summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Solver/Canonical.hs
blob: 79b42d29d5dccd1747e378322308ef16a8fad86b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}

module GHC.Tc.Solver.Canonical(
     canonicalize,
     unifyDerived,
     makeSuperClasses, maybeSym,
     StopOrContinue(..), stopWith, continueWith,
     solveCallStack    -- For GHC.Tc.Solver
  ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.Unify( swapOverTyVars, metaTyVarUpdateOK, MetaTyVarUpdateResult(..) )
import GHC.Tc.Utils.TcType
import GHC.Core.Type
import GHC.Tc.Solver.Flatten
import GHC.Tc.Solver.Monad
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.EvTerm
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Core.Multiplicity
import GHC.Core.TyCo.Rep   -- cleverly decomposes types, good for completeness checking
import GHC.Core.Coercion
import GHC.Core
import GHC.Types.Id( idType, mkTemplateLocals )
import GHC.Core.FamInstEnv ( FamInstEnvs )
import GHC.Tc.Instance.Family ( tcTopNormaliseNewTypeTF_maybe )
import GHC.Types.Var
import GHC.Types.Var.Env( mkInScopeSet )
import GHC.Types.Var.Set( delVarSetList )
import GHC.Utils.Outputable
import GHC.Driver.Session( DynFlags )
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Hs.Type( HsIPName(..) )

import GHC.Data.Pair
import GHC.Utils.Misc
import GHC.Data.Bag
import GHC.Utils.Monad
import Control.Monad
import Data.Maybe ( isJust )
import Data.List  ( zip4 )
import GHC.Types.Basic

import Data.Bifunctor ( bimap )
import Data.Foldable ( traverse_ )

{-
************************************************************************
*                                                                      *
*                      The Canonicaliser                               *
*                                                                      *
************************************************************************

Note [Canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~

Canonicalization converts a simple constraint to a canonical form. It is
unary (i.e. treats individual constraints one at a time).

Constraints originating from user-written code come into being as
CNonCanonicals. We know nothing about these constraints. So, first:

     Classify CNonCanoncal constraints, depending on whether they
     are equalities, class predicates, or other.

Then proceed depending on the shape of the constraint. Generally speaking,
each constraint gets flattened and then decomposed into one of several forms
(see type Ct in GHC.Tc.Types).

When an already-canonicalized constraint gets kicked out of the inert set,
it must be recanonicalized. But we know a bit about its shape from the
last time through, so we can skip the classification step.

-}

-- Top-level canonicalization
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

canonicalize :: Ct -> TcS (StopOrContinue Ct)
canonicalize (CNonCanonical { cc_ev = ev })
  = {-# SCC "canNC" #-}
    case classifyPredType pred of
      ClassPred cls tys     -> do traceTcS "canEvNC:cls" (ppr cls <+> ppr tys)
                                  canClassNC ev cls tys
      EqPred eq_rel ty1 ty2 -> do traceTcS "canEvNC:eq" (ppr ty1 $$ ppr ty2)
                                  canEqNC    ev eq_rel ty1 ty2
      IrredPred {}          -> do traceTcS "canEvNC:irred" (ppr pred)
                                  canIrred OtherCIS ev
      ForAllPred tvs theta p -> do traceTcS "canEvNC:forall" (ppr pred)
                                   canForAllNC ev tvs theta p
  where
    pred = ctEvPred ev

canonicalize (CQuantCan (QCI { qci_ev = ev, qci_pend_sc = pend_sc }))
  = canForAll ev pend_sc

canonicalize (CIrredCan { cc_ev = ev, cc_status = status })
  | EqPred eq_rel ty1 ty2 <- classifyPredType (ctEvPred ev)
  = -- For insolubles (all of which are equalities, do /not/ flatten the arguments
    -- In #14350 doing so led entire-unnecessary and ridiculously large
    -- type function expansion.  Instead, canEqNC just applies
    -- the substitution to the predicate, and may do decomposition;
    --    e.g. a ~ [a], where [G] a ~ [Int], can decompose
    canEqNC ev eq_rel ty1 ty2

  | otherwise
  = canIrred status ev

canonicalize (CDictCan { cc_ev = ev, cc_class  = cls
                       , cc_tyargs = xis, cc_pend_sc = pend_sc })
  = {-# SCC "canClass" #-}
    canClass ev cls xis pend_sc

canonicalize (CTyEqCan { cc_ev = ev
                       , cc_tyvar  = tv
                       , cc_rhs    = xi
                       , cc_eq_rel = eq_rel })
  = {-# SCC "canEqLeafTyVarEq" #-}
    canEqNC ev eq_rel (mkTyVarTy tv) xi
      -- NB: Don't use canEqTyVar because that expects flattened types,
      -- and tv and xi may not be flat w.r.t. an updated inert set

canonicalize (CFunEqCan { cc_ev = ev
                        , cc_fun    = fn
                        , cc_tyargs = xis1
                        , cc_fsk    = fsk })
  = {-# SCC "canEqLeafFunEq" #-}
    canCFunEqCan ev fn xis1 fsk

{-
************************************************************************
*                                                                      *
*                      Class Canonicalization
*                                                                      *
************************************************************************
-}

canClassNC :: CtEvidence -> Class -> [Type] -> TcS (StopOrContinue Ct)
-- "NC" means "non-canonical"; that is, we have got here
-- from a NonCanonical constraint, not from a CDictCan
-- Precondition: EvVar is class evidence
canClassNC ev cls tys
  | isGiven ev  -- See Note [Eagerly expand given superclasses]
  = do { sc_cts <- mkStrictSuperClasses ev [] [] cls tys
       ; emitWork sc_cts
       ; canClass ev cls tys False }

  | isWanted ev
  , Just ip_name <- isCallStackPred cls tys
  , OccurrenceOf func <- ctLocOrigin loc
  -- If we're given a CallStack constraint that arose from a function
  -- call, we need to push the current call-site onto the stack instead
  -- of solving it directly from a given.
  -- See Note [Overview of implicit CallStacks] in GHC.Tc.Types.Evidence
  -- and Note [Solving CallStack constraints] in GHC.Tc.Solver.Monad
  = do { -- First we emit a new constraint that will capture the
         -- given CallStack.
       ; let new_loc = setCtLocOrigin loc (IPOccOrigin (HsIPName ip_name))
                            -- We change the origin to IPOccOrigin so
                            -- this rule does not fire again.
                            -- See Note [Overview of implicit CallStacks]

