1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
|
{-# LANGUAGE CPP, GADTs, ViewPatterns #-}
-- | The @FamInst@ type: family instance heads
module GHC.Tc.Instance.Family (
FamInstEnvs, tcGetFamInstEnvs,
checkFamInstConsistency, tcExtendLocalFamInstEnv,
tcLookupDataFamInst, tcLookupDataFamInst_maybe,
tcInstNewTyCon_maybe, tcTopNormaliseNewTypeTF_maybe,
newFamInst,
-- * Injectivity
reportInjectivityErrors, reportConflictingInjectivityErrs
) where
import GhcPrelude
import GHC.Driver.Types
import GHC.Core.FamInstEnv
import GHC.Core.InstEnv( roughMatchTcs )
import GHC.Core.Coercion
import GHC.Core.Lint
import GHC.Tc.Types.Evidence
import GHC.Iface.Load
import GHC.Tc.Utils.Monad
import GHC.Types.SrcLoc as SrcLoc
import GHC.Core.TyCon
import GHC.Tc.Utils.TcType
import GHC.Core.Coercion.Axiom
import GHC.Driver.Session
import GHC.Types.Module
import Outputable
import Util
import GHC.Types.Name.Reader
import GHC.Core.DataCon ( dataConName )
import Maybes
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr ( pprWithExplicitKindsWhen )
import GHC.Tc.Utils.TcMType
import GHC.Types.Name
import Panic
import GHC.Types.Var.Set
import FV
import Bag( Bag, unionBags, unitBag )
import Control.Monad
import Data.List ( sortBy )
import Data.List.NonEmpty ( NonEmpty(..) )
import Data.Function ( on )
import qualified GHC.LanguageExtensions as LangExt
#include "HsVersions.h"
{- Note [The type family instance consistency story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To preserve type safety we must ensure that for any given module, all
the type family instances used either in that module or in any module
it directly or indirectly imports are consistent. For example, consider
module F where
type family F a
module A where
import F( F )
type instance F Int = Bool
f :: F Int -> Bool
f x = x
module B where
import F( F )
type instance F Int = Char
g :: Char -> F Int
g x = x
module Bad where
import A( f )
import B( g )
bad :: Char -> Int
bad c = f (g c)
Even though module Bad never mentions the type family F at all, by
combining the functions f and g that were type checked in contradictory
type family instance environments, the function bad is able to coerce
from one type to another. So when we type check Bad we must verify that
the type family instances defined in module A are consistent with those
defined in module B.
How do we ensure that we maintain the necessary consistency?
* Call a module which defines at least one type family instance a
"family instance module". This flag `mi_finsts` is recorded in the
interface file.
* For every module we calculate the set of all of its direct and
indirect dependencies that are family instance modules. This list
`dep_finsts` is also recorded in the interface file so we can compute
this list for a module from the lists for its direct dependencies.
* When type checking a module M we check consistency of all the type
family instances that are either provided by its `dep_finsts` or
defined in the module M itself. This is a pairwise check, i.e., for
every pair of instances we must check that they are consistent.
- For family instances coming from `dep_finsts`, this is checked in
checkFamInstConsistency, called from tcRnImports. See Note
[Checking family instance consistency] for details on this check
(and in particular how we avoid having to do all these checks for
every module we compile).
- That leaves checking the family instances defined in M itself
against instances defined in either M or its `dep_finsts`. This is
checked in `tcExtendLocalFamInstEnv'.
There are four subtle points in this scheme which have not been
addressed yet.
* We have checked consistency of the family instances *defined* by M
or its imports, but this is not by definition the same thing as the
family instances *used* by M or its imports. Specifically, we need to
ensure when we use a type family instance while compiling M that this
instance was really defined from either M or one of its imports,
rather than being an instance that we happened to know about from
reading an interface file in the course of compiling an unrelated
module. Otherwise, we'll end up with no record of the fact that M
depends on this family instance and type safety will be compromised.
See #13102.
* It can also happen that M uses a function defined in another module
which is not transitively imported by M. Examples include the
desugaring of various overloaded constructs, and references inserted
by Template Haskell splices. If that function's definition makes use
of type family instances which are not checked against those visible
from M, type safety can again be compromised. See #13251.
* When a module C imports a boot module B.hs-boot, we check that C's
type family instances are compatible with those visible from
B.hs-boot. However, C will eventually be linked against a different
module B.hs, which might define additional type family instances which
are inconsistent with C's. This can also lead to loss of type safety.
See #9562.
* The call to checkFamConsistency for imported functions occurs very
early (in tcRnImports) and that causes problems if the imported
instances use type declared in the module being compiled.
See Note [Loading your own hi-boot file] in GHC.Iface.Load.
