we catch all kinds of splices and annotations.
-- Check that we've had no errors of any sort so far.
-- For example, if we found an error in an earlier defn f, but
-- recovered giving it type f :: forall a.a, it'd be very dodgy
-- to carry ont. Mind you, the staging restrictions mean we won't
-- actually run f, but it still seems wrong. And, more concretely,
-- see #5358 for an example that fell over when trying to
-- reify a function with a "?" kind in it. (These don't occur
-- in type-correct programs.
; failIfErrsM
-- run plugins
; hsc_env <- getTopEnv
; expr' <- withPlugins (hsc_dflags hsc_env) spliceRunAction expr
-- Desugar
; ds_expr <- initDsTc (dsLExpr expr')
-- Compile and link it; might fail if linking fails
; src_span <- getSrcSpanM
; traceTc "About to run (desugared)" (ppr ds_expr)
; either_hval <- tryM $ liftIO $
GHC.Driver.Main.hscCompileCoreExpr hsc_env src_span ds_expr
; case either_hval of {
Left exn -> fail_with_exn "compile and link" exn ;
Right hval -> do
{ -- Coerce it to Q t, and run it
-- Running might fail if it throws an exception of any kind (hence tryAllM)
-- including, say, a pattern-match exception in the code we are running
--
-- We also do the TH -> HS syntax conversion inside the same
-- exception-catching thing so that if there are any lurking
-- exceptions in the data structure returned by hval, we'll
-- encounter them inside the try
--
-- See Note [Exceptions in TH]
let expr_span = getLoc expr
; either_tval <- tryAllM $
setSrcSpan expr_span $ -- Set the span so that qLocation can
-- see where this splice is
do { mb_result <- run_and_convert expr_span hval
; case mb_result of
Left err -> failWithTc err
Right result -> do { traceTc "Got HsSyn result:" (ppr_hs result)
; return $! result } }
; case either_tval of
Right v -> return v
Left se -> case fromException se of
Just IOEnvFailure -> failM -- Error already in Tc monad
_ -> fail_with_exn "run" se -- Exception
}}}
where
-- see Note [Concealed TH exceptions]
fail_with_exn :: Exception e => String -> e -> TcM a
fail_with_exn phase exn = do
exn_msg <- liftIO $ Panic.safeShowException exn
let msg = vcat [text "Exception when trying to" <+> text phase <+> text "compile-time code:",
nest 2 (text exn_msg),
if show_code then text "Code:" <+> ppr expr else empty]
failWithTc msg
{-
Note [Running typed splices in the zonker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #15471 for the full discussion.
For many years typed splices were run immediately after they were type checked
however, this is too early as it means to zonk some type variables before
they can be unified with type variables in the surrounding context.
For example,
```
module A where
test_foo :: forall a . Q (TExp (a -> a))
test_foo = [|| id ||]
module B where
import A
qux = $$(test_foo)
```
We would expect `qux` to have inferred type `forall a . a -> a` but if
we run the splices too early the unified variables are zonked to `Any`. The
inferred type is the unusable `Any -> Any`.
To run the splice, we must compile `test_foo` all the way to byte code.
But at the moment when the type checker is looking at the splice, test_foo
has type `Q (TExp (alpha -> alpha))` and we
certainly can't compile code involving unification variables!
We could default `alpha` to `Any` but then we infer `qux :: Any -> Any`
which definitely is not what we want. Moreover, if we had
qux = [$$(test_foo), (\x -> x +1::Int)]
then `alpha` would have to be `Int`.
Conclusion: we must defer taking decisions about `alpha` until the
typechecker is done; and *then* we can run the splice. It's fine to do it
later, because we know it'll produce type-correct code.
Deferring running the splice until later, in the zonker, means that the
unification variables propagate upwards from the splice into the surrounding
context and are unified correctly.
This is implemented by storing the arguments we need for running the splice
in a `DelayedSplice`. In the zonker, the arguments are passed to
`GHC.Tc.Gen.Splice.runTopSplice` and the expression inserted into the AST as normal.
Note [Exceptions in TH]
~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have something like this
$( f 4 )
where
f :: Int -> Q [Dec]
f n | n>3 = fail "Too many declarations"
| otherwise = ...
The 'fail' is a user-generated failure, and should be displayed as a
perfectly ordinary compiler error message, not a panic or anything
like that. Here's how it's processed:
* 'fail' is the monad fail. The monad instance for Q in TH.Syntax
effectively transforms (fail s) to
qReport True s >> fail
where 'qReport' comes from the Quasi class and fail from its monad
superclass.
* The TcM monad is an instance of Quasi (see GHC.Tc.Gen.Splice), and it implements
(qReport True s) by using addErr to add an error message to the bag of errors.
The 'fail' in TcM raises an IOEnvFailure exception
* 'qReport' forces the message to ensure any exception hidden in unevaluated
thunk doesn't get into the bag of errors. Otherwise the following splice
will trigger panic (#8987):
$(fail undefined)
See also Note [Concealed TH exceptions]
* So, when running a splice, we catch all exceptions; then for
- an IOEnvFailure exception, we assume the error is already
in the error-bag (above)
- other errors, we add an error to the bag
and then fail
Note [Concealed TH exceptions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When displaying the error message contained in an exception originated from TH
code, we need to make sure that the error message itself does not contain an
exception. For example, when executing the following splice:
$( error ("foo " ++ error "bar") )
the message for the outer exception is a thunk which will throw the inner
exception when evaluated.
For this reason, we display the message of a TH exception using the
'safeShowException' function, which recursively catches any exception thrown
when showing an error message.
To call runQ in the Tc monad, we need to make TcM an instance of Quasi:
-}
instance TH.Quasi TcM where
qNewName s = do { u <- newUnique
; let i = toInteger (getKey u)
; return (TH.mkNameU s i) }
-- 'msg' is forced to ensure exceptions don't escape,
-- see Note [Exceptions in TH]
qReport True msg = seqList msg $ addErr (text msg)
qReport False msg = seqList msg $ addWarn NoReason (text msg)
qLocation = do { m <- getModule
; l <- getSrcSpanM
; r <- case l of
UnhelpfulSpan _ -> pprPanic "qLocation: Unhelpful location"
(ppr l)
RealSrcSpan s _ -> return s
; return (TH.Loc { TH.loc_filename = unpackFS (srcSpanFile r)
, TH.loc_module = moduleNameString (moduleName m)
, TH.loc_package = unitString (moduleUnit m)
, TH.loc_start = (srcSpanStartLine r, srcSpanStartCol r)
, TH.loc_end = (srcSpanEndLine r, srcSpanEndCol r) }) }
qLookupName = lookupName
qReify = reify
qReifyFixity nm = lookupThName nm >>= reifyFixity
qReifyType = reifyTypeOfThing
qReifyInstances = reifyInstances
qReifyRoles = reifyRoles
qReifyAnnotations = reifyAnnotations
qReifyModule = reifyModule
qReifyConStrictness nm = do { nm' <- lookupThName nm
; dc <- tcLookupDataCon nm'
; let bangs = dataConImplBangs dc
; return (map reifyDecidedStrictness bangs) }
-- For qRecover, discard error messages if
-- the recovery action is chosen. Otherwise
-- we'll only fail higher up.
qRecover recover main = tryTcDiscardingErrs recover main
qAddDependentFile fp = do
ref <- fmap tcg_dependent_files getGblEnv
dep_files <- readTcRef ref
writeTcRef ref (fp:dep_files)
qAddTempFile suffix = do
dflags <- getDynFlags
liftIO $ newTempName dflags TFL_GhcSession suffix
qAddTopDecls thds = do
l <- getSrcSpanM
th_origin <- getThSpliceOrigin
let either_hval = convertToHsDecls th_origin l thds
ds <- case either_hval of
Left exn -> failWithTc $
hang (text "Error in a declaration passed to addTopDecls:")
2 exn
Right ds -> return ds
mapM_ (checkTopDecl . unLoc) ds
th_topdecls_var <- fmap tcg_th_topdecls getGblEnv
updTcRef th_topdecls_var (\topds -> ds ++ topds)
where
checkTopDecl :: HsDecl GhcPs -> TcM ()
checkTopDecl (ValD _ binds)
= mapM_ bindName (collectHsBindBinders binds)
checkTopDecl (SigD _ _)
= return ()
checkTopDecl (AnnD _ _)
= return ()
checkTopDecl (ForD _ (ForeignImport { fd_name = L _ name }))
= bindName name
checkTopDecl _
= addErr $ text "Only function, value, annotation, and foreign import declarations may be added with addTopDecl"
bindName :: RdrName -> TcM ()
bindName (Exact n)
= do { th_topnames_var <- fmap tcg_th_topnames getGblEnv
; updTcRef th_topnames_var (\ns -> extendNameSet ns n)
}
bindName name =
addErr $
hang (text "The binder" <+> quotes (ppr name) <+> ptext (sLit "is not a NameU."))