       ; new_ev <- newWantedEvVarNC new_loc pred

         -- Then we solve the wanted by pushing the call-site
         -- onto the newly emitted CallStack
       ; let ev_cs = EvCsPushCall func (ctLocSpan loc) (ctEvExpr new_ev)
       ; solveCallStack ev ev_cs

       ; canClass new_ev cls tys False }

  | otherwise
  = canClass ev cls tys (has_scs cls)

  where
    has_scs cls = not (null (classSCTheta cls))
    loc  = ctEvLoc ev
    pred = ctEvPred ev

solveCallStack :: CtEvidence -> EvCallStack -> TcS ()
-- Also called from GHC.Tc.Solver when defaulting call stacks
solveCallStack ev ev_cs = do
  -- We're given ev_cs :: CallStack, but the evidence term should be a
  -- dictionary, so we have to coerce ev_cs to a dictionary for
  -- `IP ip CallStack`. See Note [Overview of implicit CallStacks]
  cs_tm <- evCallStack ev_cs
  let ev_tm = mkEvCast cs_tm (wrapIP (ctEvPred ev))
  setEvBindIfWanted ev ev_tm

canClass :: CtEvidence
         -> Class -> [Type]
         -> Bool            -- True <=> un-explored superclasses
         -> TcS (StopOrContinue Ct)
-- Precondition: EvVar is class evidence

canClass ev cls tys pend_sc
  =   -- all classes do *nominal* matching
    ASSERT2( ctEvRole ev == Nominal, ppr ev $$ ppr cls $$ ppr tys )
    do { (xis, cos, _kind_co) <- flattenArgsNom ev cls_tc tys
       ; MASSERT( isTcReflCo _kind_co )
       ; let co = mkTcTyConAppCo Nominal cls_tc cos
             xi = mkClassPred cls xis
             mk_ct new_ev = CDictCan { cc_ev = new_ev
                                     , cc_tyargs = xis
                                     , cc_class = cls
                                     , cc_pend_sc = pend_sc }
       ; mb <- rewriteEvidence ev xi co
       ; traceTcS "canClass" (vcat [ ppr ev
                                   , ppr xi, ppr mb ])
       ; return (fmap mk_ct mb) }
  where
    cls_tc = classTyCon cls

{- Note [The superclass story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We need to add superclass constraints for two reasons:

* For givens [G], they give us a route to proof.  E.g.
    f :: Ord a => a -> Bool
    f x = x == x
  We get a Wanted (Eq a), which can only be solved from the superclass
  of the Given (Ord a).

* For wanteds [W], and deriveds [WD], [D], they may give useful
  functional dependencies.  E.g.
     class C a b | a -> b where ...
     class C a b => D a b where ...
  Now a [W] constraint (D Int beta) has (C Int beta) as a superclass
  and that might tell us about beta, via C's fundeps.  We can get this
  by generating a [D] (C Int beta) constraint.  It's derived because
  we don't actually have to cough up any evidence for it; it's only there
  to generate fundep equalities.

See Note [Why adding superclasses can help].

For these reasons we want to generate superclass constraints for both
Givens and Wanteds. But:

* (Minor) they are often not needed, so generating them aggressively
  is a waste of time.

* (Major) if we want recursive superclasses, there would be an infinite
  number of them.  Here is a real-life example (#10318);

     class (Frac (Frac a) ~ Frac a,
            Fractional (Frac a),
            IntegralDomain (Frac a))
         => IntegralDomain a where
      type Frac a :: *

  Notice that IntegralDomain has an associated type Frac, and one
  of IntegralDomain's superclasses is another IntegralDomain constraint.

So here's the plan:

1. Eagerly generate superclasses for given (but not wanted)
   constraints; see Note [Eagerly expand given superclasses].
   This is done using mkStrictSuperClasses in canClassNC, when
   we take a non-canonical Given constraint and cannonicalise it.

   However stop if you encounter the same class twice.  That is,
   mkStrictSuperClasses expands eagerly, but has a conservative
   termination condition: see Note [Expanding superclasses] in GHC.Tc.Utils.TcType.

2. Solve the wanteds as usual, but do no further expansion of
   superclasses for canonical CDictCans in solveSimpleGivens or
   solveSimpleWanteds; Note [Danger of adding superclasses during solving]

   However, /do/ continue to eagerly expand superclasses for new /given/
   /non-canonical/ constraints (canClassNC does this).  As #12175
   showed, a type-family application can expand to a class constraint,
   and we want to see its superclasses for just the same reason as
   Note [Eagerly expand given superclasses].

3. If we have any remaining unsolved wanteds
        (see Note [When superclasses help] in GHC.Tc.Types.Constraint)
   try harder: take both the Givens and Wanteds, and expand
   superclasses again.  See the calls to expandSuperClasses in
   GHC.Tc.Solver.simpl_loop and solveWanteds.

   This may succeed in generating (a finite number of) extra Givens,
   and extra Deriveds. Both may help the proof.

3a An important wrinkle: only expand Givens from the current level.
   Two reasons:
      - We only want to expand it once, and that is best done at
        the level it is bound, rather than repeatedly at the leaves
        of the implication tree
      - We may be inside a type where we can't create term-level
        evidence anyway, so we can't superclass-expand, say,
        (a ~ b) to get (a ~# b).  This happened in #15290.

4. Go round to (2) again.  This loop (2,3,4) is implemented
   in GHC.Tc.Solver.simpl_loop.

The cc_pend_sc flag in a CDictCan records whether the superclasses of
this constraint have been expanded.  Specifically, in Step 3 we only
expand superclasses for constraints with cc_pend_sc set to true (i.e.
isPendingScDict holds).

Why do we do this?  Two reasons:

* To avoid repeated work, by repeatedly expanding the superclasses of
  same constraint,

* To terminate the above loop, at least in the -XNoRecursiveSuperClasses
  case.  If there are recursive superclasses we could, in principle,
  expand forever, always encountering new constraints.

When we take a CNonCanonical or CIrredCan, but end up classifying it
as a CDictCan, we set the cc_pend_sc flag to False.

Note [Superclass loops]
~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
  class C a => D a
  class D a => C a

Then, when we expand superclasses, we'll get back to the self-same
predicate, so we have reached a fixpoint in expansion and there is no
point in fruitlessly expanding further.  This case just falls out from
our strategy.  Consider
  f :: C a => a -> Bool
  f x = x==x
Then canClassNC gets the [G] d1: C a constraint, and eager emits superclasses
G] d2: D a, [G] d3: C a (psc).  (The "psc" means it has its sc_pend flag set.)
When processing d3 we find a match with d1 in the inert set, and we always
keep the inert item (d1) if possible: see Note [Replacement vs keeping] in
GHC.Tc.Solver.Interact.  So d3 dies a quick, happy death.