-}
{-
************************************************************************
* *
Making a FamInst
* *
************************************************************************
-}
-- All type variables in a FamInst must be fresh. This function
-- creates the fresh variables and applies the necessary substitution
-- It is defined here to avoid a dependency from FamInstEnv on the monad
-- code.
newFamInst :: FamFlavor -> CoAxiom Unbranched -> TcM FamInst
-- Freshen the type variables of the FamInst branches
newFamInst flavor axiom@(CoAxiom { co_ax_tc = fam_tc })
= ASSERT2( tyCoVarsOfTypes lhs `subVarSet` tcv_set, text "lhs" <+> pp_ax )
ASSERT2( lhs_kind `eqType` rhs_kind, text "kind" <+> pp_ax $$ ppr lhs_kind $$ ppr rhs_kind )
-- We used to have an assertion that the tyvars of the RHS were bound
-- by tcv_set, but in error situations like F Int = a that isn't
-- true; a later check in checkValidFamInst rejects it
do { (subst, tvs') <- freshenTyVarBndrs tvs
; (subst, cvs') <- freshenCoVarBndrsX subst cvs
; dflags <- getDynFlags
; let lhs' = substTys subst lhs
rhs' = substTy subst rhs
tcvs' = tvs' ++ cvs'
; ifErrsM (return ()) $ -- Don't lint when there are errors, because
-- errors might mean TcTyCons.
-- See Note [Recover from validity error] in GHC.Tc.TyCl
when (gopt Opt_DoCoreLinting dflags) $
-- Check that the types involved in this instance are well formed.
-- Do /not/ expand type synonyms, for the reasons discussed in
-- Note [Linting type synonym applications].
case lintTypes dflags tcvs' (rhs':lhs') of
Nothing -> pure ()
Just fail_msg -> pprPanic "Core Lint error in newFamInst" $
vcat [ fail_msg
, ppr fam_tc
, ppr subst
, ppr tvs'
, ppr cvs'
, ppr lhs'
, ppr rhs' ]
; return (FamInst { fi_fam = tyConName fam_tc
, fi_flavor = flavor
, fi_tcs = roughMatchTcs lhs
, fi_tvs = tvs'
, fi_cvs = cvs'
, fi_tys = lhs'
, fi_rhs = rhs'
, fi_axiom = axiom }) }
where
lhs_kind = tcTypeKind (mkTyConApp fam_tc lhs)
rhs_kind = tcTypeKind rhs
tcv_set = mkVarSet (tvs ++ cvs)
pp_ax = pprCoAxiom axiom
CoAxBranch { cab_tvs = tvs
, cab_cvs = cvs
, cab_lhs = lhs
, cab_rhs = rhs } = coAxiomSingleBranch axiom
{-
************************************************************************
* *
Optimised overlap checking for family instances
* *
************************************************************************
Note [Checking family instance consistency]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For any two family instance modules that we import directly or indirectly, we
check whether the instances in the two modules are consistent, *unless* we can
be certain that the instances of the two modules have already been checked for
consistency during the compilation of modules that we import.
Why do we need to check? Consider
module X1 where module X2 where
data T1 data T2
type instance F T1 b = Int type instance F a T2 = Char
f1 :: F T1 a -> Int f2 :: Char -> F a T2
f1 x = x f2 x = x
Now if we import both X1 and X2 we could make (f2 . f1) :: Int -> Char.
Notice that neither instance is an orphan.
How do we know which pairs of modules have already been checked? For each
module M we directly import, we look up the family instance modules that M
imports (directly or indirectly), say F1, ..., FN. For any two modules
among M, F1, ..., FN, we know that the family instances defined in those
two modules are consistent--because we checked that when we compiled M.
For every other pair of family instance modules we import (directly or
indirectly), we check that they are consistent now. (So that we can be
certain that the modules in our `GHC.Driver.Types.dep_finsts' are consistent.)
There is some fancy footwork regarding hs-boot module loops, see
Note [Don't check hs-boot type family instances too early]
Note [Checking family instance optimization]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As explained in Note [Checking family instance consistency]
we need to ensure that every pair of transitive imports that define type family
instances is consistent.
Let's define df(A) = transitive imports of A that define type family instances
+ A, if A defines type family instances
Then for every direct import A, df(A) is already consistent.
Let's name the current module M.
We want to make sure that df(M) is consistent.
df(M) = df(D_1) U df(D_2) U ... U df(D_i) where D_1 .. D_i are direct imports.
We perform the check iteratively, maintaining a set of consistent modules 'C'
and trying to add df(D_i) to it.
The key part is how to ensure that the union C U df(D_i) is consistent.
Let's consider two modules: A and B from C U df(D_i).
There are nine possible ways to choose A and B from C U df(D_i):
| A in C only | A in C and B in df(D_i) | A in df(D_i) only
--------------------------------------------------------------------------------
B in C only | Already checked | Already checked | Needs to be checked
| when checking C | when checking C |
--------------------------------------------------------------------------------
B in C and | Already checked | Already checked | Already checked when
B in df(D_i) | when checking C | when checking C | checking df(D_i)
--------------------------------------------------------------------------------
B in df(D_i) | Needs to be | Already checked | Already checked when
only | checked | when checking df(D_i) | checking df(D_i)
That means to ensure that C U df(D_i) is consistent we need to check every
module from C - df(D_i) against every module from df(D_i) - C and
every module from df(D_i) - C against every module from C - df(D_i).
But since the checks are symmetric it suffices to pick A from C - df(D_i)
and B from df(D_i) - C.