2 (text "Probable cause: you used mkName instead of newName to generate a binding.")
qAddForeignFilePath lang fp = do
var <- fmap tcg_th_foreign_files getGblEnv
updTcRef var ((lang, fp) :)
qAddModFinalizer fin = do
r <- liftIO $ mkRemoteRef fin
fref <- liftIO $ mkForeignRef r (freeRemoteRef r)
addModFinalizerRef fref
qAddCorePlugin plugin = do
hsc_env <- getTopEnv
r <- liftIO $ findHomeModule hsc_env (mkModuleName plugin)
let err = hang
(text "addCorePlugin: invalid plugin module "
<+> text (show plugin)
)
2
(text "Plugins in the current package can't be specified.")
case r of
Found {} -> addErr err
FoundMultiple {} -> addErr err
_ -> return ()
th_coreplugins_var <- tcg_th_coreplugins <$> getGblEnv
updTcRef th_coreplugins_var (plugin:)
qGetQ :: forall a. Typeable a => TcM (Maybe a)
qGetQ = do
th_state_var <- fmap tcg_th_state getGblEnv
th_state <- readTcRef th_state_var
-- See #10596 for why we use a scoped type variable here.
return (Map.lookup (typeRep (Proxy :: Proxy a)) th_state >>= fromDynamic)
qPutQ x = do
th_state_var <- fmap tcg_th_state getGblEnv
updTcRef th_state_var (\m -> Map.insert (typeOf x) (toDyn x) m)
qIsExtEnabled = xoptM
qExtsEnabled =
EnumSet.toList . extensionFlags . hsc_dflags <$> getTopEnv
-- | Adds a mod finalizer reference to the local environment.
addModFinalizerRef :: ForeignRef (TH.Q ()) -> TcM ()
addModFinalizerRef finRef = do
th_stage <- getStage
case th_stage of
RunSplice th_modfinalizers_var -> updTcRef th_modfinalizers_var (finRef :)
-- This case happens only if a splice is executed and the caller does
-- not set the 'ThStage' to 'RunSplice' to collect finalizers.
-- See Note [Delaying modFinalizers in untyped splices] in GHC.Rename.Splice.
_ ->
pprPanic "addModFinalizer was called when no finalizers were collected"
(ppr th_stage)
-- | Releases the external interpreter state.
finishTH :: TcM ()
finishTH = do
hsc_env <- getTopEnv
case hsc_interp hsc_env of
Nothing -> pure ()
#if defined(HAVE_INTERNAL_INTERPRETER)
Just InternalInterp -> pure ()
#endif
Just (ExternalInterp {}) -> do
tcg <- getGblEnv
writeTcRef (tcg_th_remote_state tcg) Nothing
runTHExp :: ForeignHValue -> TcM TH.Exp
runTHExp = runTH THExp
runTHPat :: ForeignHValue -> TcM TH.Pat
runTHPat = runTH THPat
runTHType :: ForeignHValue -> TcM TH.Type
runTHType = runTH THType
runTHDec :: ForeignHValue -> TcM [TH.Dec]
runTHDec = runTH THDec
runTH :: Binary a => THResultType -> ForeignHValue -> TcM a
runTH ty fhv = do
interp <- tcGetInterp
case interp of
#if defined(HAVE_INTERNAL_INTERPRETER)
InternalInterp -> do
-- Run it in the local TcM
hv <- liftIO $ wormhole InternalInterp fhv
r <- runQuasi (unsafeCoerce hv :: TH.Q a)
return r
#endif
ExternalInterp conf iserv ->
-- Run it on the server. For an overview of how TH works with
-- Remote GHCi, see Note [Remote Template Haskell] in
-- libraries/ghci/GHCi/TH.hs.
withIServ_ conf iserv $ \i -> do
rstate <- getTHState i
loc <- TH.qLocation
liftIO $
withForeignRef rstate $ \state_hv ->
withForeignRef fhv $ \q_hv ->
writeIServ i (putMessage (RunTH state_hv q_hv ty (Just loc)))
runRemoteTH i []
bs <- readQResult i
return $! runGet get (LB.fromStrict bs)
-- | communicate with a remotely-running TH computation until it finishes.
-- See Note [Remote Template Haskell] in libraries/ghci/GHCi/TH.hs.
runRemoteTH
:: IServInstance
-> [Messages] -- saved from nested calls to qRecover
-> TcM ()
runRemoteTH iserv recovers = do
THMsg msg <- liftIO $ readIServ iserv getTHMessage
case msg of
RunTHDone -> return ()
StartRecover -> do -- Note [TH recover with -fexternal-interpreter]
v <- getErrsVar
msgs <- readTcRef v
writeTcRef v emptyMessages
runRemoteTH iserv (msgs : recovers)
EndRecover caught_error -> do
let (prev_msgs@(prev_warns,prev_errs), rest) = case recovers of
[] -> panic "EndRecover"
a : b -> (a,b)
v <- getErrsVar
(warn_msgs,_) <- readTcRef v
-- keep the warnings only if there were no errors
writeTcRef v $ if caught_error
then prev_msgs
else (prev_warns `unionBags` warn_msgs, prev_errs)
runRemoteTH iserv rest
_other -> do
r <- handleTHMessage msg
liftIO $ writeIServ iserv (put r)
runRemoteTH iserv recovers
-- | Read a value of type QResult from the iserv
readQResult :: Binary a => IServInstance -> TcM a
readQResult i = do
qr <- liftIO $ readIServ i get
case qr of
QDone a -> return a
QException str -> liftIO $ throwIO (ErrorCall str)
QFail str -> fail str
{- Note [TH recover with -fexternal-interpreter]
Recover is slightly tricky to implement.
The meaning of "recover a b" is
- Do a
- If it finished with no errors, then keep the warnings it generated
- If it failed, discard any messages it generated, and do b
Note that "failed" here can mean either
(1) threw an exception (failTc)
(2) generated an error message (addErrTcM)
The messages are managed by GHC in the TcM monad, whereas the
exception-handling is done in the ghc-iserv process, so we have to
coordinate between the two.
On the server:
- emit a StartRecover message
- run "a; FailIfErrs" inside a try
- emit an (EndRecover x) message, where x = True if "a; FailIfErrs" failed
- if "a; FailIfErrs" failed, run "b"
Back in GHC, when we receive:
FailIfErrrs
failTc if there are any error messages (= failIfErrsM)
StartRecover
save the current messages and start with an empty set.
EndRecover caught_error
Restore the previous messages,
and merge in the new messages if caught_error is false.
-}
-- | Retrieve (or create, if it hasn't been created already), the
-- remote TH state. The TH state is a remote reference to an IORef
-- QState living on the server, and we have to pass this to each RunTH
-- call we make.
--
-- The TH state is stored in tcg_th_remote_state in the TcGblEnv.
