1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 2000
-}
{-# LANGUAGE CPP #-}
-- | Functional dependencies
--
-- It's better to read it as: "if we know these, then we're going to know these"
module GHC.Tc.Instance.FunDeps
( FunDepEqn(..)
, pprEquation
, improveFromInstEnv
, improveFromAnother
, checkInstCoverage
, checkFunDeps
, pprFundeps
)
where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Types.Name
import GHC.Types.Var
import GHC.Core.Class
import GHC.Core.Predicate
import GHC.Core.Type
import GHC.Tc.Utils.TcType( transSuperClasses )
import GHC.Core.Coercion.Axiom( TypeEqn )
import GHC.Core.Unify
import GHC.Core.InstEnv
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Ppr( pprWithExplicitKindsWhen )
import GHC.Types.SrcLoc
import GHC.Utils.Outputable
import GHC.Utils.FV
import GHC.Utils.Error( Validity(..), allValid )
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Data.Pair ( Pair(..) )
import Data.List ( nubBy )
import Data.Maybe
import Data.Foldable ( fold )
{-
************************************************************************
* *
\subsection{Generate equations from functional dependencies}
* *
************************************************************************
Each functional dependency with one variable in the RHS is responsible
for generating a single equality. For instance:
class C a b | a -> b
The constraints ([Wanted] C Int Bool) and [Wanted] C Int alpha
will generate the following FunDepEqn
FDEqn { fd_qtvs = []
, fd_eqs = [Pair Bool alpha]
, fd_pred1 = C Int Bool
, fd_pred2 = C Int alpha
, fd_loc = ... }
However notice that a functional dependency may have more than one variable
in the RHS which will create more than one pair of types in fd_eqs. Example:
class C a b c | a -> b c
[Wanted] C Int alpha alpha
[Wanted] C Int Bool beta
Will generate:
FDEqn { fd_qtvs = []
, fd_eqs = [Pair Bool alpha, Pair alpha beta]
, fd_pred1 = C Int Bool
, fd_pred2 = C Int alpha
, fd_loc = ... }
INVARIANT: Corresponding types aren't already equal
That is, there exists at least one non-identity equality in FDEqs.
Assume:
class C a b c | a -> b c
instance C Int x x
And: [Wanted] C Int Bool alpha
We will /match/ the LHS of fundep equations, producing a matching substitution
and create equations for the RHS sides. In our last example we'd have generated:
({x}, [fd1,fd2])
where
fd1 = FDEq 1 Bool x
fd2 = FDEq 2 alpha x
To ``execute'' the equation, make fresh type variable for each tyvar in the set,
instantiate the two types with these fresh variables, and then unify or generate
a new constraint. In the above example we would generate a new unification
variable 'beta' for x and produce the following constraints:
[Wanted] (Bool ~ beta)
[Wanted] (alpha ~ beta)
Notice the subtle difference between the above class declaration and:
class C a b c | a -> b, a -> c
where we would generate:
({x},[fd1]),({x},[fd2])
This means that the template variable would be instantiated to different
unification variables when producing the FD constraints.
Finally, the position parameters will help us rewrite the wanted constraint ``on the spot''
-}
data FunDepEqn loc
= FDEqn { fd_qtvs :: [TyVar] -- Instantiate these type and kind vars
-- to fresh unification vars,
-- Non-empty only for FunDepEqns arising from instance decls
, fd_eqs :: [TypeEqn] -- Make these pairs of types equal
, fd_pred1 :: PredType -- The FunDepEqn arose from
, fd_pred2 :: PredType -- combining these two constraints
, fd_loc :: loc }
{-
Given a bunch of predicates that must hold, such as
C Int t1, C Int t2, C Bool t3, ?x::t4, ?x::t5
improve figures out what extra equations must hold.
For example, if we have
class C a b | a->b where ...
then improve will return
[(t1,t2), (t4,t5)]
NOTA BENE:
* improve does not iterate. It's possible that when we make
t1=t2, for example, that will in turn trigger a new equation.
This would happen if we also had
C t1 t7, C t2 t8
If t1=t2, we also get t7=t8.
improve does *not* do this extra step. It relies on the caller
doing so.