Note [Eagerly expand given superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In step (1) of Note [The superclass story], why do we eagerly expand
Given superclasses by one layer?  (By "one layer" we mean expand transitively
until you meet the same class again -- the conservative criterion embodied
in expandSuperClasses.  So a "layer" might be a whole stack of superclasses.)
We do this eagerly for Givens mainly because of some very obscure
cases like this:

   instance Bad a => Eq (T a)

   f :: (Ord (T a)) => blah
   f x = ....needs Eq (T a), Ord (T a)....

Here if we can't satisfy (Eq (T a)) from the givens we'll use the
instance declaration; but then we are stuck with (Bad a).  Sigh.
This is really a case of non-confluent proofs, but to stop our users
complaining we expand one layer in advance.

Note [Instance and Given overlap] in GHC.Tc.Solver.Interact.

We also want to do this if we have

   f :: F (T a) => blah

where
   type instance F (T a) = Ord (T a)

So we may need to do a little work on the givens to expose the
class that has the superclasses.  That's why the superclass
expansion for Givens happens in canClassNC.

This same scenario happens with quantified constraints, whose superclasses
are also eagerly expanded. Test case: typecheck/should_compile/T16502b
These are handled in canForAllNC, analogously to canClassNC.

Note [Why adding superclasses can help]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Examples of how adding superclasses can help:

    --- Example 1
        class C a b | a -> b
    Suppose we want to solve
         [G] C a b
         [W] C a beta
    Then adding [D] beta~b will let us solve it.

    -- Example 2 (similar but using a type-equality superclass)
        class (F a ~ b) => C a b
    And try to sllve:
         [G] C a b
         [W] C a beta
    Follow the superclass rules to add
         [G] F a ~ b
         [D] F a ~ beta
    Now we get [D] beta ~ b, and can solve that.

    -- Example (tcfail138)
      class L a b | a -> b
      class (G a, L a b) => C a b

      instance C a b' => G (Maybe a)
      instance C a b  => C (Maybe a) a
      instance L (Maybe a) a

    When solving the superclasses of the (C (Maybe a) a) instance, we get
      [G] C a b, and hance by superclasses, [G] G a, [G] L a b
      [W] G (Maybe a)
    Use the instance decl to get
      [W] C a beta
    Generate its derived superclass
      [D] L a beta.  Now using fundeps, combine with [G] L a b to get
      [D] beta ~ b
    which is what we want.

Note [Danger of adding superclasses during solving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here's a serious, but now out-dated example, from #4497:

   class Num (RealOf t) => Normed t
   type family RealOf x

Assume the generated wanted constraint is:
   [W] RealOf e ~ e
   [W] Normed e

If we were to be adding the superclasses during simplification we'd get:
   [W] RealOf e ~ e
   [W] Normed e
   [D] RealOf e ~ fuv
   [D] Num fuv
==>
   e := fuv, Num fuv, Normed fuv, RealOf fuv ~ fuv

While looks exactly like our original constraint. If we add the
superclass of (Normed fuv) again we'd loop.  By adding superclasses
definitely only once, during canonicalisation, this situation can't
happen.

Mind you, now that Wanteds cannot rewrite Derived, I think this particular
situation can't happen.

Note [Nested quantified constraint superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (typecheck/should_compile/T17202)

  class C1 a
  class (forall c. C1 c) => C2 a
  class (forall b. (b ~ F a) => C2 a) => C3 a

Elsewhere in the code, we get a [G] g1 :: C3 a. We expand its superclass
to get [G] g2 :: (forall b. (b ~ F a) => C2 a). This constraint has a
superclass, as well. But we now must be careful: we cannot just add
(forall c. C1 c) as a Given, because we need to remember g2's context.
That new constraint is Given only when forall b. (b ~ F a) is true.

It's tempting to make the new Given be (forall b. (b ~ F a) => forall c. C1 c),
but that's problematic, because it's nested, and ForAllPred is not capable
of representing a nested quantified constraint. (We could change ForAllPred
to allow this, but the solution in this Note is much more local and simpler.)

So, we swizzle it around to get (forall b c. (b ~ F a) => C1 c).

More generally, if we are expanding the superclasses of
  g0 :: forall tvs. theta => cls tys
and find a superclass constraint
  forall sc_tvs. sc_theta => sc_inner_pred
we must have a selector
  sel_id :: forall cls_tvs. cls cls_tvs -> forall sc_tvs. sc_theta => sc_inner_pred
and thus build
  g_sc :: forall tvs sc_tvs. theta => sc_theta => sc_inner_pred
  g_sc = /\ tvs. /\ sc_tvs. \ theta_ids. \ sc_theta_ids.
         sel_id tys (g0 tvs theta_ids) sc_tvs sc_theta_ids

Actually, we cheat a bit by eta-reducing: note that sc_theta_ids are both the
last bound variables and the last arguments. This avoids the need to produce
the sc_theta_ids at all. So our final construction is

  g_sc = /\ tvs. /\ sc_tvs. \ theta_ids.
         sel_id tys (g0 tvs theta_ids) sc_tvs

  -}

makeSuperClasses :: [Ct] -> TcS [Ct]
-- Returns strict superclasses, transitively, see Note [The superclasses story]
-- See Note [The superclass story]
-- The loop-breaking here follows Note [Expanding superclasses] in GHC.Tc.Utils.TcType
-- Specifically, for an incoming (C t) constraint, we return all of (C t)'s
--    superclasses, up to /and including/ the first repetition of C
--
-- Example:  class D a => C a
--           class C [a] => D a
-- makeSuperClasses (C x) will return (D x, C [x])
--
-- NB: the incoming constraints have had their cc_pend_sc flag already
--     flipped to False, by isPendingScDict, so we are /obliged/ to at
--     least produce the immediate superclasses
makeSuperClasses cts = concatMapM go cts
  where
    go (CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys })
      = mkStrictSuperClasses ev [] [] cls tys
    go (CQuantCan (QCI { qci_pred = pred, qci_ev = ev }))
      = ASSERT2( isClassPred pred, ppr pred )  -- The cts should all have
                                               -- class pred heads
        mkStrictSuperClasses ev tvs theta cls tys
      where
        (tvs, theta, cls, tys) = tcSplitDFunTy (ctEvPred ev)
    go ct = pprPanic "makeSuperClasses" (ppr ct)