--
getTHState :: IServInstance -> TcM (ForeignRef (IORef QState))
getTHState i = do
tcg <- getGblEnv
th_state <- readTcRef (tcg_th_remote_state tcg)
case th_state of
Just rhv -> return rhv
Nothing -> do
hsc_env <- getTopEnv
fhv <- liftIO $ mkFinalizedHValue hsc_env =<< iservCall i StartTH
writeTcRef (tcg_th_remote_state tcg) (Just fhv)
return fhv
wrapTHResult :: TcM a -> TcM (THResult a)
wrapTHResult tcm = do
e <- tryM tcm -- only catch 'fail', treat everything else as catastrophic
case e of
Left e -> return (THException (show e))
Right a -> return (THComplete a)
handleTHMessage :: THMessage a -> TcM a
handleTHMessage msg = case msg of
NewName a -> wrapTHResult $ TH.qNewName a
Report b str -> wrapTHResult $ TH.qReport b str
LookupName b str -> wrapTHResult $ TH.qLookupName b str
Reify n -> wrapTHResult $ TH.qReify n
ReifyFixity n -> wrapTHResult $ TH.qReifyFixity n
ReifyType n -> wrapTHResult $ TH.qReifyType n
ReifyInstances n ts -> wrapTHResult $ TH.qReifyInstances n ts
ReifyRoles n -> wrapTHResult $ TH.qReifyRoles n
ReifyAnnotations lookup tyrep ->
wrapTHResult $ (map B.pack <$> getAnnotationsByTypeRep lookup tyrep)
ReifyModule m -> wrapTHResult $ TH.qReifyModule m
ReifyConStrictness nm -> wrapTHResult $ TH.qReifyConStrictness nm
AddDependentFile f -> wrapTHResult $ TH.qAddDependentFile f
AddTempFile s -> wrapTHResult $ TH.qAddTempFile s
AddModFinalizer r -> do
hsc_env <- getTopEnv
wrapTHResult $ liftIO (mkFinalizedHValue hsc_env r) >>= addModFinalizerRef
AddCorePlugin str -> wrapTHResult $ TH.qAddCorePlugin str
AddTopDecls decs -> wrapTHResult $ TH.qAddTopDecls decs
AddForeignFilePath lang str -> wrapTHResult $ TH.qAddForeignFilePath lang str
IsExtEnabled ext -> wrapTHResult $ TH.qIsExtEnabled ext
ExtsEnabled -> wrapTHResult $ TH.qExtsEnabled
FailIfErrs -> wrapTHResult failIfErrsM
_ -> panic ("handleTHMessage: unexpected message " ++ show msg)
getAnnotationsByTypeRep :: TH.AnnLookup -> TypeRep -> TcM [[Word8]]
getAnnotationsByTypeRep th_name tyrep
= do { name <- lookupThAnnLookup th_name
; topEnv <- getTopEnv
; epsHptAnns <- liftIO $ prepareAnnotations topEnv Nothing
; tcg <- getGblEnv
; let selectedEpsHptAnns = findAnnsByTypeRep epsHptAnns name tyrep
; let selectedTcgAnns = findAnnsByTypeRep (tcg_ann_env tcg) name tyrep
; return (selectedEpsHptAnns ++ selectedTcgAnns) }
{-
************************************************************************
* *
Instance Testing
* *
************************************************************************
-}
reifyInstances :: TH.Name -> [TH.Type] -> TcM [TH.Dec]
reifyInstances th_nm th_tys
= addErrCtxt (text "In the argument of reifyInstances:"
<+> ppr_th th_nm <+> sep (map ppr_th th_tys)) $
do { loc <- getSrcSpanM
; th_origin <- getThSpliceOrigin
; rdr_ty <- cvt th_origin loc (mkThAppTs (TH.ConT th_nm) th_tys)
-- #9262 says to bring vars into scope, like in HsForAllTy case
-- of rnHsTyKi
; let tv_rdrs = extractHsTyRdrTyVars rdr_ty
-- Rename to HsType Name
; ((tv_names, rn_ty), _fvs)
<- checkNoErrs $ -- If there are out-of-scope Names here, then we
-- must error before proceeding to typecheck the
-- renamed type, as that will result in GHC
-- internal errors (#13837).
rnImplicitBndrs Nothing tv_rdrs $ \ tv_names ->
do { (rn_ty, fvs) <- rnLHsType doc rdr_ty
; return ((tv_names, rn_ty), fvs) }
; (tclvl, wanted, (tvs, ty))
<- pushLevelAndSolveEqualitiesX "reifyInstances" $
bindImplicitTKBndrs_Skol tv_names $
tcInferLHsType rn_ty
; tvs <- zonkAndScopedSort tvs
-- Avoid error cascade if there are unsolved
; reportUnsolvedEqualities ReifySkol tvs tclvl wanted
; ty <- zonkTcTypeToType ty
-- Substitute out the meta type variables
-- In particular, the type might have kind
-- variables inside it (#7477)
; traceTc "reifyInstances" (ppr ty $$ ppr (tcTypeKind ty))
; case splitTyConApp_maybe ty of -- This expands any type synonyms
Just (tc, tys) -- See #7910
| Just cls <- tyConClass_maybe tc
-> do { inst_envs <- tcGetInstEnvs
; let (matches, unifies, _) = lookupInstEnv False inst_envs cls tys
; traceTc "reifyInstances1" (ppr matches)
; reifyClassInstances cls (map fst matches ++ unifies) }
| isOpenFamilyTyCon tc
-> do { inst_envs <- tcGetFamInstEnvs
; let matches = lookupFamInstEnv inst_envs tc tys
; traceTc "reifyInstances2" (ppr matches)
; reifyFamilyInstances tc (map fim_instance matches) }
_ -> bale_out (hang (text "reifyInstances:" <+> quotes (ppr ty))
2 (text "is not a class constraint or type family application")) }
where
doc = ClassInstanceCtx
bale_out msg = failWithTc msg
cvt :: Origin -> SrcSpan -> TH.Type -> TcM (LHsType GhcPs)
cvt origin loc th_ty = case convertToHsType origin loc th_ty of
Left msg -> failWithTc msg
Right ty -> return ty
{-
************************************************************************
* *
Reification
* *
************************************************************************
-}
lookupName :: Bool -- True <=> type namespace
-- False <=> value namespace
-> String -> TcM (Maybe TH.Name)
lookupName is_type_name s
= do { lcl_env <- getLocalRdrEnv
; case lookupLocalRdrEnv lcl_env rdr_name of
Just n -> return (Just (reifyName n))
Nothing -> do { mb_nm <- lookupGlobalOccRn_maybe rdr_name
; return (fmap reifyName mb_nm) } }
where
th_name = TH.mkName s -- Parses M.x into a base of 'x' and a module of 'M'
occ_fs :: FastString
occ_fs = mkFastString (TH.nameBase th_name)
occ :: OccName
occ | is_type_name
= if isLexVarSym occ_fs || isLexCon occ_fs
then mkTcOccFS occ_fs
else mkTyVarOccFS occ_fs
| otherwise
= if isLexCon occ_fs then mkDataOccFS occ_fs
else mkVarOccFS occ_fs
rdr_name = case TH.nameModule th_name of
Nothing -> mkRdrUnqual occ
Just mod -> mkRdrQual (mkModuleName mod) occ
getThing :: TH.Name -> TcM TcTyThing
getThing th_name
= do { name <- lookupThName th_name
; traceIf (text "reify" <+> text (show th_name) <+> brackets (ppr_ns th_name) <+> ppr name)
; tcLookupTh name }
-- ToDo: this tcLookup could fail, which would give a
-- rather unhelpful error message
where
ppr_ns (TH.Name _ (TH.NameG TH.DataName _pkg _mod)) = text "data"
ppr_ns (TH.Name _ (TH.NameG TH.TcClsName _pkg _mod)) = text "tc"
ppr_ns (TH.Name _ (TH.NameG TH.VarName _pkg _mod)) = text "var"
ppr_ns _ = panic "reify/ppr_ns"
reify :: TH.Name -> TcM TH.Info
reify th_name
= do { traceTc "reify 1" (text (TH.showName th_name))
; thing <- getThing th_name
; traceTc "reify 2" (ppr thing)
; reifyThing thing }
lookupThName :: TH.Name -> TcM Name
lookupThName th_name = do
mb_name <- lookupThName_maybe th_name
case mb_name of
Nothing -> failWithTc (notInScope th_name)
Just name -> return name
lookupThName_maybe :: TH.Name -> TcM (Maybe Name)
lookupThName_maybe th_name
= do { names <- mapMaybeM lookup (thRdrNameGuesses th_name)
-- Pick the first that works
-- E.g. reify (mkName "A") will pick the class A in preference to the data constructor A
; return (listToMaybe names) }
where
lookup rdr_name
= do { -- Repeat much of lookupOccRn, because we want
-- to report errors in a TH-relevant way
; rdr_env <- getLocalRdrEnv
; case lookupLocalRdrEnv rdr_env rdr_name of
Just name -> return (Just name)
Nothing -> lookupGlobalOccRn_maybe rdr_name }
tcLookupTh :: Name -> TcM TcTyThing
-- This is a specialised version of GHC.Tc.Utils.Env.tcLookup; specialised mainly in that
-- it gives a reify-related error message on failure, whereas in the normal
-- tcLookup, failure is a bug.