In other words these are the modules we need to check:
[ (m1, m2) | m1 <- C, m1 not in df(D_i)
, m2 <- df(D_i), m2 not in C ]
One final thing to note here is that if there's lot of overlap between
subsequent df(D_i)'s then we expect those set differences to be small.
That situation should be pretty common in practice, there's usually
a set of utility modules that every module imports directly or indirectly.
This is basically the idea from #13092, comment:14.
-}
-- This function doesn't check ALL instances for consistency,
-- only ones that aren't involved in recursive knot-tying
-- loops; see Note [Don't check hs-boot type family instances too early].
-- We don't need to check the current module, this is done in
-- tcExtendLocalFamInstEnv.
-- See Note [The type family instance consistency story].
checkFamInstConsistency :: [Module] -> TcM ()
checkFamInstConsistency directlyImpMods
= do { (eps, hpt) <- getEpsAndHpt
; traceTc "checkFamInstConsistency" (ppr directlyImpMods)
; let { -- Fetch the iface of a given module. Must succeed as
-- all directly imported modules must already have been loaded.
modIface mod =
case lookupIfaceByModule hpt (eps_PIT eps) mod of
Nothing -> panicDoc "FamInst.checkFamInstConsistency"
(ppr mod $$ pprHPT hpt)
Just iface -> iface
-- Which family instance modules were checked for consistency
-- when we compiled `mod`?
-- Itself (if a family instance module) and its dep_finsts.
-- This is df(D_i) from
-- Note [Checking family instance optimization]
; modConsistent :: Module -> [Module]
; modConsistent mod =
if mi_finsts (mi_final_exts (modIface mod)) then mod:deps else deps
where
deps = dep_finsts . mi_deps . modIface $ mod
; hmiModule = mi_module . hm_iface
; hmiFamInstEnv = extendFamInstEnvList emptyFamInstEnv
. md_fam_insts . hm_details
; hpt_fam_insts = mkModuleEnv [ (hmiModule hmi, hmiFamInstEnv hmi)
| hmi <- eltsHpt hpt]
}
; checkMany hpt_fam_insts modConsistent directlyImpMods
}
where
-- See Note [Checking family instance optimization]
checkMany
:: ModuleEnv FamInstEnv -- home package family instances
-> (Module -> [Module]) -- given A, modules checked when A was checked
-> [Module] -- modules to process
-> TcM ()
checkMany hpt_fam_insts modConsistent mods = go [] emptyModuleSet mods
where
go :: [Module] -- list of consistent modules
-> ModuleSet -- set of consistent modules, same elements as the
-- list above
-> [Module] -- modules to process
-> TcM ()
go _ _ [] = return ()
go consistent consistent_set (mod:mods) = do
sequence_
[ check hpt_fam_insts m1 m2
| m1 <- to_check_from_mod
-- loop over toCheckFromMod first, it's usually smaller,
-- it may even be empty
, m2 <- to_check_from_consistent
]
go consistent' consistent_set' mods
where
mod_deps_consistent = modConsistent mod
mod_deps_consistent_set = mkModuleSet mod_deps_consistent
consistent' = to_check_from_mod ++ consistent
consistent_set' =
extendModuleSetList consistent_set to_check_from_mod
to_check_from_consistent =
filterOut (`elemModuleSet` mod_deps_consistent_set) consistent
to_check_from_mod =
filterOut (`elemModuleSet` consistent_set) mod_deps_consistent
-- Why don't we just minusModuleSet here?
-- We could, but doing so means one of two things:
--
-- 1. When looping over the cartesian product we convert
-- a set into a non-deterministicly ordered list. Which
-- happens to be fine for interface file determinism
-- in this case, today, because the order only
-- determines the order of deferred checks. But such
-- invariants are hard to keep.
--
-- 2. When looping over the cartesian product we convert
-- a set into a deterministically ordered list - this
-- adds some additional cost of sorting for every
-- direct import.
--
-- That also explains why we need to keep both 'consistent'
-- and 'consistentSet'.
--
-- See also Note [ModuleEnv performance and determinism].
check hpt_fam_insts m1 m2
= do { env1' <- getFamInsts hpt_fam_insts m1
; env2' <- getFamInsts hpt_fam_insts m2
-- We're checking each element of env1 against env2.
-- The cost of that is dominated by the size of env1, because
-- for each instance in env1 we look it up in the type family
-- environment env2, and lookup is cheap.
-- The code below ensures that env1 is the smaller environment.
; let sizeE1 = famInstEnvSize env1'
sizeE2 = famInstEnvSize env2'
(env1, env2) = if sizeE1 < sizeE2 then (env1', env2')
else (env2', env1')
-- Note [Don't check hs-boot type family instances too early]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Family instance consistency checking involves checking that
-- the family instances of our imported modules are consistent with
-- one another; this might lead you to think that this process
-- has nothing to do with the module we are about to typecheck.
-- Not so! Consider the following case:
--
-- -- A.hs-boot
-- type family F a
--
-- -- B.hs
-- import {-# SOURCE #-} A
-- type instance F Int = Bool
--
-- -- A.hs
-- import B
-- type family F a
--
-- When typechecking A, we are NOT allowed to poke the TyThing
-- for F until we have typechecked the family. Thus, we
-- can't do consistency checking for the instance in B
-- (checkFamInstConsistency is called during renaming).