mkStrictSuperClasses
    :: CtEvidence
    -> [TyVar] -> ThetaType  -- These two args are non-empty only when taking
                             -- superclasses of a /quantified/ constraint
    -> Class -> [Type] -> TcS [Ct]
-- Return constraints for the strict superclasses of
--   ev :: forall as. theta => cls tys
mkStrictSuperClasses ev tvs theta cls tys
  = mk_strict_superclasses (unitNameSet (className cls))
                           ev tvs theta cls tys

mk_strict_superclasses :: NameSet -> CtEvidence
                       -> [TyVar] -> ThetaType
                       -> Class -> [Type] -> TcS [Ct]
-- Always return the immediate superclasses of (cls tys);
-- and expand their superclasses, provided none of them are in rec_clss
-- nor are repeated
mk_strict_superclasses rec_clss (CtGiven { ctev_evar = evar, ctev_loc = loc })
                       tvs theta cls tys
  = concatMapM (do_one_given (mk_given_loc loc)) $
    classSCSelIds cls
  where
    dict_ids  = mkTemplateLocals theta
    size      = sizeTypes tys

    do_one_given given_loc sel_id
      | isUnliftedType sc_pred
      , not (null tvs && null theta)
      = -- See Note [Equality superclasses in quantified constraints]
        return []
      | otherwise
      = do { given_ev <- newGivenEvVar given_loc $
                         mk_given_desc sel_id sc_pred
           ; mk_superclasses rec_clss given_ev tvs theta sc_pred }
      where
        sc_pred  = funResultTy (piResultTys (idType sel_id) tys)

      -- See Note [Nested quantified constraint superclasses]
    mk_given_desc :: Id -> PredType -> (PredType, EvTerm)
    mk_given_desc sel_id sc_pred
      = (swizzled_pred, swizzled_evterm)
      where
        (sc_tvs, sc_rho)          = splitForAllTys sc_pred
        (sc_theta, sc_inner_pred) = splitFunTys sc_rho

        all_tvs       = tvs `chkAppend` sc_tvs
        all_theta     = theta `chkAppend` (map scaledThing sc_theta)
        swizzled_pred = mkInfSigmaTy all_tvs all_theta sc_inner_pred

        -- evar :: forall tvs. theta => cls tys
        -- sel_id :: forall cls_tvs. cls cls_tvs
        --                        -> forall sc_tvs. sc_theta => sc_inner_pred
        -- swizzled_evterm :: forall tvs sc_tvs. theta => sc_theta => sc_inner_pred
        swizzled_evterm = EvExpr $
          mkLams all_tvs $
          mkLams dict_ids $
          Var sel_id
            `mkTyApps` tys
            `App` (evId evar `mkVarApps` (tvs ++ dict_ids))
            `mkVarApps` sc_tvs

    mk_given_loc loc
       | isCTupleClass cls
       = loc   -- For tuple predicates, just take them apart, without
               -- adding their (large) size into the chain.  When we
               -- get down to a base predicate, we'll include its size.
               -- #10335

       | GivenOrigin skol_info <- ctLocOrigin loc
         -- See Note [Solving superclass constraints] in GHC.Tc.TyCl.Instance
         -- for explantation of this transformation for givens
       = case skol_info of
            InstSkol -> loc { ctl_origin = GivenOrigin (InstSC size) }
            InstSC n -> loc { ctl_origin = GivenOrigin (InstSC (n `max` size)) }
            _        -> loc

       | otherwise  -- Probably doesn't happen, since this function
       = loc        -- is only used for Givens, but does no harm

mk_strict_superclasses rec_clss ev tvs theta cls tys
  | all noFreeVarsOfType tys
  = return [] -- Wanteds with no variables yield no deriveds.
              -- See Note [Improvement from Ground Wanteds]

  | otherwise -- Wanted/Derived case, just add Derived superclasses
              -- that can lead to improvement.
  = ASSERT2( null tvs && null theta, ppr tvs $$ ppr theta )
    concatMapM do_one_derived (immSuperClasses cls tys)
  where
    loc = ctEvLoc ev

    do_one_derived sc_pred
      = do { sc_ev <- newDerivedNC loc sc_pred
           ; mk_superclasses rec_clss sc_ev [] [] sc_pred }

{- Note [Improvement from Ground Wanteds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose class C b a => D a b
and consider
  [W] D Int Bool
Is there any point in emitting [D] C Bool Int?  No!  The only point of
emitting superclass constraints for W/D constraints is to get
improvement, extra unifications that result from functional
dependencies.  See Note [Why adding superclasses can help] above.

But no variables means no improvement; case closed.
-}

mk_superclasses :: NameSet -> CtEvidence
                -> [TyVar] -> ThetaType -> PredType -> TcS [Ct]
-- Return this constraint, plus its superclasses, if any
mk_superclasses rec_clss ev tvs theta pred
  | ClassPred cls tys <- classifyPredType pred
  = mk_superclasses_of rec_clss ev tvs theta cls tys

  | otherwise   -- Superclass is not a class predicate
  = return [mkNonCanonical ev]

mk_superclasses_of :: NameSet -> CtEvidence
                   -> [TyVar] -> ThetaType -> Class -> [Type]
                   -> TcS [Ct]
-- Always return this class constraint,
-- and expand its superclasses
mk_superclasses_of rec_clss ev tvs theta cls tys
  | loop_found = do { traceTcS "mk_superclasses_of: loop" (ppr cls <+> ppr tys)
                    ; return [this_ct] }  -- cc_pend_sc of this_ct = True
  | otherwise  = do { traceTcS "mk_superclasses_of" (vcat [ ppr cls <+> ppr tys
                                                          , ppr (isCTupleClass cls)
                                                          , ppr rec_clss
                                                          ])
                    ; sc_cts <- mk_strict_superclasses rec_clss' ev tvs theta cls tys
                    ; return (this_ct : sc_cts) }
                                   -- cc_pend_sc of this_ct = False
  where
    cls_nm     = className cls
    loop_found = not (isCTupleClass cls) && cls_nm `elemNameSet` rec_clss
                 -- Tuples never contribute to recursion, and can be nested
    rec_clss'  = rec_clss `extendNameSet` cls_nm

    this_ct | null tvs, null theta
            = CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys
                       , cc_pend_sc = loop_found }
                 -- NB: If there is a loop, we cut off, so we have not
                 --     added the superclasses, hence cc_pend_sc = True
            | otherwise
            = CQuantCan (QCI { qci_tvs = tvs, qci_pred = mkClassPred cls tys
                             , qci_ev = ev
                             , qci_pend_sc = loop_found })


{- Note [Equality superclasses in quantified constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#15359, #15593, #15625)
  f :: (forall a. theta => a ~ b) => stuff

It's a bit odd to have a local, quantified constraint for `(a~b)`,
but some people want such a thing (see the tickets). And for
Coercible it is definitely useful
  f :: forall m. (forall p q. Coercible p q => Coercible (m p) (m q)))
                 => stuff

Moreover it's not hard to arrange; we just need to look up /equality/
constraints in the quantified-constraint environment, which we do in
GHC.Tc.Solver.Interact.doTopReactOther.