tcLookupTh name
= do { (gbl_env, lcl_env) <- getEnvs
; case lookupNameEnv (tcl_env lcl_env) name of {
Just thing -> return thing;
Nothing ->
case lookupNameEnv (tcg_type_env gbl_env) name of {
Just thing -> return (AGlobal thing);
Nothing ->
-- EZY: I don't think this choice matters, no TH in signatures!
if nameIsLocalOrFrom (tcg_semantic_mod gbl_env) name
then -- It's defined in this module
failWithTc (notInEnv name)
else
do { mb_thing <- tcLookupImported_maybe name
; case mb_thing of
Succeeded thing -> return (AGlobal thing)
Failed msg -> failWithTc msg
}}}}
notInScope :: TH.Name -> SDoc
notInScope th_name = quotes (text (TH.pprint th_name)) <+>
text "is not in scope at a reify"
-- Ugh! Rather an indirect way to display the name
notInEnv :: Name -> SDoc
notInEnv name = quotes (ppr name) <+>
text "is not in the type environment at a reify"
------------------------------
reifyRoles :: TH.Name -> TcM [TH.Role]
reifyRoles th_name
= do { thing <- getThing th_name
; case thing of
AGlobal (ATyCon tc) -> return (map reify_role (tyConRoles tc))
_ -> failWithTc (text "No roles associated with" <+> (ppr thing))
}
where
reify_role Nominal = TH.NominalR
reify_role Representational = TH.RepresentationalR
reify_role Phantom = TH.PhantomR
------------------------------
reifyThing :: TcTyThing -> TcM TH.Info
-- The only reason this is monadic is for error reporting,
-- which in turn is mainly for the case when TH can't express
-- some random GHC extension
reifyThing (AGlobal (AnId id))
= do { ty <- reifyType (idType id)
; let v = reifyName id
; case idDetails id of
ClassOpId cls -> return (TH.ClassOpI v ty (reifyName cls))
RecSelId{sel_tycon=RecSelData tc}
-> return (TH.VarI (reifySelector id tc) ty Nothing)
_ -> return (TH.VarI v ty Nothing)
}
reifyThing (AGlobal (ATyCon tc)) = reifyTyCon tc
reifyThing (AGlobal (AConLike (RealDataCon dc)))
= do { let name = dataConName dc
; ty <- reifyType (idType (dataConWrapId dc))
; return (TH.DataConI (reifyName name) ty
(reifyName (dataConOrigTyCon dc)))
}
reifyThing (AGlobal (AConLike (PatSynCon ps)))
= do { let name = reifyName ps
; ty <- reifyPatSynType (patSynSigBndr ps)
; return (TH.PatSynI name ty) }
reifyThing (ATcId {tct_id = id})
= do { ty1 <- zonkTcType (idType id) -- Make use of all the info we have, even
-- though it may be incomplete
; ty2 <- reifyType ty1
; return (TH.VarI (reifyName id) ty2 Nothing) }
reifyThing (ATyVar tv tv1)
= do { ty1 <- zonkTcTyVar tv1
; ty2 <- reifyType ty1
; return (TH.TyVarI (reifyName tv) ty2) }
reifyThing thing = pprPanic "reifyThing" (pprTcTyThingCategory thing)
-------------------------------------------
reifyAxBranch :: TyCon -> CoAxBranch -> TcM TH.TySynEqn
reifyAxBranch fam_tc (CoAxBranch { cab_tvs = tvs
, cab_lhs = lhs
, cab_rhs = rhs })
-- remove kind patterns (#8884)
= do { tvs' <- reifyTyVarsToMaybe tvs
; let lhs_types_only = filterOutInvisibleTypes fam_tc lhs
; lhs' <- reifyTypes lhs_types_only
; annot_th_lhs <- zipWith3M annotThType (tyConArgsPolyKinded fam_tc)
lhs_types_only lhs'
; let lhs_type = mkThAppTs (TH.ConT $ reifyName fam_tc) annot_th_lhs
; rhs' <- reifyType rhs
; return (TH.TySynEqn tvs' lhs_type rhs') }
reifyTyCon :: TyCon -> TcM TH.Info
reifyTyCon tc
| Just cls <- tyConClass_maybe tc
= reifyClass cls
| isFunTyCon tc
= return (TH.PrimTyConI (reifyName tc) 2 False)
| isPrimTyCon tc
= return (TH.PrimTyConI (reifyName tc) (length (tyConVisibleTyVars tc))
(isUnliftedTyCon tc))
| isTypeFamilyTyCon tc
= do { let tvs = tyConTyVars tc
res_kind = tyConResKind tc
resVar = famTcResVar tc
; kind' <- reifyKind res_kind
; let (resultSig, injectivity) =
case resVar of
Nothing -> (TH.KindSig kind', Nothing)
Just name ->
let thName = reifyName name
injAnnot = tyConInjectivityInfo tc
sig = TH.TyVarSig (TH.KindedTV thName () kind')
inj = case injAnnot of
NotInjective -> Nothing
Injective ms ->
Just (TH.InjectivityAnn thName injRHS)
where
injRHS = map (reifyName . tyVarName)
(filterByList ms tvs)
in (sig, inj)
; tvs' <- reifyTyVars (tyConVisibleTyVars tc)
; let tfHead =
TH.TypeFamilyHead (reifyName tc) tvs' resultSig injectivity
; if isOpenTypeFamilyTyCon tc
then do { fam_envs <- tcGetFamInstEnvs
; instances <- reifyFamilyInstances tc
(familyInstances fam_envs tc)
; return (TH.FamilyI (TH.OpenTypeFamilyD tfHead) instances) }
else do { eqns <-
case isClosedSynFamilyTyConWithAxiom_maybe tc of
Just ax -> mapM (reifyAxBranch tc) $
fromBranches $ coAxiomBranches ax
Nothing -> return []
; return (TH.FamilyI (TH.ClosedTypeFamilyD tfHead eqns)
[]) } }
| isDataFamilyTyCon tc
= do { let res_kind = tyConResKind tc
; kind' <- fmap Just (reifyKind res_kind)
; tvs' <- reifyTyVars (tyConVisibleTyVars tc)
; fam_envs <- tcGetFamInstEnvs
; instances <- reifyFamilyInstances tc (familyInstances fam_envs tc)
; return (TH.FamilyI
(TH.DataFamilyD (reifyName tc) tvs' kind') instances) }
| Just (_, rhs) <- synTyConDefn_maybe tc -- Vanilla type synonym
= do { rhs' <- reifyType rhs
; tvs' <- reifyTyVars (tyConVisibleTyVars tc)
; return (TH.TyConI
(TH.TySynD (reifyName tc) tvs' rhs'))
}
| otherwise
= do { cxt <- reifyCxt (tyConStupidTheta tc)
; let tvs = tyConTyVars tc
dataCons = tyConDataCons tc
isGadt = isGadtSyntaxTyCon tc
; cons <- mapM (reifyDataCon isGadt (mkTyVarTys tvs)) dataCons
; r_tvs <- reifyTyVars (tyConVisibleTyVars tc)
; let name = reifyName tc
deriv = [] -- Don't know about deriving
decl | isNewTyCon tc =
TH.NewtypeD cxt name r_tvs Nothing (head cons) deriv
| otherwise =
TH.DataD cxt name r_tvs Nothing cons deriv
; return (TH.TyConI decl) }
reifyDataCon :: Bool -> [Type] -> DataCon -> TcM TH.Con
reifyDataCon isGadtDataCon tys dc
= do { let -- used for H98 data constructors
(ex_tvs, theta, arg_tys)
= dataConInstSig dc tys
-- used for GADTs data constructors
g_user_tvs' = dataConUserTyVarBinders dc
(g_univ_tvs, _, g_eq_spec, g_theta', g_arg_tys', g_res_ty')
= dataConFullSig dc
(srcUnpks, srcStricts)
= mapAndUnzip reifySourceBang (dataConSrcBangs dc)
dcdBangs = zipWith TH.Bang srcUnpks srcStricts
fields = dataConFieldLabels dc
name = reifyName dc
-- Universal tvs present in eq_spec need to be filtered out, as
-- they will not appear anywhere in the type.