* The equations unify types that are not already equal. So there
is no effect iff the result of improve is empty
-}
instFD :: FunDep TyVar -> [TyVar] -> [Type] -> FunDep Type
-- (instFD fd tvs tys) returns fd instantiated with (tvs -> tys)
instFD (ls,rs) tvs tys
= (map lookup ls, map lookup rs)
where
env = zipVarEnv tvs tys
lookup tv = lookupVarEnv_NF env tv
zipAndComputeFDEqs :: (Type -> Type -> Bool) -- Discard this FDEq if true
-> [Type] -> [Type]
-> [TypeEqn]
-- Create a list of (Type,Type) pairs from two lists of types,
-- making sure that the types are not already equal
zipAndComputeFDEqs discard (ty1:tys1) (ty2:tys2)
| discard ty1 ty2 = zipAndComputeFDEqs discard tys1 tys2
| otherwise = Pair ty1 ty2 : zipAndComputeFDEqs discard tys1 tys2
zipAndComputeFDEqs _ _ _ = []
-- Improve a class constraint from another class constraint
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
improveFromAnother :: loc
-> PredType -- Template item (usually given, or inert)
-> PredType -- Workitem [that can be improved]
-> [FunDepEqn loc]
-- Post: FDEqs always oriented from the other to the workitem
-- Equations have empty quantified variables
improveFromAnother loc pred1 pred2
| Just (cls1, tys1) <- getClassPredTys_maybe pred1
, Just (cls2, tys2) <- getClassPredTys_maybe pred2
, cls1 == cls2
= [ FDEqn { fd_qtvs = [], fd_eqs = eqs, fd_pred1 = pred1, fd_pred2 = pred2, fd_loc = loc }
| let (cls_tvs, cls_fds) = classTvsFds cls1
, fd <- cls_fds
, let (ltys1, rs1) = instFD fd cls_tvs tys1
(ltys2, rs2) = instFD fd cls_tvs tys2
, eqTypes ltys1 ltys2 -- The LHSs match
, let eqs = zipAndComputeFDEqs eqType rs1 rs2
, not (null eqs) ]
improveFromAnother _ _ _ = []
-- Improve a class constraint from instance declarations
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
instance Outputable (FunDepEqn a) where
ppr = pprEquation
pprEquation :: FunDepEqn a -> SDoc
pprEquation (FDEqn { fd_qtvs = qtvs, fd_eqs = pairs })
= vcat [text "forall" <+> braces (pprWithCommas ppr qtvs),
nest 2 (vcat [ ppr t1 <+> text "~" <+> ppr t2
| Pair t1 t2 <- pairs])]
improveFromInstEnv :: InstEnvs
-> (PredType -> SrcSpan -> loc)
-> Class -> [Type]
-> [FunDepEqn loc] -- Needs to be a FunDepEqn because
-- of quantified variables
-- Post: Equations oriented from the template (matching instance) to the workitem!
improveFromInstEnv inst_env mk_loc cls tys
= [ FDEqn { fd_qtvs = meta_tvs, fd_eqs = eqs
, fd_pred1 = p_inst, fd_pred2 = pred
, fd_loc = mk_loc p_inst (getSrcSpan (is_dfun ispec)) }
| fd <- cls_fds -- Iterate through the fundeps first,
-- because there often are none!
, let trimmed_tcs = trimRoughMatchTcs cls_tvs fd rough_tcs
-- Trim the rough_tcs based on the head of the fundep.
-- Remember that instanceCantMatch treats both arguments
-- symmetrically, so it's ok to trim the rough_tcs,
-- rather than trimming each inst_tcs in turn
, ispec <- instances
, (meta_tvs, eqs) <- improveClsFD cls_tvs fd ispec
tys trimmed_tcs -- NB: orientation
, let p_inst = mkClassPred cls (is_tys ispec)
]
where
(cls_tvs, cls_fds) = classTvsFds cls
instances = classInstances inst_env cls
rough_tcs = roughMatchTcs tys
pred = mkClassPred cls tys
improveClsFD :: [TyVar] -> FunDep TyVar -- One functional dependency from the class
-> ClsInst -- An instance template
-> [Type] -> [RoughMatchTc] -- Arguments of this (C tys) predicate
-> [([TyCoVar], [TypeEqn])] -- Empty or singleton
improveClsFD clas_tvs fd
(ClsInst { is_tvs = qtvs, is_tys = tys_inst, is_tcs = rough_tcs_inst })
tys_actual rough_tcs_actual
-- Compare instance {a,b} C sx sp sy sq
-- with wanted [W] C tx tp ty tq
-- for fundep (x,y -> p,q) from class (C x p y q)
-- If (sx,sy) unifies with (tx,ty), take the subst S
-- 'qtvs' are the quantified type variables, the ones which can be instantiated
-- to make the types match. For example, given
-- class C a b | a->b where ...