There is a wrinkle though, in the case where 'theta' is empty, so
we have
  f :: (forall a. a~b) => stuff

Now, potentially, the superclass machinery kicks in, in
makeSuperClasses, giving us a a second quantified constraint
       (forall a. a ~# b)
BUT this is an unboxed value!  And nothing has prepared us for
dictionary "functions" that are unboxed.  Actually it does just
about work, but the simplifier ends up with stuff like
   case (/\a. eq_sel d) of df -> ...(df @Int)...
and fails to simplify that any further.  And it doesn't satisfy
isPredTy any more.

So for now we simply decline to take superclasses in the quantified
case.  Instead we have a special case in GHC.Tc.Solver.Interact.doTopReactOther,
which looks for primitive equalities specially in the quantified
constraints.

See also Note [Evidence for quantified constraints] in GHC.Core.Predicate.


************************************************************************
*                                                                      *
*                      Irreducibles canonicalization
*                                                                      *
************************************************************************
-}

canIrred :: CtIrredStatus -> CtEvidence -> TcS (StopOrContinue Ct)
-- Precondition: ty not a tuple and no other evidence form
canIrred status ev
  = do { let pred = ctEvPred ev
       ; traceTcS "can_pred" (text "IrredPred = " <+> ppr pred)
       ; (xi,co) <- flatten FM_FlattenAll ev pred -- co :: xi ~ pred
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->
    do { -- Re-classify, in case flattening has improved its shape
       ; case classifyPredType (ctEvPred new_ev) of
           ClassPred cls tys     -> canClassNC new_ev cls tys
           EqPred eq_rel ty1 ty2 -> canEqNC new_ev eq_rel ty1 ty2
           _                     -> continueWith $
                                    mkIrredCt status new_ev } }

{- *********************************************************************
*                                                                      *
*                      Quantified predicates
*                                                                      *
********************************************************************* -}

{- Note [Quantified constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The -XQuantifiedConstraints extension allows type-class contexts like this:

  data Rose f x = Rose x (f (Rose f x))

  instance (Eq a, forall b. Eq b => Eq (f b))
        => Eq (Rose f a)  where
    (Rose x1 rs1) == (Rose x2 rs2) = x1==x2 && rs1 == rs2

Note the (forall b. Eq b => Eq (f b)) in the instance contexts.
This quantified constraint is needed to solve the
 [W] (Eq (f (Rose f x)))
constraint which arises form the (==) definition.

The wiki page is
  https://gitlab.haskell.org/ghc/ghc/wikis/quantified-constraints
which in turn contains a link to the GHC Proposal where the change
is specified, and a Haskell Symposium paper about it.

We implement two main extensions to the design in the paper:

 1. We allow a variable in the instance head, e.g.
      f :: forall m a. (forall b. m b) => D (m a)
    Notice the 'm' in the head of the quantified constraint, not
    a class.

 2. We support superclasses to quantified constraints.
    For example (contrived):
      f :: (Ord b, forall b. Ord b => Ord (m b)) => m a -> m a -> Bool
      f x y = x==y
    Here we need (Eq (m a)); but the quantified constraint deals only
    with Ord.  But we can make it work by using its superclass.

Here are the moving parts
  * Language extension {-# LANGUAGE QuantifiedConstraints #-}
    and add it to ghc-boot-th:GHC.LanguageExtensions.Type.Extension

  * A new form of evidence, EvDFun, that is used to discharge
    such wanted constraints

  * checkValidType gets some changes to accept forall-constraints
    only in the right places.

  * Predicate.Pred gets a new constructor ForAllPred, and
    and classifyPredType analyses a PredType to decompose
    the new forall-constraints

  * GHC.Tc.Solver.Monad.InertCans gets an extra field, inert_insts,
    which holds all the Given forall-constraints.  In effect,
    such Given constraints are like local instance decls.

  * When trying to solve a class constraint, via
    GHC.Tc.Solver.Interact.matchInstEnv, use the InstEnv from inert_insts
    so that we include the local Given forall-constraints
    in the lookup.  (See GHC.Tc.Solver.Monad.getInstEnvs.)

  * GHC.Tc.Solver.Canonical.canForAll deals with solving a
    forall-constraint.  See
       Note [Solving a Wanted forall-constraint]

  * We augment the kick-out code to kick out an inert
    forall constraint if it can be rewritten by a new
    type equality; see GHC.Tc.Solver.Monad.kick_out_rewritable

Note that a quantified constraint is never /inferred/
(by GHC.Tc.Solver.simplifyInfer).  A function can only have a
quantified constraint in its type if it is given an explicit
type signature.

-}

canForAllNC :: CtEvidence -> [TyVar] -> TcThetaType -> TcPredType
            -> TcS (StopOrContinue Ct)
canForAllNC ev tvs theta pred
  | isGiven ev  -- See Note [Eagerly expand given superclasses]
  , Just (cls, tys) <- cls_pred_tys_maybe
  = do { sc_cts <- mkStrictSuperClasses ev tvs theta cls tys
       ; emitWork sc_cts
       ; canForAll ev False }

  | otherwise
  = canForAll ev (isJust cls_pred_tys_maybe)

  where
    cls_pred_tys_maybe = getClassPredTys_maybe pred

canForAll :: CtEvidence -> Bool -> TcS (StopOrContinue Ct)
-- We have a constraint (forall as. blah => C tys)
canForAll ev pend_sc
  = do { -- First rewrite it to apply the current substitution
         -- Do not bother with type-family reductions; we can't
         -- do them under a forall anyway (c.f. Flatten.flatten_one
         -- on a forall type)
         let pred = ctEvPred ev
       ; (xi,co) <- flatten FM_SubstOnly ev pred -- co :: xi ~ pred
       ; rewriteEvidence ev xi co `andWhenContinue` \ new_ev ->

    do { -- Now decompose into its pieces and solve it
         -- (It takes a lot less code to flatten before decomposing.)
       ; case classifyPredType (ctEvPred new_ev) of
           ForAllPred tvs theta pred
              -> solveForAll new_ev tvs theta pred pend_sc
           _  -> pprPanic "canForAll" (ppr new_ev)
    } }

solveForAll :: CtEvidence -> [TyVar] -> TcThetaType -> PredType -> Bool
            -> TcS (StopOrContinue Ct)
solveForAll ev tvs theta pred pend_sc
  | CtWanted { ctev_dest = dest } <- ev
  = -- See Note [Solving a Wanted forall-constraint]
    do { let skol_info = QuantCtxtSkol
             empty_subst = mkEmptyTCvSubst $ mkInScopeSet $
                           tyCoVarsOfTypes (pred:theta) `delVarSetList` tvs
       ; (subst, skol_tvs) <- tcInstSkolTyVarsX empty_subst tvs
       ; given_ev_vars <- mapM newEvVar (substTheta subst theta)