-- Failing to defer the consistency check lead to #11062.
--
-- Additionally, we should also defer consistency checking when
-- type from the hs-boot file of the current module occurs on
-- the left hand side, as we will poke its TyThing when checking
-- for overlap.
--
-- -- F.hs
-- type family F a
--
-- -- A.hs-boot
-- import F
-- data T
--
-- -- B.hs
-- import {-# SOURCE #-} A
-- import F
-- type instance F T = Int
--
-- -- A.hs
-- import B
-- data T = MkT
--
-- In fact, it is even necessary to defer for occurrences in
-- the RHS, because we may test for *compatibility* in event
-- of an overlap.
--
-- Why don't we defer ALL of the checks to later? Well, many
-- instances aren't involved in the recursive loop at all. So
-- we might as well check them immediately; and there isn't
-- a good time to check them later in any case: every time
-- we finish kind-checking a type declaration and add it to
-- a context, we *then* consistency check all of the instances
-- which mentioned that type. We DO want to check instances
-- as quickly as possible, so that we aren't typechecking
-- values with inconsistent axioms in scope.
--
-- See also Note [Tying the knot]
-- for why we are doing this at all.
; let check_now = famInstEnvElts env1
; mapM_ (checkForConflicts (emptyFamInstEnv, env2)) check_now
; mapM_ (checkForInjectivityConflicts (emptyFamInstEnv,env2)) check_now
}
getFamInsts :: ModuleEnv FamInstEnv -> Module -> TcM FamInstEnv
getFamInsts hpt_fam_insts mod
| Just env <- lookupModuleEnv hpt_fam_insts mod = return env
| otherwise = do { _ <- initIfaceTcRn (loadSysInterface doc mod)
; eps <- getEps
; return (expectJust "checkFamInstConsistency" $
lookupModuleEnv (eps_mod_fam_inst_env eps) mod) }
where
doc = ppr mod <+> text "is a family-instance module"
{-
************************************************************************
* *
Lookup
* *
************************************************************************
-}
-- | If @co :: T ts ~ rep_ty@ then:
--
-- > instNewTyCon_maybe T ts = Just (rep_ty, co)
--
-- Checks for a newtype, and for being saturated
-- Just like Coercion.instNewTyCon_maybe, but returns a TcCoercion
tcInstNewTyCon_maybe :: TyCon -> [TcType] -> Maybe (TcType, TcCoercion)
tcInstNewTyCon_maybe = instNewTyCon_maybe
-- | Like 'tcLookupDataFamInst_maybe', but returns the arguments back if
-- there is no data family to unwrap.
-- Returns a Representational coercion
tcLookupDataFamInst :: FamInstEnvs -> TyCon -> [TcType]
-> (TyCon, [TcType], Coercion)
tcLookupDataFamInst fam_inst_envs tc tc_args
| Just (rep_tc, rep_args, co)
<- tcLookupDataFamInst_maybe fam_inst_envs tc tc_args
= (rep_tc, rep_args, co)
| otherwise
= (tc, tc_args, mkRepReflCo (mkTyConApp tc tc_args))
tcLookupDataFamInst_maybe :: FamInstEnvs -> TyCon -> [TcType]
-> Maybe (TyCon, [TcType], Coercion)
-- ^ Converts a data family type (eg F [a]) to its representation type (eg FList a)
-- and returns a coercion between the two: co :: F [a] ~R FList a.
tcLookupDataFamInst_maybe fam_inst_envs tc tc_args
| isDataFamilyTyCon tc
, match : _ <- lookupFamInstEnv fam_inst_envs tc tc_args
, FamInstMatch { fim_instance = rep_fam@(FamInst { fi_axiom = ax
, fi_cvs = cvs })
, fim_tys = rep_args
, fim_cos = rep_cos } <- match
, let rep_tc = dataFamInstRepTyCon rep_fam
co = mkUnbranchedAxInstCo Representational ax rep_args
(mkCoVarCos cvs)
= ASSERT( null rep_cos ) -- See Note [Constrained family instances] in GHC.Core.FamInstEnv
Just (rep_tc, rep_args, co)
| otherwise
= Nothing
-- | 'tcTopNormaliseNewTypeTF_maybe' gets rid of top-level newtypes,
-- potentially looking through newtype /instances/.
--
-- It is only used by the type inference engine (specifically, when
-- solving representational equality), and hence it is careful to unwrap
-- only if the relevant data constructor is in scope. That's why
-- it get a GlobalRdrEnv argument.
--
-- It is careful not to unwrap data/newtype instances if it can't
-- continue unwrapping. Such care is necessary for proper error
-- messages.
--
-- It does not look through type families.
-- It does not normalise arguments to a tycon.