-- instance C (Maybe x) (Tree x) where ..
--
-- and a wanted constraint of form (C (Maybe t1) t2),
-- then we will call checkClsFD with
--
-- is_qtvs = {x}, is_tys = [Maybe x, Tree x]
-- tys_actual = [Maybe t1, t2]
--
-- We can instantiate x to t1, and then we want to force
-- (Tree x) [t1/x] ~ t2
| instanceCantMatch rough_tcs_inst rough_tcs_actual
= [] -- Filter out ones that can't possibly match,
| otherwise
= ASSERT2( equalLength tys_inst tys_actual &&
equalLength tys_inst clas_tvs
, ppr tys_inst <+> ppr tys_actual )
case tcMatchTyKis ltys1 ltys2 of
Nothing -> []
Just subst | isJust (tcMatchTyKisX subst rtys1 rtys2)
-- Don't include any equations that already hold.
-- Reason: then we know if any actual improvement has happened,
-- in which case we need to iterate the solver
-- In making this check we must taking account of the fact that any
-- qtvs that aren't already instantiated can be instantiated to anything
-- at all
-- NB: We can't do this 'is-useful-equation' check element-wise
-- because of:
-- class C a b c | a -> b c
-- instance C Int x x
-- [Wanted] C Int alpha Int
-- We would get that x -> alpha (isJust) and x -> Int (isJust)
-- so we would produce no FDs, which is clearly wrong.
-> []
| null fdeqs
-> []
| otherwise
-> -- pprTrace "iproveClsFD" (vcat
-- [ text "is_tvs =" <+> ppr qtvs
-- , text "tys_inst =" <+> ppr tys_inst
-- , text "tys_actual =" <+> ppr tys_actual
-- , text "ltys1 =" <+> ppr ltys1
-- , text "ltys2 =" <+> ppr ltys2
-- , text "subst =" <+> ppr subst ]) $
[(meta_tvs, fdeqs)]
-- We could avoid this substTy stuff by producing the eqn
-- (qtvs, ls1++rs1, ls2++rs2)
-- which will re-do the ls1/ls2 unification when the equation is
-- executed. What we're doing instead is recording the partial
-- work of the ls1/ls2 unification leaving a smaller unification problem
where
rtys1' = map (substTyUnchecked subst) rtys1
fdeqs = zipAndComputeFDEqs (\_ _ -> False) rtys1' rtys2
-- Don't discard anything!
-- We could discard equal types but it's an overkill to call
-- eqType again, since we know for sure that /at least one/
-- equation in there is useful)
meta_tvs = [ setVarType tv (substTyUnchecked subst (varType tv))
| tv <- qtvs, tv `notElemTCvSubst` subst ]
-- meta_tvs are the quantified type variables
-- that have not been substituted out
--
-- Eg. class C a b | a -> b
-- instance C Int [y]
-- Given constraint C Int z
-- we generate the equation
-- ({y}, [y], z)
--
-- But note (a) we get them from the dfun_id, so they are *in order*
-- because the kind variables may be mentioned in the
-- type variables' kinds
-- (b) we must apply 'subst' to the kinds, in case we have
-- matched out a kind variable, but not a type variable
-- whose kind mentions that kind variable!
-- #6015, #6068
where
(ltys1, rtys1) = instFD fd clas_tvs tys_inst
(ltys2, rtys2) = instFD fd clas_tvs tys_actual
{-
%************************************************************************
%* *
The Coverage condition for instance declarations
* *
************************************************************************
Note [Coverage condition]
~~~~~~~~~~~~~~~~~~~~~~~~~
Example
class C a b | a -> b
instance theta => C t1 t2
For the coverage condition, we check
(normal) fv(t2) `subset` fv(t1)
(liberal) fv(t2) `subset` oclose(fv(t1), theta)
The liberal version ensures the self-consistency of the instance, but
it does not guarantee termination. Example:
class Mul a b c | a b -> c where
(.*.) :: a -> b -> c
instance Mul Int Int Int where (.*.) = (*)
instance Mul Int Float Float where x .*. y = fromIntegral x * y
instance Mul a b c => Mul a [b] [c] where x .*. v = map (x.*.) v
In the third instance, it's not the case that fv([c]) `subset` fv(a,[b]).