eq_spec_tvs = mkVarSet (map eqSpecTyVar g_eq_spec)
; (univ_subst, _)
-- See Note [Freshen reified GADT constructors' universal tyvars]
<- freshenTyVarBndrs $
filterOut (`elemVarSet` eq_spec_tvs) g_univ_tvs
; let (tvb_subst, g_user_tvs) = subst_tv_binders univ_subst g_user_tvs'
g_theta = substTys tvb_subst g_theta'
g_arg_tys = substTys tvb_subst (map scaledThing g_arg_tys')
g_res_ty = substTy tvb_subst g_res_ty'
; r_arg_tys <- reifyTypes (if isGadtDataCon then g_arg_tys else arg_tys)
; main_con <-
if | not (null fields) && not isGadtDataCon ->
return $ TH.RecC name (zip3 (map reifyFieldLabel fields)
dcdBangs r_arg_tys)
| not (null fields) -> do
{ res_ty <- reifyType g_res_ty
; return $ TH.RecGadtC [name]
(zip3 (map (reifyName . flSelector) fields)
dcdBangs r_arg_tys) res_ty }
-- We need to check not isGadtDataCon here because GADT
-- constructors can be declared infix.
-- See Note [Infix GADT constructors] in GHC.Tc.TyCl.
| dataConIsInfix dc && not isGadtDataCon ->
ASSERT( r_arg_tys `lengthIs` 2 ) do
{ let [r_a1, r_a2] = r_arg_tys
[s1, s2] = dcdBangs
; return $ TH.InfixC (s1,r_a1) name (s2,r_a2) }
| isGadtDataCon -> do
{ res_ty <- reifyType g_res_ty
; return $ TH.GadtC [name] (dcdBangs `zip` r_arg_tys) res_ty }
| otherwise ->
return $ TH.NormalC name (dcdBangs `zip` r_arg_tys)
; let (ex_tvs', theta') | isGadtDataCon = (g_user_tvs, g_theta)
| otherwise = ASSERT( all isTyVar ex_tvs )
-- no covars for haskell syntax
(map mk_specified ex_tvs, theta)
ret_con | null ex_tvs' && null theta' = return main_con
| otherwise = do
{ cxt <- reifyCxt theta'
; ex_tvs'' <- reifyTyVarBndrs ex_tvs'
; return (TH.ForallC ex_tvs'' cxt main_con) }
; ASSERT( r_arg_tys `equalLength` dcdBangs )
ret_con }
where
mk_specified tv = Bndr tv SpecifiedSpec
subst_tv_binders subst tv_bndrs =
let tvs = binderVars tv_bndrs
flags = map binderArgFlag tv_bndrs
(subst', tvs') = substTyVarBndrs subst tvs
tv_bndrs' = map (\(tv,fl) -> Bndr tv fl) (zip tvs' flags)
in (subst', tv_bndrs')
{-
Note [Freshen reified GADT constructors' universal tyvars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose one were to reify this GADT:
data a :~: b where
Refl :: forall a b. (a ~ b) => a :~: b
We ought to be careful here about the uniques we give to the occurrences of `a`
and `b` in this definition. That is because in the original DataCon, all uses
of `a` and `b` have the same unique, since `a` and `b` are both universally
quantified type variables--that is, they are used in both the (:~:) tycon as
well as in the constructor type signature. But when we turn the DataCon
definition into the reified one, the `a` and `b` in the constructor type
signature becomes differently scoped than the `a` and `b` in `data a :~: b`.
While it wouldn't technically be *wrong* per se to re-use the same uniques for
`a` and `b` across these two different scopes, it's somewhat annoying for end
users of Template Haskell, since they wouldn't be able to rely on the
assumption that all TH names have globally distinct uniques (#13885). For this
reason, we freshen the universally quantified tyvars that go into the reified
GADT constructor type signature to give them distinct uniques from their
counterparts in the tycon.
-}
------------------------------
reifyClass :: Class -> TcM TH.Info
reifyClass cls
= do { cxt <- reifyCxt theta
; inst_envs <- tcGetInstEnvs
; insts <- reifyClassInstances cls (InstEnv.classInstances inst_envs cls)
; assocTys <- concatMapM reifyAT ats
; ops <- concatMapM reify_op op_stuff
; tvs' <- reifyTyVars (tyConVisibleTyVars (classTyCon cls))
; let dec = TH.ClassD cxt (reifyName cls) tvs' fds' (assocTys ++ ops)
; return (TH.ClassI dec insts) }
where
(_, fds, theta, _, ats, op_stuff) = classExtraBigSig cls
fds' = map reifyFunDep fds
reify_op (op, def_meth)
= do { let (_, _, ty) = tcSplitMethodTy (idType op)
-- Use tcSplitMethodTy to get rid of the extraneous class
-- variables and predicates at the beginning of op's type
-- (see #15551).
; ty' <- reifyType ty
; let nm' = reifyName op
; case def_meth of
Just (_, GenericDM gdm_ty) ->
do { gdm_ty' <- reifyType gdm_ty
; return [TH.SigD nm' ty', TH.DefaultSigD nm' gdm_ty'] }
_ -> return [TH.SigD nm' ty'] }
reifyAT :: ClassATItem -> TcM [TH.Dec]
reifyAT (ATI tycon def) = do
tycon' <- reifyTyCon tycon
case tycon' of
TH.FamilyI dec _ -> do
let (tyName, tyArgs) = tfNames dec
(dec :) <$> maybe (return [])
(fmap (:[]) . reifyDefImpl tyName tyArgs . fst)
def
_ -> pprPanic "reifyAT" (text (show tycon'))
reifyDefImpl :: TH.Name -> [TH.Name] -> Type -> TcM TH.Dec
reifyDefImpl n args ty =
TH.TySynInstD . TH.TySynEqn Nothing (mkThAppTs (TH.ConT n) (map TH.VarT args))
<$> reifyType ty
tfNames :: TH.Dec -> (TH.Name, [TH.Name])
tfNames (TH.OpenTypeFamilyD (TH.TypeFamilyHead n args _ _))
= (n, map bndrName args)
tfNames d = pprPanic "tfNames" (text (show d))
bndrName :: TH.TyVarBndr flag -> TH.Name
bndrName (TH.PlainTV n _) = n
bndrName (TH.KindedTV n _ _) = n
------------------------------
-- | Annotate (with TH.SigT) a type if the first parameter is True
-- and if the type contains a free variable.
-- This is used to annotate type patterns for poly-kinded tyvars in
-- reifying class and type instances.
-- See @Note [Reified instances and explicit kind signatures]@.
annotThType :: Bool -- True <=> annotate
-> TyCoRep.Type -> TH.Type -> TcM TH.Type
-- tiny optimization: if the type is annotated, don't annotate again.
annotThType _ _ th_ty@(TH.SigT {}) = return th_ty
annotThType True ty th_ty
| not $ isEmptyVarSet $ filterVarSet isTyVar $ tyCoVarsOfType ty
= do { let ki = tcTypeKind ty
; th_ki <- reifyKind ki
; return (TH.SigT th_ty th_ki) }
annotThType _ _ th_ty = return th_ty
-- | For every argument type that a type constructor accepts,
-- report whether or not the argument is poly-kinded. This is used to
-- eventually feed into 'annotThType'.