--
-- If the result is Just (rep_ty, (co, gres), rep_ty), then
-- co : ty ~R rep_ty
-- gres are the GREs for the data constructors that
-- had to be in scope
tcTopNormaliseNewTypeTF_maybe :: FamInstEnvs
-> GlobalRdrEnv
-> Type
-> Maybe ((Bag GlobalRdrElt, TcCoercion), Type)
tcTopNormaliseNewTypeTF_maybe faminsts rdr_env ty
-- cf. FamInstEnv.topNormaliseType_maybe and Coercion.topNormaliseNewType_maybe
= topNormaliseTypeX stepper plus ty
where
plus :: (Bag GlobalRdrElt, TcCoercion) -> (Bag GlobalRdrElt, TcCoercion)
-> (Bag GlobalRdrElt, TcCoercion)
plus (gres1, co1) (gres2, co2) = ( gres1 `unionBags` gres2
, co1 `mkTransCo` co2 )
stepper :: NormaliseStepper (Bag GlobalRdrElt, TcCoercion)
stepper = unwrap_newtype `composeSteppers` unwrap_newtype_instance
-- For newtype instances we take a double step or nothing, so that
-- we don't return the representation type of the newtype instance,
-- which would lead to terrible error messages
unwrap_newtype_instance rec_nts tc tys
| Just (tc', tys', co) <- tcLookupDataFamInst_maybe faminsts tc tys
= mapStepResult (\(gres, co1) -> (gres, co `mkTransCo` co1)) $
unwrap_newtype rec_nts tc' tys'
| otherwise = NS_Done
unwrap_newtype rec_nts tc tys
| Just con <- newTyConDataCon_maybe tc
, Just gre <- lookupGRE_Name rdr_env (dataConName con)
-- This is where we check that the
-- data constructor is in scope
= mapStepResult (\co -> (unitBag gre, co)) $
unwrapNewTypeStepper rec_nts tc tys
| otherwise
= NS_Done
{-
************************************************************************
* *
Extending the family instance environment
* *
************************************************************************
-}
-- Add new locally-defined family instances, checking consistency with
-- previous locally-defined family instances as well as all instances
-- available from imported modules. This requires loading all of our
-- imports that define family instances (if we haven't loaded them already).
tcExtendLocalFamInstEnv :: [FamInst] -> TcM a -> TcM a
-- If we weren't actually given any instances to add, then we don't want
-- to go to the bother of loading family instance module dependencies.
tcExtendLocalFamInstEnv [] thing_inside = thing_inside
-- Otherwise proceed...
tcExtendLocalFamInstEnv fam_insts thing_inside
= do { -- Load family-instance modules "below" this module, so that
-- allLocalFamInst can check for consistency with them
-- See Note [The type family instance consistency story]
loadDependentFamInstModules fam_insts
-- Now add the instances one by one
; env <- getGblEnv
; (inst_env', fam_insts') <- foldlM addLocalFamInst
(tcg_fam_inst_env env, tcg_fam_insts env)
fam_insts
; let env' = env { tcg_fam_insts = fam_insts'
, tcg_fam_inst_env = inst_env' }
; setGblEnv env' thing_inside
}
loadDependentFamInstModules :: [FamInst] -> TcM ()
-- Load family-instance modules "below" this module, so that
-- allLocalFamInst can check for consistency with them
-- See Note [The type family instance consistency story]
loadDependentFamInstModules fam_insts
= do { env <- getGblEnv
; let this_mod = tcg_mod env
imports = tcg_imports env
want_module mod -- See Note [Home package family instances]
| mod == this_mod = False
| home_fams_only = moduleUnitId mod == moduleUnitId this_mod
| otherwise = True
home_fams_only = all (nameIsHomePackage this_mod . fi_fam) fam_insts
; loadModuleInterfaces (text "Loading family-instance modules") $
filter want_module (imp_finsts imports) }
{- Note [Home package family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Optimization: If we're only defining type family instances
for type families *defined in the home package*, then we
only have to load interface files that belong to the home
package. The reason is that there's no recursion between
packages, so modules in other packages can't possibly define
instances for our type families.
(Within the home package, we could import a module M that
imports us via an hs-boot file, and thereby defines an
instance of a type family defined in this module. So we can't
apply the same logic to avoid reading any interface files at
all, when we define an instances for type family defined in
the current module.
-}
-- Check that the proposed new instance is OK,
-- and then add it to the home inst env
-- This must be lazy in the fam_inst arguments, see Note [Lazy axiom match]
-- in GHC.Core.FamInstEnv
addLocalFamInst :: (FamInstEnv,[FamInst])
-> FamInst
-> TcM (FamInstEnv, [FamInst])
addLocalFamInst (home_fie, my_fis) fam_inst
-- home_fie includes home package and this module
-- my_fies is just the ones from this module
= do { traceTc "addLocalFamInst" (ppr fam_inst)
-- Unlike the case of class instances, don't override existing
-- instances in GHCi; it's unsound. See #7102.
; mod <- getModule
; traceTc "alfi" (ppr mod)
-- Fetch imported instances, so that we report
-- overlaps correctly.
-- Really we ought to only check consistency with
-- those instances which are transitively imported
-- by the current module, rather than every instance
-- we've ever seen. Fixing this is part of #13102.