But it is the case that fv([c]) `subset` oclose( theta, fv(a,[b]) )
But it is a mistake to accept the instance because then this defn:
f = \ b x y -> if b then x .*. [y] else y
makes instance inference go into a loop, because it requires the constraint
Mul a [b] b
-}
checkInstCoverage :: Bool -- Be liberal
-> Class -> [PredType] -> [Type]
-> Validity
-- "be_liberal" flag says whether to use "liberal" coverage of
-- See Note [Coverage Condition] below
--
-- Return values
-- Nothing => no problems
-- Just msg => coverage problem described by msg
checkInstCoverage be_liberal clas theta inst_taus
= allValid (map fundep_ok fds)
where
(tyvars, fds) = classTvsFds clas
fundep_ok fd
| and (isEmptyVarSet <$> undetermined_tvs) = IsValid
| otherwise = NotValid msg
where
(ls,rs) = instFD fd tyvars inst_taus
ls_tvs = tyCoVarsOfTypes ls
rs_tvs = splitVisVarsOfTypes rs
undetermined_tvs | be_liberal = liberal_undet_tvs
| otherwise = conserv_undet_tvs
closed_ls_tvs = oclose theta ls_tvs
liberal_undet_tvs = (`minusVarSet` closed_ls_tvs) <$> rs_tvs
conserv_undet_tvs = (`minusVarSet` ls_tvs) <$> rs_tvs
undet_set = fold undetermined_tvs
msg = pprWithExplicitKindsWhen
(isEmptyVarSet $ pSnd undetermined_tvs) $
vcat [ -- text "ls_tvs" <+> ppr ls_tvs
-- , text "closed ls_tvs" <+> ppr (closeOverKinds ls_tvs)
-- , text "theta" <+> ppr theta
-- , text "oclose" <+> ppr (oclose theta (closeOverKinds ls_tvs))
-- , text "rs_tvs" <+> ppr rs_tvs
sep [ text "The"
<+> ppWhen be_liberal (text "liberal")
<+> text "coverage condition fails in class"
<+> quotes (ppr clas)
, nest 2 $ text "for functional dependency:"
<+> quotes (pprFunDep fd) ]
, sep [ text "Reason: lhs type"<>plural ls <+> pprQuotedList ls
, nest 2 $
(if isSingleton ls
then text "does not"
else text "do not jointly")
<+> text "determine rhs type"<>plural rs
<+> pprQuotedList rs ]
, text "Un-determined variable" <> pluralVarSet undet_set <> colon
<+> pprVarSet undet_set (pprWithCommas ppr)
, ppWhen (not be_liberal &&
and (isEmptyVarSet <$> liberal_undet_tvs)) $
text "Using UndecidableInstances might help" ]
{- Note [Closing over kinds in coverage]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have a fundep (a::k) -> b
Then if 'a' is instantiated to (x y), where x:k2->*, y:k2,
then fixing x really fixes k2 as well, and so k2 should be added to
the lhs tyvars in the fundep check.
Example (#8391), using liberal coverage
data Foo a = ... -- Foo :: forall k. k -> *
class Bar a b | a -> b
instance Bar a (Foo a)
In the instance decl, (a:k) does fix (Foo k a), but only if we notice
that (a:k) fixes k. #10109 is another example.
Here is a more subtle example, from HList-0.4.0.0 (#10564)
class HasFieldM (l :: k) r (v :: Maybe *)
| l r -> v where ...
class HasFieldM1 (b :: Maybe [*]) (l :: k) r v
| b l r -> v where ...
class HMemberM (e1 :: k) (l :: [k]) (r :: Maybe [k])
| e1 l -> r
data Label :: k -> *
type family LabelsOf (a :: [*]) :: *
instance (HMemberM (Label {k} (l::k)) (LabelsOf xs) b,
HasFieldM1 b l (r xs) v)
=> HasFieldM l (r xs) v where
Is the instance OK? Does {l,r,xs} determine v? Well:
* From the instance constraint HMemberM (Label k l) (LabelsOf xs) b,
plus the fundep "| el l -> r" in class HMameberM,
we get {l,k,xs} -> b
* Note the 'k'!! We must call closeOverKinds on the seed set
ls_tvs = {l,r,xs}, BEFORE doing oclose, else the {l,k,xs}->b
fundep won't fire. This was the reason for #10564.