       ; (lvl, (w_id, wanteds))
             <- pushLevelNoWorkList (ppr skol_info) $
                do { wanted_ev <- newWantedEvVarNC loc $
                                  substTy subst pred
                   ; return ( ctEvEvId wanted_ev
                            , unitBag (mkNonCanonical wanted_ev)) }

      ; ev_binds <- emitImplicationTcS lvl skol_info skol_tvs
                                       given_ev_vars wanteds

      ; setWantedEvTerm dest $
        EvFun { et_tvs = skol_tvs, et_given = given_ev_vars
              , et_binds = ev_binds, et_body = w_id }

      ; stopWith ev "Wanted forall-constraint" }

  | isGiven ev   -- See Note [Solving a Given forall-constraint]
  = do { addInertForAll qci
       ; stopWith ev "Given forall-constraint" }

  | otherwise
  = do { traceTcS "discarding derived forall-constraint" (ppr ev)
       ; stopWith ev "Derived forall-constraint" }
  where
    loc = ctEvLoc ev
    qci = QCI { qci_ev = ev, qci_tvs = tvs
              , qci_pred = pred, qci_pend_sc = pend_sc }

{- Note [Solving a Wanted forall-constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solving a wanted forall (quantified) constraint
  [W] df :: forall ab. (Eq a, Ord b) => C x a b
is delightfully easy.   Just build an implication constraint
    forall ab. (g1::Eq a, g2::Ord b) => [W] d :: C x a
and discharge df thus:
    df = /\ab. \g1 g2. let <binds> in d
where <binds> is filled in by solving the implication constraint.
All the machinery is to hand; there is little to do.

Note [Solving a Given forall-constraint]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a Given constraint
  [G] df :: forall ab. (Eq a, Ord b) => C x a b
we just add it to TcS's local InstEnv of known instances,
via addInertForall.  Then, if we look up (C x Int Bool), say,
we'll find a match in the InstEnv.


************************************************************************
*                                                                      *
*        Equalities
*                                                                      *
************************************************************************

Note [Canonicalising equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In order to canonicalise an equality, we look at the structure of the
two types at hand, looking for similarities. A difficulty is that the
types may look dissimilar before flattening but similar after flattening.
However, we don't just want to jump in and flatten right away, because
this might be wasted effort. So, after looking for similarities and failing,
we flatten and then try again. Of course, we don't want to loop, so we
track whether or not we've already flattened.

It is conceivable to do a better job at tracking whether or not a type
is flattened, but this is left as future work. (Mar '15)