; eps <- getEps
; let inst_envs = (eps_fam_inst_env eps, home_fie)
home_fie' = extendFamInstEnv home_fie fam_inst
-- Check for conflicting instance decls and injectivity violations
; ((), no_errs) <- askNoErrs $
do { checkForConflicts inst_envs fam_inst
; checkForInjectivityConflicts inst_envs fam_inst
; checkInjectiveEquation fam_inst
}
; if no_errs then
return (home_fie', fam_inst : my_fis)
else
return (home_fie, my_fis) }
{-
************************************************************************
* *
Checking an instance against conflicts with an instance env
* *
************************************************************************
Check whether a single family instance conflicts with those in two instance
environments (one for the EPS and one for the HPT).
-}
-- | Checks to make sure no two family instances overlap.
checkForConflicts :: FamInstEnvs -> FamInst -> TcM ()
checkForConflicts inst_envs fam_inst
= do { let conflicts = lookupFamInstEnvConflicts inst_envs fam_inst
; traceTc "checkForConflicts" $
vcat [ ppr (map fim_instance conflicts)
, ppr fam_inst
-- , ppr inst_envs
]
; reportConflictInstErr fam_inst conflicts }
checkForInjectivityConflicts :: FamInstEnvs -> FamInst -> TcM ()
-- see Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv, check 1B1.
checkForInjectivityConflicts instEnvs famInst
| isTypeFamilyTyCon tycon -- as opposed to data family tycon
, Injective inj <- tyConInjectivityInfo tycon
= let conflicts = lookupFamInstEnvInjectivityConflicts inj instEnvs famInst in
reportConflictingInjectivityErrs tycon conflicts (coAxiomSingleBranch (fi_axiom famInst))
| otherwise
= return ()
where tycon = famInstTyCon famInst
-- | Check whether a new open type family equation can be added without
-- violating injectivity annotation supplied by the user. Returns True when
-- this is possible and False if adding this equation would violate injectivity
-- annotation. This looks only at the one equation; it does not look for
-- interaction between equations. Use checkForInjectivityConflicts for that.
-- Does checks (2)-(4) of Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv.
checkInjectiveEquation :: FamInst -> TcM ()
checkInjectiveEquation famInst
| isTypeFamilyTyCon tycon
-- type family is injective in at least one argument
, Injective inj <- tyConInjectivityInfo tycon = do
{ dflags <- getDynFlags
; let axiom = coAxiomSingleBranch fi_ax
-- see Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv
; reportInjectivityErrors dflags fi_ax axiom inj
}
-- if there was no injectivity annotation or tycon does not represent a
-- type family we report no conflicts
| otherwise
= return ()
where tycon = famInstTyCon famInst
fi_ax = fi_axiom famInst
-- | Report a list of injectivity errors together with their source locations.
-- Looks only at one equation; does not look for conflicts *among* equations.
reportInjectivityErrors
:: DynFlags
-> CoAxiom br -- ^ Type family for which we generate errors
-> CoAxBranch -- ^ Currently checked equation (represented by axiom)
-> [Bool] -- ^ Injectivity annotation
-> TcM ()
reportInjectivityErrors dflags fi_ax axiom inj
= ASSERT2( any id inj, text "No injective type variables" )
do let lhs = coAxBranchLHS axiom
rhs = coAxBranchRHS axiom
fam_tc = coAxiomTyCon fi_ax
(unused_inj_tvs, unused_vis, undec_inst_flag)
= unusedInjTvsInRHS dflags fam_tc lhs rhs
inj_tvs_unused = not $ isEmptyVarSet unused_inj_tvs
tf_headed = isTFHeaded rhs
bare_variables = bareTvInRHSViolated lhs rhs
wrong_bare_rhs = not $ null bare_variables
when inj_tvs_unused $ reportUnusedInjectiveVarsErr fam_tc unused_inj_tvs
unused_vis undec_inst_flag axiom
when tf_headed $ reportTfHeadedErr fam_tc axiom
when wrong_bare_rhs $ reportBareVariableInRHSErr fam_tc bare_variables axiom
-- | Is type headed by a type family application?
isTFHeaded :: Type -> Bool
-- See Note [Verifying injectivity annotation], case 3.
isTFHeaded ty | Just ty' <- coreView ty
= isTFHeaded ty'
isTFHeaded ty | (TyConApp tc args) <- ty
, isTypeFamilyTyCon tc
= args `lengthIs` tyConArity tc
isTFHeaded _ = False
-- | If a RHS is a bare type variable return a set of LHS patterns that are not
-- bare type variables.
bareTvInRHSViolated :: [Type] -> Type -> [Type]
-- See Note [Verifying injectivity annotation], case 2.
bareTvInRHSViolated pats rhs | isTyVarTy rhs
= filter (not . isTyVarTy) pats
bareTvInRHSViolated _ _ = []
------------------------------------------------------------------
-- Checking for the coverage condition for injective type families
------------------------------------------------------------------
{-
Note [Coverage condition for injective type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Injective Type Families paper describes how we can tell whether
or not a type family equation upholds the injectivity condition.