* So starting from seeds {l,r,xs,k} we do oclose to get
first {l,r,xs,k,b}, via the HMemberM constraint, and then
{l,r,xs,k,b,v}, via the HasFieldM1 constraint.
* And that fixes v.
However, we must closeOverKinds whenever augmenting the seed set
in oclose! Consider #10109:
data Succ a -- Succ :: forall k. k -> *
class Add (a :: k1) (b :: k2) (ab :: k3) | a b -> ab
instance (Add a b ab) => Add (Succ {k1} (a :: k1))
b
(Succ {k3} (ab :: k3})
We start with seed set {a:k1,b:k2} and closeOverKinds to {a,k1,b,k2}.
Now use the fundep to extend to {a,k1,b,k2,ab}. But we need to
closeOverKinds *again* now to {a,k1,b,k2,ab,k3}, so that we fix all
the variables free in (Succ {k3} ab).
Bottom line:
* closeOverKinds on initial seeds (done automatically
by tyCoVarsOfTypes in checkInstCoverage)
* and closeOverKinds whenever extending those seeds (in oclose)
Note [The liberal coverage condition]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(oclose preds tvs) closes the set of type variables tvs,
wrt functional dependencies in preds. The result is a superset
of the argument set. For example, if we have
class C a b | a->b where ...
then
oclose [C (x,y) z, C (x,p) q] {x,y} = {x,y,z}
because if we know x and y then that fixes z.
We also use equality predicates in the predicates; if we have an
assumption `t1 ~ t2`, then we use the fact that if we know `t1` we
also know `t2` and the other way.
eg oclose [C (x,y) z, a ~ x] {a,y} = {a,y,z,x}
oclose is used (only) when checking the coverage condition for
an instance declaration
Note [Equality superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
class (a ~ [b]) => C a b
Remember from Note [The equality types story] in GHC.Builtin.Types.Prim, that
* (a ~~ b) is a superclass of (a ~ b)
* (a ~# b) is a superclass of (a ~~ b)
So when oclose expands superclasses we'll get a (a ~# [b]) superclass.
But that's an EqPred not a ClassPred, and we jolly well do want to
account for the mutual functional dependencies implied by (t1 ~# t2).
Hence the EqPred handling in oclose. See #10778.
Note [Care with type functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#12803)
class C x y | x -> y
type family F a b
type family G c d = r | r -> d
Now consider
oclose (C (F a b) (G c d)) {a,b}
Knowing {a,b} fixes (F a b) regardless of the injectivity of F.
But knowing (G c d) fixes only {d}, because G is only injective
in its second parameter.
Hence the tyCoVarsOfTypes/injTyVarsOfTypes dance in tv_fds.
-}
oclose :: [PredType] -> TyCoVarSet -> TyCoVarSet
-- See Note [The liberal coverage condition]
oclose preds fixed_tvs
| null tv_fds = fixed_tvs -- Fast escape hatch for common case.
| otherwise = fixVarSet extend fixed_tvs
where
extend fixed_tvs = foldl' add fixed_tvs tv_fds
where
add fixed_tvs (ls,rs)
| ls `subVarSet` fixed_tvs = fixed_tvs `unionVarSet` closeOverKinds rs
| otherwise = fixed_tvs
-- closeOverKinds: see Note [Closing over kinds in coverage]
tv_fds :: [(TyCoVarSet,TyCoVarSet)]
tv_fds = [ (tyCoVarsOfTypes ls, fvVarSet $ injectiveVarsOfTypes True rs)
-- See Note [Care with type functions]
| pred <- preds
, pred' <- pred : transSuperClasses pred
-- Look for fundeps in superclasses too
, (ls, rs) <- determined pred' ]
determined :: PredType -> [([Type],[Type])]
determined pred
= case classifyPredType pred of
EqPred NomEq t1 t2 -> [([t1],[t2]), ([t2],[t1])]
-- See Note [Equality superclasses]
ClassPred cls tys -> [ instFD fd cls_tvs tys
| let (cls_tvs, cls_fds) = classTvsFds cls
, fd <- cls_fds ]
_ -> []
{- *********************************************************************
* *
Check that a new instance decl is OK wrt fundeps
* *
************************************************************************
Here is the bad case:
class C a b | a->b where ...
instance C Int Bool where ...
instance C Int Char where ...