-- See @Note [Reified instances and explicit kind signatures]@.
tyConArgsPolyKinded :: TyCon -> [Bool]
tyConArgsPolyKinded tc =
map (is_poly_ty . tyVarKind) tc_vis_tvs
-- See "Wrinkle: Oversaturated data family instances" in
-- @Note [Reified instances and explicit kind signatures]@
++ map (is_poly_ty . tyCoBinderType) tc_res_kind_vis_bndrs -- (1) in Wrinkle
++ repeat True -- (2) in Wrinkle
where
is_poly_ty :: Type -> Bool
is_poly_ty ty = not $
isEmptyVarSet $
filterVarSet isTyVar $
tyCoVarsOfType ty
tc_vis_tvs :: [TyVar]
tc_vis_tvs = tyConVisibleTyVars tc
tc_res_kind_vis_bndrs :: [TyCoBinder]
tc_res_kind_vis_bndrs = filter isVisibleBinder $ fst $ splitPiTys $ tyConResKind tc
{-
Note [Reified instances and explicit kind signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reified class instances and type family instances often include extra kind
information to disambiguate instances. Here is one such example that
illustrates this (#8953):
type family Poly (a :: k) :: Type
type instance Poly (x :: Bool) = Int
type instance Poly (x :: Maybe k) = Double
If you're not careful, reifying these instances might yield this:
type instance Poly x = Int
type instance Poly x = Double
To avoid this, we go through some care to annotate things with extra kind
information. Some functions which accomplish this feat include:
* annotThType: This annotates a type with a kind signature if the type contains
a free variable.
* tyConArgsPolyKinded: This checks every argument that a type constructor can
accept and reports if the type of the argument is poly-kinded. This
information is ultimately fed into annotThType.
-----
-- Wrinkle: Oversaturated data family instances
-----
What constitutes an argument to a type constructor in the definition of
tyConArgsPolyKinded? For most type constructors, it's simply the visible
type variable binders (i.e., tyConVisibleTyVars). There is one corner case
we must keep in mind, however: data family instances can appear oversaturated
(#17296). For instance:
data family Foo :: Type -> Type
data instance Foo x
data family Bar :: k
data family Bar x
For these sorts of data family instances, tyConVisibleTyVars isn't enough,
as they won't give you the kinds of the oversaturated arguments. We must
also consult:
1. The kinds of the arguments in the result kind (i.e., the tyConResKind).
This will tell us, e.g., the kind of `x` in `Foo x` above.
2. If we go beyond the number of arguments in the result kind (like the
`x` in `Bar x`), then we conservatively assume that the argument's
kind is poly-kinded.
-----
-- Wrinkle: data family instances with return kinds
-----
Another squirrelly corner case is this:
data family Foo (a :: k)
data instance Foo :: Bool -> Type
data instance Foo :: Char -> Type
If you're not careful, reifying these instances might yield this:
data instance Foo
data instance Foo
We can fix this ambiguity by reifying the instances' explicit return kinds. We
should only do this if necessary (see
Note [When does a tycon application need an explicit kind signature?] in GHC.Core.Type),
but more importantly, we *only* do this if either of the following are true:
1. The data family instance has no constructors.
2. The data family instance is declared with GADT syntax.
If neither of these are true, then reifying the return kind would yield
something like this:
data instance (Bar a :: Type) = MkBar a
Which is not valid syntax.
-}
------------------------------
reifyClassInstances :: Class -> [ClsInst] -> TcM [TH.Dec]
reifyClassInstances cls insts
= mapM (reifyClassInstance (tyConArgsPolyKinded (classTyCon cls))) insts
reifyClassInstance :: [Bool] -- True <=> the corresponding tv is poly-kinded
-- includes only *visible* tvs
-> ClsInst -> TcM TH.Dec
reifyClassInstance is_poly_tvs i
= do { cxt <- reifyCxt theta
; let vis_types = filterOutInvisibleTypes cls_tc types
; thtypes <- reifyTypes vis_types
; annot_thtypes <- zipWith3M annotThType is_poly_tvs vis_types thtypes
; let head_ty = mkThAppTs (TH.ConT (reifyName cls)) annot_thtypes
; return $ (TH.InstanceD over cxt head_ty []) }
where
(_tvs, theta, cls, types) = tcSplitDFunTy (idType dfun)
cls_tc = classTyCon cls
dfun = instanceDFunId i
over = case overlapMode (is_flag i) of
NoOverlap _ -> Nothing
Overlappable _ -> Just TH.Overlappable
Overlapping _ -> Just TH.Overlapping
Overlaps _ -> Just TH.Overlaps
Incoherent _ -> Just TH.Incoherent
------------------------------
reifyFamilyInstances :: TyCon -> [FamInst] -> TcM [TH.Dec]
reifyFamilyInstances fam_tc fam_insts
= mapM (reifyFamilyInstance (tyConArgsPolyKinded fam_tc)) fam_insts
reifyFamilyInstance :: [Bool] -- True <=> the corresponding tv is poly-kinded
-- includes only *visible* tvs
-> FamInst -> TcM TH.Dec
reifyFamilyInstance is_poly_tvs (FamInst { fi_flavor = flavor
, fi_axiom = ax
, fi_fam = fam })
| let fam_tc = coAxiomTyCon ax
branch = coAxiomSingleBranch ax
, CoAxBranch { cab_tvs = tvs, cab_lhs = lhs, cab_rhs = rhs } <- branch
= case flavor of
SynFamilyInst ->
-- remove kind patterns (#8884)
do { th_tvs <- reifyTyVarsToMaybe tvs
; let lhs_types_only = filterOutInvisibleTypes fam_tc lhs
; th_lhs <- reifyTypes lhs_types_only
; annot_th_lhs <- zipWith3M annotThType is_poly_tvs lhs_types_only
th_lhs
; let lhs_type = mkThAppTs (TH.ConT $ reifyName fam) annot_th_lhs
; th_rhs <- reifyType rhs
; return (TH.TySynInstD (TH.TySynEqn th_tvs lhs_type th_rhs)) }
DataFamilyInst rep_tc ->
do { let -- eta-expand lhs types, because sometimes data/newtype
-- instances are eta-reduced; See #9692
-- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom
(ee_tvs, ee_lhs, _) = etaExpandCoAxBranch branch
fam' = reifyName fam
dataCons = tyConDataCons rep_tc
isGadt = isGadtSyntaxTyCon rep_tc
; th_tvs <- reifyTyVarsToMaybe ee_tvs
; cons <- mapM (reifyDataCon isGadt (mkTyVarTys ee_tvs)) dataCons
; let types_only = filterOutInvisibleTypes fam_tc ee_lhs
; th_tys <- reifyTypes types_only
; annot_th_tys <- zipWith3M annotThType is_poly_tvs types_only th_tys
; let lhs_type = mkThAppTs (TH.ConT fam') annot_th_tys
; mb_sig <-
-- See "Wrinkle: data family instances with return kinds" in
-- Note [Reified instances and explicit kind signatures]
if (null cons || isGadtSyntaxTyCon rep_tc)
&& tyConAppNeedsKindSig False fam_tc (length ee_lhs)
then do { let full_kind = tcTypeKind (mkTyConApp fam_tc ee_lhs)
; th_full_kind <- reifyKind full_kind
; pure $ Just th_full_kind }
else pure Nothing
; return $
if isNewTyCon rep_tc
then TH.NewtypeInstD [] th_tvs lhs_type mb_sig (head cons) []
else TH.DataInstD [] th_tvs lhs_type mb_sig cons []
}
------------------------------
reifyType :: TyCoRep.Type -> TcM TH.Type
-- Monadic only because of failure
reifyType ty | tcIsLiftedTypeKind ty = return TH.StarT
-- Make sure to use tcIsLiftedTypeKind here, since we don't want to confuse it
-- with Constraint (#14869).