Briefly, consider the following:
type family F a b = r | r -> a -- NB: b is not injective
type instance F ty1 ty2 = ty3
We need to make sure that all variables mentioned in ty1 are mentioned in ty3
-- that's how we know that knowing ty3 determines ty1. But they can't be
mentioned just anywhere in ty3: they must be in *injective* positions in ty3.
For example:
type instance F a Int = Maybe (G a)
This is no good, if G is not injective. However, if G is indeed injective,
then this would appear to meet our needs. There is a trap here, though: while
knowing G a does indeed determine a, trying to compute a from G a might not
terminate. This is precisely the same problem that we have with functional
dependencies and their liberal coverage condition. Here is the test case:
type family G a = r | r -> a
type instance G [a] = [G a]
[W] G alpha ~ [alpha]
We see that the equation given applies, because G alpha equals a list. So we
learn that alpha must be [beta] for some beta. We then have
[W] G [beta] ~ [[beta]]
This can reduce to
[W] [G beta] ~ [[beta]]
which then decomposes to
[W] G beta ~ [beta]
right where we started. The equation G [a] = [G a] thus is dangerous: while
it does not violate the injectivity assumption, it might throw us into a loop,
with a particularly dastardly Wanted.
We thus do what functional dependencies do: require -XUndecidableInstances to
accept this.
Checking the coverage condition is not terribly hard, but we also want to produce
a nice error message. A nice error message has at least two properties:
1. If any of the variables involved are invisible or are used in an invisible context,
we want to print invisible arguments (as -fprint-explicit-kinds does).
2. If we fail to accept the equation because we're worried about non-termination,
we want to suggest UndecidableInstances.
To gather the right information, we can talk about the *usage* of a variable. Every
variable is used either visibly or invisibly, and it is either not used at all,
in a context where acceptance requires UndecidableInstances, or in a context that
does not require UndecidableInstances. If a variable is used both visibly and
invisibly, then we want to remember the fact that it was used invisibly: printing
out invisibles will be helpful for the user to understand what is going on.
If a variable is used where we need -XUndecidableInstances and where we don't,
we can similarly just remember the latter.
We thus define Visibility and NeedsUndecInstFlag below. These enumerations are
*ordered*, and we used their Ord instances. We then define VarUsage, which is just a pair
of a Visibility and a NeedsUndecInstFlag. (The visibility is irrelevant when a
variable is NotPresent, but this extra slack in the representation causes no
harm.) We finally define VarUsages as a mapping from variables to VarUsage.
Its Monoid instance combines two maps, using the Semigroup instance of VarUsage
to combine elements that are represented in both maps. In this way, we can
compositionally analyze types (and portions thereof).
To do the injectivity check:
1. We build VarUsages that represent the LHS (rather, the portion of the LHS
that is flagged as injective); each usage on the LHS is NotPresent, because we
have not yet looked at the RHS.
2. We also build a VarUsage for the RHS, done by injTyVarUsages.
3. We then combine these maps. Now, every variable in the injective components of the LHS
will be mapped to its correct usage (either NotPresent or perhaps needing
-XUndecidableInstances in order to be seen as injective).
4. We look up each var used in an injective argument on the LHS in
the map, making a list of tvs that should be determined by the RHS
but aren't.
5. We then return the set of bad variables, whether any of the bad
ones were used invisibly, and whether any bad ones need -XUndecidableInstances.
If -XUndecidableInstances is enabled, than a var that needs the flag
won't be bad, so it won't appear in this list.
6. We use all this information to produce a nice error message, (a) switching
on -fprint-explicit-kinds if appropriate and (b) telling the user about
-XUndecidableInstances if appropriate.
-}
-- | Return the set of type variables that a type family equation is
-- expected to be injective in but is not. Suppose we have @type family
-- F a b = r | r -> a@. Then any variables that appear free in the first
-- argument to F in an equation must be fixed by that equation's RHS.
-- This function returns all such variables that are not indeed fixed.
-- It also returns whether any of these variables appear invisibly
-- and whether -XUndecidableInstances would help.
-- See Note [Coverage condition for injective type families].
unusedInjTvsInRHS :: DynFlags
-> TyCon -- type family
-> [Type] -- LHS arguments
-> Type -- the RHS
-> ( TyVarSet
, Bool -- True <=> one or more variable is used invisibly
, Bool ) -- True <=> suggest -XUndecidableInstances
-- See Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv.
-- This function implements check (4) described there, further
-- described in Note [Coverage condition for injective type families].
-- In theory (and modulo the -XUndecidableInstances wrinkle),
-- instead of implementing this whole check in this way, we could
-- attempt to unify equation with itself. We would reject exactly the same
-- equations but this method gives us more precise error messages by returning
-- precise names of variables that are not mentioned in the RHS.