The point is that a->b, so Int in the first parameter must uniquely
determine the second. In general, given the same class decl, and given
instance C s1 s2 where ...
instance C t1 t2 where ...
Then the criterion is: if U=unify(s1,t1) then U(s2) = U(t2).
Matters are a little more complicated if there are free variables in
the s2/t2.
class D a b c | a -> b
instance D a b => D [(a,a)] [b] Int
instance D a b => D [a] [b] Bool
The instance decls don't overlap, because the third parameter keeps
them separate. But we want to make sure that given any constraint
D s1 s2 s3
if s1 matches
Note [Bogus consistency check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In checkFunDeps we check that a new ClsInst is consistent with all the
ClsInsts in the environment.
The bogus aspect is discussed in #10675. Currently it if the two
types are *contradicatory*, using (isNothing . tcUnifyTys). But all
the papers say we should check if the two types are *equal* thus
not (substTys subst rtys1 `eqTypes` substTys subst rtys2)
For now I'm leaving the bogus form because that's the way it has
been for years.
-}
checkFunDeps :: InstEnvs -> ClsInst -> [ClsInst]
-- The Consistency Check.
-- Check whether adding DFunId would break functional-dependency constraints
-- Used only for instance decls defined in the module being compiled
-- Returns a list of the ClsInst in InstEnvs that are inconsistent
-- with the proposed new ClsInst
checkFunDeps inst_envs (ClsInst { is_tvs = qtvs1, is_cls = cls
, is_tys = tys1, is_tcs = rough_tcs1 })
| null fds
= []
| otherwise
= nubBy eq_inst $
[ ispec | ispec <- cls_insts
, fd <- fds
, is_inconsistent fd ispec ]
where
cls_insts = classInstances inst_envs cls
(cls_tvs, fds) = classTvsFds cls
qtv_set1 = mkVarSet qtvs1
is_inconsistent fd (ClsInst { is_tvs = qtvs2, is_tys = tys2, is_tcs = rough_tcs2 })
| instanceCantMatch trimmed_tcs rough_tcs2
= False
| otherwise
= case tcUnifyTyKis bind_fn ltys1 ltys2 of
Nothing -> False
Just subst
-> isNothing $ -- Bogus legacy test (#10675)
-- See Note [Bogus consistency check]
tcUnifyTyKis bind_fn (substTysUnchecked subst rtys1) (substTysUnchecked subst rtys2)
where
trimmed_tcs = trimRoughMatchTcs cls_tvs fd rough_tcs1
(ltys1, rtys1) = instFD fd cls_tvs tys1
(ltys2, rtys2) = instFD fd cls_tvs tys2
qtv_set2 = mkVarSet qtvs2
bind_fn = matchBindFun (qtv_set1 `unionVarSet` qtv_set2)
eq_inst i1 i2 = instanceDFunId i1 == instanceDFunId i2
-- A single instance may appear twice in the un-nubbed conflict list
-- because it may conflict with more than one fundep. E.g.
-- class C a b c | a -> b, a -> c
-- instance C Int Bool Bool
-- instance C Int Char Char
-- The second instance conflicts with the first by *both* fundeps
trimRoughMatchTcs :: [TyVar] -> FunDep TyVar -> [RoughMatchTc] -> [RoughMatchTc]
-- Computing rough_tcs for a particular fundep
-- class C a b c | a -> b where ...
-- For each instance .... => C ta tb tc
-- we want to match only on the type ta; so our
-- rough-match thing must similarly be filtered.
-- Hence, we Nothing-ise the tb and tc types right here
--
-- Result list is same length as input list, just with more Nothings
trimRoughMatchTcs clas_tvs (ltvs, _) mb_tcs
= zipWith select clas_tvs mb_tcs
where
select clas_tv mb_tc | clas_tv `elem` ltvs = mb_tc
| otherwise = OtherTc
|