reifyType ty@(ForAllTy (Bndr _ argf) _)
= reify_for_all argf ty
reifyType (LitTy t) = do { r <- reifyTyLit t; return (TH.LitT r) }
reifyType (TyVarTy tv) = return (TH.VarT (reifyName tv))
reifyType (TyConApp tc tys) = reify_tc_app tc tys -- Do not expand type synonyms here
reifyType ty@(AppTy {}) = do
let (ty_head, ty_args) = splitAppTys ty
ty_head' <- reifyType ty_head
ty_args' <- reifyTypes (filter_out_invisible_args ty_head ty_args)
pure $ mkThAppTs ty_head' ty_args'
where
-- Make sure to filter out any invisible arguments. For instance, if you
-- reify the following:
--
-- newtype T (f :: forall a. a -> Type) = MkT (f Bool)
--
-- Then you should receive back `f Bool`, not `f Type Bool`, since the
-- `Type` argument is invisible (#15792).
filter_out_invisible_args :: Type -> [Type] -> [Type]
filter_out_invisible_args ty_head ty_args =
filterByList (map isVisibleArgFlag $ appTyArgFlags ty_head ty_args)
ty_args
reifyType ty@(FunTy { ft_af = af, ft_mult = Many, ft_arg = t1, ft_res = t2 })
| InvisArg <- af = reify_for_all Inferred ty -- Types like ((?x::Int) => Char -> Char)
| otherwise = do { [r1,r2] <- reifyTypes [t1,t2]
; return (TH.ArrowT `TH.AppT` r1 `TH.AppT` r2) }
reifyType ty@(FunTy { ft_af = af, ft_mult = tm, ft_arg = t1, ft_res = t2 })
| InvisArg <- af = noTH (sLit "linear invisible argument") (ppr ty)
| otherwise = do { [rm,r1,r2] <- reifyTypes [tm,t1,t2]
; return (TH.MulArrowT `TH.AppT` rm `TH.AppT` r1 `TH.AppT` r2) }
reifyType (CastTy t _) = reifyType t -- Casts are ignored in TH
reifyType ty@(CoercionTy {})= noTH (sLit "coercions in types") (ppr ty)
reify_for_all :: TyCoRep.ArgFlag -> TyCoRep.Type -> TcM TH.Type
-- Arg of reify_for_all is always ForAllTy or a predicate FunTy
reify_for_all argf ty
| isVisibleArgFlag argf
= do let (req_bndrs, phi) = tcSplitForAllTysReq ty
tvbndrs' <- reifyTyVarBndrs req_bndrs
phi' <- reifyType phi
pure $ TH.ForallVisT tvbndrs' phi'
| otherwise
= do let (inv_bndrs, phi) = tcSplitForAllTysInvis ty
tvbndrs' <- reifyTyVarBndrs inv_bndrs
let (cxt, tau) = tcSplitPhiTy phi
cxt' <- reifyCxt cxt
tau' <- reifyType tau
pure $ TH.ForallT tvbndrs' cxt' tau'
reifyTyLit :: TyCoRep.TyLit -> TcM TH.TyLit
reifyTyLit (NumTyLit n) = return (TH.NumTyLit n)
reifyTyLit (StrTyLit s) = return (TH.StrTyLit (unpackFS s))
reifyTypes :: [Type] -> TcM [TH.Type]
reifyTypes = mapM reifyType
reifyPatSynType
:: ([InvisTVBinder], ThetaType, [InvisTVBinder], ThetaType, [Scaled Type], Type) -> TcM TH.Type
-- reifies a pattern synonym's type and returns its *complete* type
-- signature; see NOTE [Pattern synonym signatures and Template
-- Haskell]
reifyPatSynType (univTyVars, req, exTyVars, prov, argTys, resTy)
= do { univTyVars' <- reifyTyVarBndrs univTyVars
; req' <- reifyCxt req
; exTyVars' <- reifyTyVarBndrs exTyVars
; prov' <- reifyCxt prov
; tau' <- reifyType (mkVisFunTys argTys resTy)
; return $ TH.ForallT univTyVars' req'
$ TH.ForallT exTyVars' prov' tau' }
reifyKind :: Kind -> TcM TH.Kind
reifyKind = reifyType
reifyCxt :: [PredType] -> TcM [TH.Pred]
reifyCxt = mapM reifyType
reifyFunDep :: ([TyVar], [TyVar]) -> TH.FunDep
reifyFunDep (xs, ys) = TH.FunDep (map reifyName xs) (map reifyName ys)
class ReifyFlag flag flag' | flag -> flag' where
reifyFlag :: flag -> flag'
instance ReifyFlag () () where
reifyFlag () = ()
instance ReifyFlag Specificity TH.Specificity where
reifyFlag SpecifiedSpec = TH.SpecifiedSpec
reifyFlag InferredSpec = TH.InferredSpec
reifyTyVars :: [TyVar] -> TcM [TH.TyVarBndr ()]
reifyTyVars = reifyTyVarBndrs . map mk_bndr
where
mk_bndr tv = Bndr tv ()
reifyTyVarBndrs :: ReifyFlag flag flag'
=> [VarBndr TyVar flag] -> TcM [TH.TyVarBndr flag']
reifyTyVarBndrs = mapM reify_tvbndr
where
-- even if the kind is *, we need to include a kind annotation,
-- in case a poly-kind would be inferred without the annotation.
-- See #8953 or test th/T8953
reify_tvbndr (Bndr tv fl) = TH.KindedTV (reifyName tv)
(reifyFlag fl)
<$> reifyKind (tyVarKind tv)
reifyTyVarsToMaybe :: [TyVar] -> TcM (Maybe [TH.TyVarBndr ()])
reifyTyVarsToMaybe [] = pure Nothing
reifyTyVarsToMaybe tys = Just <$> reifyTyVars tys
reify_tc_app :: TyCon -> [Type.Type] -> TcM TH.Type
reify_tc_app tc tys
= do { tys' <- reifyTypes (filterOutInvisibleTypes tc tys)
; maybe_sig_t (mkThAppTs r_tc tys') }
where
arity = tyConArity tc
r_tc | isUnboxedSumTyCon tc = TH.UnboxedSumT (arity `div` 2)
| isUnboxedTupleTyCon tc = TH.UnboxedTupleT (arity `div` 2)
| isPromotedTupleTyCon tc = TH.PromotedTupleT (arity `div` 2)
-- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
| isTupleTyCon tc = if isPromotedDataCon tc
then TH.PromotedTupleT arity
else TH.TupleT arity
| tc `hasKey` constraintKindTyConKey
= TH.ConstraintT
| tc `hasKey` unrestrictedFunTyConKey = TH.ArrowT
| tc `hasKey` listTyConKey = TH.ListT
| tc `hasKey` nilDataConKey = TH.PromotedNilT
| tc `hasKey` consDataConKey = TH.PromotedConsT
| tc `hasKey` heqTyConKey = TH.EqualityT
| tc `hasKey` eqPrimTyConKey = TH.EqualityT
| tc `hasKey` eqReprPrimTyConKey = TH.ConT (reifyName coercibleTyCon)
| isPromotedDataCon tc = TH.PromotedT (reifyName tc)
| otherwise = TH.ConT (reifyName tc)
-- See Note [When does a tycon application need an explicit kind
-- signature?] in GHC.Core.TyCo.Rep
maybe_sig_t th_type
| tyConAppNeedsKindSig
False -- We don't reify types using visible kind applications, so
-- don't count specified binders as contributing towards
-- injective positions in the kind of the tycon.
tc (length tys)
= do { let full_kind = tcTypeKind (mkTyConApp tc tys)
; th_full_kind <- reifyKind full_kind
; return (TH.SigT th_type th_full_kind) }
| otherwise
= return th_type
------------------------------
reifyName :: NamedThing n => n -> TH.Name
reifyName thing
| isExternalName name
= mk_varg pkg_str mod_str occ_str
| otherwise = TH.mkNameU occ_str (toInteger $ getKey (getUnique name))
-- Many of the things we reify have local bindings, and
-- NameL's aren't supposed to appear in binding positions, so
-- we use NameU. When/if we start to reify nested things, that
-- have free variables, we may need to generate NameL's for them.