Note [Decomposing FunTy]
~~~~~~~~~~~~~~~~~~~~~~~~
can_eq_nc' may attempt to decompose a FunTy that is un-zonked.  This
means that we may very well have a FunTy containing a type of some
unknown kind. For instance, we may have,

    FunTy (a :: k) Int

Where k is a unification variable. So the calls to getRuntimeRep_maybe may
fail (returning Nothing).  In that case we'll fall through, zonk, and try again.
Zonking should fill the variable k, meaning that decomposition will succeed the
second time around.

Also note that we require the AnonArgFlag to match.  This will stop
us decomposing
   (Int -> Bool)  ~  (Show a => blah)
It's as if we treat (->) and (=>) as different type constructors.
-}

canEqNC :: CtEvidence -> EqRel -> Type -> Type -> TcS (StopOrContinue Ct)
canEqNC ev eq_rel ty1 ty2
  = do { result <- zonk_eq_types ty1 ty2
       ; case result of
           Left (Pair ty1' ty2') -> can_eq_nc False ev eq_rel ty1' ty1 ty2' ty2
           Right ty              -> canEqReflexive ev eq_rel ty }

can_eq_nc
   :: Bool            -- True => both types are flat
   -> CtEvidence
   -> EqRel
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
   -> TcS (StopOrContinue Ct)
can_eq_nc flat ev eq_rel ty1 ps_ty1 ty2 ps_ty2
  = do { traceTcS "can_eq_nc" $
         vcat [ ppr flat, ppr ev, ppr eq_rel, ppr ty1, ppr ps_ty1, ppr ty2, ppr ps_ty2 ]
       ; rdr_env <- getGlobalRdrEnvTcS
       ; fam_insts <- getFamInstEnvs
       ; can_eq_nc' flat rdr_env fam_insts ev eq_rel ty1 ps_ty1 ty2 ps_ty2 }

can_eq_nc'
   :: Bool           -- True => both input types are flattened
   -> GlobalRdrEnv   -- needed to see which newtypes are in scope
   -> FamInstEnvs    -- needed to unwrap data instances
   -> CtEvidence
   -> EqRel
   -> Type -> Type    -- LHS, after and before type-synonym expansion, resp
   -> Type -> Type    -- RHS, after and before type-synonym expansion, resp
   -> TcS (StopOrContinue Ct)

-- Expand synonyms first; see Note [Type synonyms and canonicalization]
can_eq_nc' flat rdr_env envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
  | Just ty1' <- tcView ty1 = can_eq_nc' flat rdr_env envs ev eq_rel ty1' ps_ty1 ty2  ps_ty2
  | Just ty2' <- tcView ty2 = can_eq_nc' flat rdr_env envs ev eq_rel ty1  ps_ty1 ty2' ps_ty2

-- need to check for reflexivity in the ReprEq case.
-- See Note [Eager reflexivity check]
-- Check only when flat because the zonk_eq_types check in canEqNC takes
-- care of the non-flat case.
can_eq_nc' True _rdr_env _envs ev ReprEq ty1 _ ty2 _
  | ty1 `tcEqType` ty2
  = canEqReflexive ev ReprEq ty1

-- When working with ReprEq, unwrap newtypes.
-- See Note [Unwrap newtypes first]
-- This must be above the TyVarTy case, in order to guarantee (TyEq:N)
can_eq_nc' _flat rdr_env envs ev eq_rel ty1 ps_ty1 ty2 ps_ty2
  | ReprEq <- eq_rel
  , Just stuff1 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty1
  = can_eq_newtype_nc ev NotSwapped ty1 stuff1 ty2 ps_ty2

  | ReprEq <- eq_rel
  , Just stuff2 <- tcTopNormaliseNewTypeTF_maybe envs rdr_env ty2
  = can_eq_newtype_nc ev IsSwapped  ty2 stuff2 ty1 ps_ty1

-- Then, get rid of casts
can_eq_nc' flat _rdr_env _envs ev eq_rel (CastTy ty1 co1) _ ty2 ps_ty2
  | not (isTyVarTy ty2)  -- See (3) in Note [Equalities with incompatible kinds]
  = canEqCast flat ev eq_rel NotSwapped ty1 co1 ty2 ps_ty2
can_eq_nc' flat _rdr_env _envs ev eq_rel ty1 ps_ty1 (CastTy ty2 co2) _
  | not (isTyVarTy ty1)  -- See (3) in Note [Equalities with incompatible kinds]
  = canEqCast flat ev eq_rel IsSwapped ty2 co2 ty1 ps_ty1

-- NB: pattern match on True: we want only flat types sent to canEqTyVar.
-- See also Note [No top-level newtypes on RHS of representational equalities]
can_eq_nc' True _rdr_env _envs ev eq_rel (TyVarTy tv1) ps_ty1 ty2 ps_ty2
  = canEqTyVar ev eq_rel NotSwapped tv1 ps_ty1 ty2 ps_ty2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 ps_ty1 (TyVarTy tv2) ps_ty2
  = canEqTyVar ev eq_rel IsSwapped tv2 ps_ty2 ty1 ps_ty1

----------------------
-- Otherwise try to decompose
----------------------

-- Literals
can_eq_nc' _flat _rdr_env _envs ev eq_rel ty1@(LitTy l1) _ (LitTy l2) _
 | l1 == l2
  = do { setEvBindIfWanted ev (evCoercion $ mkReflCo (eqRelRole eq_rel) ty1)
       ; stopWith ev "Equal LitTy" }

-- Decompose FunTy: (s -> t) and (c => t)
-- NB: don't decompose (Int -> blah) ~ (Show a => blah)
can_eq_nc' _flat _rdr_env _envs ev eq_rel
           (FunTy { ft_mult = am1, ft_af = af1, ft_arg = ty1a, ft_res = ty1b }) _
           (FunTy { ft_mult = am2, ft_af = af2, ft_arg = ty2a, ft_res = ty2b }) _
  | af1 == af2   -- Don't decompose (Int -> blah) ~ (Show a => blah)
  , Just ty1a_rep <- getRuntimeRep_maybe ty1a  -- getRutimeRep_maybe:
  , Just ty1b_rep <- getRuntimeRep_maybe ty1b  -- see Note [Decomposing FunTy]
  , Just ty2a_rep <- getRuntimeRep_maybe ty2a
  , Just ty2b_rep <- getRuntimeRep_maybe ty2b
  = canDecomposableTyConAppOK ev eq_rel funTyCon
                              [am1, ty1a_rep, ty1b_rep, ty1a, ty1b]
                              [am2, ty2a_rep, ty2b_rep, ty2a, ty2b]

-- Decompose type constructor applications
-- NB: e have expanded type synonyms already
can_eq_nc' _flat _rdr_env _envs ev eq_rel
           (TyConApp tc1 tys1) _
           (TyConApp tc2 tys2) _
  | not (isTypeFamilyTyCon tc1)
  , not (isTypeFamilyTyCon tc2)
  = canTyConApp ev eq_rel tc1 tys1 tc2 tys2

can_eq_nc' _flat _rdr_env _envs ev eq_rel
           s1@(ForAllTy {}) _ s2@(ForAllTy {}) _
  = can_eq_nc_forall ev eq_rel s1 s2

-- See Note [Canonicalising type applications] about why we require flat types
can_eq_nc' True _rdr_env _envs ev eq_rel (AppTy t1 s1) _ ty2 _
  | NomEq <- eq_rel
  , Just (t2, s2) <- tcSplitAppTy_maybe ty2
  = can_eq_app ev t1 s1 t2 s2
can_eq_nc' True _rdr_env _envs ev eq_rel ty1 _ (AppTy t2 s2) _
  | NomEq <- eq_rel
  , Just (t1, s1) <- tcSplitAppTy_maybe ty1
  = can_eq_app ev t1 s1 t2 s2

-- No similarity in type structure detected. Flatten and try again.
can_eq_nc' False rdr_env envs ev eq_rel _ ps_ty1 _ ps_ty2
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ps_ty1
       ; (xi2, co2) <- flatten FM_FlattenAll ev ps_ty2
       ; new_ev <- rewriteEqEvidence ev NotSwapped xi1 xi2 co1 co2
       ; can_eq_nc' True rdr_env envs new_ev eq_rel xi1 xi1 xi2 xi2 }

-- We've flattened and the types don't match. Give up.
can_eq_nc' True _rdr_env _envs ev eq_rel _ ps_ty1 _ ps_ty2
  = do { traceTcS "can_eq_nc' catch-all case" (ppr ps_ty1 $$ ppr ps_ty2)
       ; case eq_rel of -- See Note [Unsolved equalities]
            ReprEq -> continueWith (mkIrredCt OtherCIS ev)
            NomEq  -> continueWith (mkIrredCt InsolubleCIS ev) }
          -- No need to call canEqFailure/canEqHardFailure because they
          -- flatten, and the types involved here are already flat

{- Note [Unsolved equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an unsolved equality like
  (a b ~R# Int)
that is not necessarily insoluble!  Maybe 'a' will turn out to be a newtype.