unusedInjTvsInRHS dflags tycon@(tyConInjectivityInfo -> Injective inj_list) lhs rhs =
-- Note [Coverage condition for injective type families], step 5
(bad_vars, any_invisible, suggest_undec)
where
undec_inst = xopt LangExt.UndecidableInstances dflags
inj_lhs = filterByList inj_list lhs
lhs_vars = tyCoVarsOfTypes inj_lhs
rhs_inj_vars = fvVarSet $ injectiveVarsOfType undec_inst rhs
bad_vars = lhs_vars `minusVarSet` rhs_inj_vars
any_bad = not $ isEmptyVarSet bad_vars
invis_vars = fvVarSet $ invisibleVarsOfTypes [mkTyConApp tycon lhs, rhs]
any_invisible = any_bad && (bad_vars `intersectsVarSet` invis_vars)
suggest_undec = any_bad &&
not undec_inst &&
(lhs_vars `subVarSet` fvVarSet (injectiveVarsOfType True rhs))
-- When the type family is not injective in any arguments
unusedInjTvsInRHS _ _ _ _ = (emptyVarSet, False, False)
---------------------------------------
-- Producing injectivity error messages
---------------------------------------
-- | Report error message for a pair of equations violating an injectivity
-- annotation. No error message if there are no branches.
reportConflictingInjectivityErrs :: TyCon -> [CoAxBranch] -> CoAxBranch -> TcM ()
reportConflictingInjectivityErrs _ [] _ = return ()
reportConflictingInjectivityErrs fam_tc (confEqn1:_) tyfamEqn
= addErrs [buildInjectivityError fam_tc herald (confEqn1 :| [tyfamEqn])]
where
herald = text "Type family equation right-hand sides overlap; this violates" $$
text "the family's injectivity annotation:"
-- | Injectivity error herald common to all injectivity errors.
injectivityErrorHerald :: SDoc
injectivityErrorHerald =
text "Type family equation violates the family's injectivity annotation."
-- | Report error message for equation with injective type variables unused in
-- the RHS. Note [Coverage condition for injective type families], step 6
reportUnusedInjectiveVarsErr :: TyCon
-> TyVarSet
-> Bool -- True <=> print invisible arguments
-> Bool -- True <=> suggest -XUndecidableInstances
-> CoAxBranch
-> TcM ()
reportUnusedInjectiveVarsErr fam_tc tvs has_kinds undec_inst tyfamEqn
= let (loc, doc) = buildInjectivityError fam_tc
(injectivityErrorHerald $$
herald $$
text "In the type family equation:")
(tyfamEqn :| [])
in addErrAt loc (pprWithExplicitKindsWhen has_kinds doc)
where
herald = sep [ what <+> text "variable" <>
pluralVarSet tvs <+> pprVarSet tvs (pprQuotedList . scopedSort)
, text "cannot be inferred from the right-hand side." ]
$$ extra
what | has_kinds = text "Type/kind"
| otherwise = text "Type"
extra | undec_inst = text "Using UndecidableInstances might help"
| otherwise = empty
-- | Report error message for equation that has a type family call at the top
-- level of RHS
reportTfHeadedErr :: TyCon -> CoAxBranch -> TcM ()
reportTfHeadedErr fam_tc branch
= addErrs [buildInjectivityError fam_tc
(injectivityErrorHerald $$
text "RHS of injective type family equation cannot" <+>
text "be a type family:")
(branch :| [])]
-- | Report error message for equation that has a bare type variable in the RHS
-- but LHS pattern is not a bare type variable.
reportBareVariableInRHSErr :: TyCon -> [Type] -> CoAxBranch -> TcM ()
reportBareVariableInRHSErr fam_tc tys branch
= addErrs [buildInjectivityError fam_tc
(injectivityErrorHerald $$
text "RHS of injective type family equation is a bare" <+>
text "type variable" $$
text "but these LHS type and kind patterns are not bare" <+>
text "variables:" <+> pprQuotedList tys)
(branch :| [])]
buildInjectivityError :: TyCon -> SDoc -> NonEmpty CoAxBranch -> (SrcSpan, SDoc)
buildInjectivityError fam_tc herald (eqn1 :| rest_eqns)
= ( coAxBranchSpan eqn1
, hang herald
2 (vcat (map (pprCoAxBranchUser fam_tc) (eqn1 : rest_eqns))) )
reportConflictInstErr :: FamInst -> [FamInstMatch] -> TcRn ()
reportConflictInstErr _ []
= return () -- No conflicts
reportConflictInstErr fam_inst (match1 : _)
| FamInstMatch { fim_instance = conf_inst } <- match1
, let sorted = sortBy (SrcLoc.leftmost_smallest `on` getSpan) [fam_inst, conf_inst]
fi1 = head sorted
span = coAxBranchSpan (coAxiomSingleBranch (famInstAxiom fi1))
= setSrcSpan span $ addErr $
hang (text "Conflicting family instance declarations:")
2 (vcat [ pprCoAxBranchUser (coAxiomTyCon ax) (coAxiomSingleBranch ax)
| fi <- sorted
, let ax = famInstAxiom fi ])
where
getSpan = getSrcSpan . famInstAxiom
-- The sortBy just arranges that instances are displayed in order
-- of source location, which reduced wobbling in error messages,
-- and is better for users
tcGetFamInstEnvs :: TcM FamInstEnvs
-- Gets both the external-package inst-env
-- and the home-pkg inst env (includes module being compiled)
tcGetFamInstEnvs
= do { eps <- getEps; env <- getGblEnv
; return (eps_fam_inst_env eps, tcg_fam_inst_env env) }
|