where
name = getName thing
mod = ASSERT( isExternalName name ) nameModule name
pkg_str = unitString (moduleUnit mod)
mod_str = moduleNameString (moduleName mod)
occ_str = occNameString occ
occ = nameOccName name
mk_varg | OccName.isDataOcc occ = TH.mkNameG_d
| OccName.isVarOcc occ = TH.mkNameG_v
| OccName.isTcOcc occ = TH.mkNameG_tc
| otherwise = pprPanic "reifyName" (ppr name)
-- See Note [Reifying field labels]
reifyFieldLabel :: FieldLabel -> TH.Name
reifyFieldLabel fl
| flIsOverloaded fl
= TH.Name (TH.mkOccName occ_str) (TH.NameQ (TH.mkModName mod_str))
| otherwise = TH.mkNameG_v pkg_str mod_str occ_str
where
name = flSelector fl
mod = ASSERT( isExternalName name ) nameModule name
pkg_str = unitString (moduleUnit mod)
mod_str = moduleNameString (moduleName mod)
occ_str = unpackFS (flLabel fl)
reifySelector :: Id -> TyCon -> TH.Name
reifySelector id tc
= case find ((idName id ==) . flSelector) (tyConFieldLabels tc) of
Just fl -> reifyFieldLabel fl
Nothing -> pprPanic "reifySelector: missing field" (ppr id $$ ppr tc)
------------------------------
reifyFixity :: Name -> TcM (Maybe TH.Fixity)
reifyFixity name
= do { (found, fix) <- lookupFixityRn_help name
; return (if found then Just (conv_fix fix) else Nothing) }
where
conv_fix (BasicTypes.Fixity _ i d) = TH.Fixity i (conv_dir d)
conv_dir BasicTypes.InfixR = TH.InfixR
conv_dir BasicTypes.InfixL = TH.InfixL
conv_dir BasicTypes.InfixN = TH.InfixN
reifyUnpackedness :: DataCon.SrcUnpackedness -> TH.SourceUnpackedness
reifyUnpackedness NoSrcUnpack = TH.NoSourceUnpackedness
reifyUnpackedness SrcNoUnpack = TH.SourceNoUnpack
reifyUnpackedness SrcUnpack = TH.SourceUnpack
reifyStrictness :: DataCon.SrcStrictness -> TH.SourceStrictness
reifyStrictness NoSrcStrict = TH.NoSourceStrictness
reifyStrictness SrcStrict = TH.SourceStrict
reifyStrictness SrcLazy = TH.SourceLazy
reifySourceBang :: DataCon.HsSrcBang
-> (TH.SourceUnpackedness, TH.SourceStrictness)
reifySourceBang (HsSrcBang _ u s) = (reifyUnpackedness u, reifyStrictness s)
reifyDecidedStrictness :: DataCon.HsImplBang -> TH.DecidedStrictness
reifyDecidedStrictness HsLazy = TH.DecidedLazy
reifyDecidedStrictness HsStrict = TH.DecidedStrict
reifyDecidedStrictness HsUnpack{} = TH.DecidedUnpack
reifyTypeOfThing :: TH.Name -> TcM TH.Type
reifyTypeOfThing th_name = do
thing <- getThing th_name
case thing of
AGlobal (AnId id) -> reifyType (idType id)
AGlobal (ATyCon tc) -> reifyKind (tyConKind tc)
AGlobal (AConLike (RealDataCon dc)) ->
reifyType (idType (dataConWrapId dc))
AGlobal (AConLike (PatSynCon ps)) ->
reifyPatSynType (patSynSigBndr ps)
ATcId{tct_id = id} -> zonkTcType (idType id) >>= reifyType
ATyVar _ tctv -> zonkTcTyVar tctv >>= reifyType
-- Impossible cases, supposedly:
AGlobal (ACoAxiom _) -> panic "reifyTypeOfThing: ACoAxiom"
ATcTyCon _ -> panic "reifyTypeOfThing: ATcTyCon"
APromotionErr _ -> panic "reifyTypeOfThing: APromotionErr"
------------------------------
lookupThAnnLookup :: TH.AnnLookup -> TcM CoreAnnTarget
lookupThAnnLookup (TH.AnnLookupName th_nm) = fmap NamedTarget (lookupThName th_nm)
lookupThAnnLookup (TH.AnnLookupModule (TH.Module pn mn))
= return $ ModuleTarget $
mkModule (stringToUnit $ TH.pkgString pn) (mkModuleName $ TH.modString mn)
reifyAnnotations :: Data a => TH.AnnLookup -> TcM [a]
reifyAnnotations th_name
= do { name <- lookupThAnnLookup th_name
; topEnv <- getTopEnv
; epsHptAnns <- liftIO $ prepareAnnotations topEnv Nothing
; tcg <- getGblEnv
; let selectedEpsHptAnns = findAnns deserializeWithData epsHptAnns name
; let selectedTcgAnns = findAnns deserializeWithData (tcg_ann_env tcg) name
; return (selectedEpsHptAnns ++ selectedTcgAnns) }
------------------------------
modToTHMod :: Module -> TH.Module
modToTHMod m = TH.Module (TH.PkgName $ unitString $ moduleUnit m)
(TH.ModName $ moduleNameString $ moduleName m)
reifyModule :: TH.Module -> TcM TH.ModuleInfo
reifyModule (TH.Module (TH.PkgName pkgString) (TH.ModName mString)) = do
this_mod <- getModule
let reifMod = mkModule (stringToUnit pkgString) (mkModuleName mString)
if (reifMod == this_mod) then reifyThisModule else reifyFromIface reifMod
where
reifyThisModule = do
usages <- fmap (map modToTHMod . moduleEnvKeys . imp_mods) getImports
return $ TH.ModuleInfo usages
reifyFromIface reifMod = do
iface <- loadInterfaceForModule (text "reifying module from TH for" <+> ppr reifMod) reifMod
let usages = [modToTHMod m | usage <- mi_usages iface,
Just m <- [usageToModule (moduleUnit reifMod) usage] ]
return $ TH.ModuleInfo usages
usageToModule :: Unit -> Usage -> Maybe Module
usageToModule _ (UsageFile {}) = Nothing
usageToModule this_pkg (UsageHomeModule { usg_mod_name = mn }) = Just $ mkModule this_pkg mn
usageToModule _ (UsagePackageModule { usg_mod = m }) = Just m
usageToModule _ (UsageMergedRequirement { usg_mod = m }) = Just m
------------------------------
mkThAppTs :: TH.Type -> [TH.Type] -> TH.Type
mkThAppTs fun_ty arg_tys = foldl' TH.AppT fun_ty arg_tys
noTH :: PtrString -> SDoc -> TcM a
noTH s d = failWithTc (hsep [text "Can't represent" <+> ptext s <+>
text "in Template Haskell:",
nest 2 d])
ppr_th :: TH.Ppr a => a -> SDoc
ppr_th x = text (TH.pprint x)
{-
Note [Reifying field labels]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When reifying a datatype declared with DuplicateRecordFields enabled, we want
the reified names of the fields to be labels rather than selector functions.
That is, we want (reify ''T) and (reify 'foo) to produce
data T = MkT { foo :: Int }
foo :: T -> Int
rather than
data T = MkT { $sel:foo:MkT :: Int }
$sel:foo:MkT :: T -> Int
because otherwise TH code that uses the field names as strings will silently do
the wrong thing. Thus we use the field label (e.g. foo) as the OccName, rather
than the selector (e.g. $sel:foo:MkT). Since the Orig name M.foo isn't in the
environment, NameG can't be used to represent such fields. Instead,
reifyFieldLabel uses NameQ.
However, this means that extracting the field name from the output of reify, and
trying to reify it again, may fail with an ambiguity error if there are multiple
such fields defined in the module (see the test case
overloadedrecflds/should_fail/T11103.hs). The "proper" fix requires changes to
the TH AST to make it able to represent duplicate record fields.
-}
tcGetInterp :: TcM Interp
tcGetInterp = do
hsc_env <- getTopEnv
case hsc_interp hsc_env of
Nothing -> liftIO $ throwIO (InstallationError "Template haskell requires a target code interpreter")
Just i -> pure i
|