So we want to make it a potentially-soluble Irred not an insoluble one.
Missing this point is what caused #15431
-}

---------------------------------
can_eq_nc_forall :: CtEvidence -> EqRel
                 -> Type -> Type    -- LHS and RHS
                 -> TcS (StopOrContinue Ct)
-- (forall as. phi1) ~ (forall bs. phi2)
-- Check for length match of as, bs
-- Then build an implication constraint: forall as. phi1 ~ phi2[as/bs]
-- But remember also to unify the kinds of as and bs
--  (this is the 'go' loop), and actually substitute phi2[as |> cos / bs]
-- Remember also that we might have forall z (a:z). blah
--  so we must proceed one binder at a time (#13879)

can_eq_nc_forall ev eq_rel s1 s2
 | CtWanted { ctev_loc = loc, ctev_dest = orig_dest } <- ev
 = do { let free_tvs       = tyCoVarsOfTypes [s1,s2]
            (bndrs1, phi1) = tcSplitForAllVarBndrs s1
            (bndrs2, phi2) = tcSplitForAllVarBndrs s2
      ; if not (equalLength bndrs1 bndrs2)
        then do { traceTcS "Forall failure" $
                     vcat [ ppr s1, ppr s2, ppr bndrs1, ppr bndrs2
                          , ppr (map binderArgFlag bndrs1)
                          , ppr (map binderArgFlag bndrs2) ]
                ; canEqHardFailure ev s1 s2 }
        else
   do { traceTcS "Creating implication for polytype equality" $ ppr ev
      ; let empty_subst1 = mkEmptyTCvSubst $ mkInScopeSet free_tvs
      ; (subst1, skol_tvs) <- tcInstSkolTyVarsX empty_subst1 $
                              binderVars bndrs1

      ; let skol_info = UnifyForAllSkol phi1
            phi1' = substTy subst1 phi1

            -- Unify the kinds, extend the substitution
            go :: [TcTyVar] -> TCvSubst -> [TyVarBinder]
               -> TcS (TcCoercion, Cts)
            go (skol_tv:skol_tvs) subst (bndr2:bndrs2)
              = do { let tv2 = binderVar bndr2
                   ; (kind_co, wanteds1) <- unify loc Nominal (tyVarKind skol_tv)
                                                  (substTy subst (tyVarKind tv2))
                   ; let subst' = extendTvSubstAndInScope subst tv2
                                       (mkCastTy (mkTyVarTy skol_tv) kind_co)
                         -- skol_tv is already in the in-scope set, but the
                         -- free vars of kind_co are not; hence "...AndInScope"
                   ; (co, wanteds2) <- go skol_tvs subst' bndrs2
                   ; return ( mkTcForAllCo skol_tv kind_co co
                            , wanteds1 `unionBags` wanteds2 ) }

            -- Done: unify phi1 ~ phi2
            go [] subst bndrs2
              = ASSERT( null bndrs2 )
                unify loc (eqRelRole eq_rel) phi1' (substTyUnchecked subst phi2)

            go _ _ _ = panic "cna_eq_nc_forall"  -- case (s:ss) []

            empty_subst2 = mkEmptyTCvSubst (getTCvInScope subst1)

      ; (lvl, (all_co, wanteds)) <- pushLevelNoWorkList (ppr skol_info) $
                                    go skol_tvs empty_subst2 bndrs2
      ; emitTvImplicationTcS lvl skol_info skol_tvs wanteds

      ; setWantedEq orig_dest all_co
      ; stopWith ev "Deferred polytype equality" } }

 | otherwise
 = do { traceTcS "Omitting decomposition of given polytype equality" $
        pprEq s1 s2    -- See Note [Do not decompose given polytype equalities]
      ; stopWith ev "Discard given polytype equality" }

 where
    unify :: CtLoc -> Role -> TcType -> TcType -> TcS (TcCoercion, Cts)
    -- This version returns the wanted constraint rather
    -- than putting it in the work list
    unify loc role ty1 ty2
      | ty1 `tcEqType` ty2
      = return (mkTcReflCo role ty1, emptyBag)
      | otherwise
      = do { (wanted, co) <- newWantedEq loc role ty1 ty2
           ; return (co, unitBag (mkNonCanonical wanted)) }

---------------------------------
-- | Compare types for equality, while zonking as necessary. Gives up
-- as soon as it finds that two types are not equal.
-- This is quite handy when some unification has made two
-- types in an inert Wanted to be equal. We can discover the equality without
-- flattening, which is sometimes very expensive (in the case of type functions).
-- In particular, this function makes a ~20% improvement in test case
-- perf/compiler/T5030.
--
-- Returns either the (partially zonked) types in the case of
-- inequality, or the one type in the case of equality. canEqReflexive is
-- a good next step in the 'Right' case. Returning 'Left' is always safe.
--
-- NB: This does *not* look through type synonyms. In fact, it treats type
-- synonyms as rigid constructors. In the future, it might be convenient
-- to look at only those arguments of type synonyms that actually appear
-- in the synonym RHS. But we're not there yet.
zonk_eq_types :: TcType -> TcType -> TcS (Either (Pair TcType) TcType)
zonk_eq_types = go
  where
    go (TyVarTy tv1) (TyVarTy tv2) = tyvar_tyvar tv1 tv2
    go (TyVarTy tv1) ty2           = tyvar NotSwapped tv1 ty2
    go ty1 (TyVarTy tv2)           = tyvar IsSwapped  tv2 ty1

    -- We handle FunTys explicitly here despite the fact that they could also be
    -- treated as an application. Why? Well, for one it's cheaper to just look
    -- at two types (the argument and result types) than four (the argument,
    -- result, and their RuntimeReps). Also, we haven't completely zonked yet,
    -- so we may run into an unzonked type variable while trying to compute the
    -- RuntimeReps of the argument and result types. This can be observed in
    -- testcase tc269.
    go ty1 ty2
      | Just (Scaled w1 arg1, res1) <- split1
      , Just (Scaled w2 arg2, res2) <- split2
      , eqType w1 w2
      = do { res_a <- go arg1 arg2
           ; res_b <- go res1 res2
           ; return $ combine_rev (mkVisFunTy w1) res_b res_a
           }
      | isJust split1 || isJust split2
      = bale_out ty1 ty2
      where
        split1 = tcSplitFunTy_maybe ty1
        split2 = tcSplitFunTy_maybe ty2

    go ty1 ty2
      | Just (tc1, tys1) <- repSplitTyConApp_maybe ty1
      , Just (tc2, tys2) <- repSplitTyConApp_maybe ty2
      = if tc1 == tc2 && tys1 `equalLength` tys2
          -- Crucial to check for equal-length args, because
          -- we cannot assume that the two args to 'go' have
          -- the same kind.  E.g go (Proxy *      (Maybe Int))
          --                        (Proxy (*->*) Maybe)
          -- We'll call (go (Maybe Int) Maybe)
          -- See #13083
        then tycon tc1 tys1 tys2
        else bale_out ty1 ty2

    go ty1 ty2
      | Just (ty1a, ty1b) <- tcRepSplitAppTy_maybe ty1
      , Just (ty2a, ty2b) <- tcRepSplitAppTy_maybe ty2
      = do { res_a <- go ty1a ty2a
           ; res_b <- go ty1b ty2b
           ; return $ combine_rev mkAppTy res_b res_a }

    go ty1@(LitTy lit1) (LitTy lit2)
      | lit1 == lit2
      = return (Right ty1)

    go ty1 ty2 = bale_out ty1 ty2
      -- We don't handle more complex forms here

    bale_out ty1 ty2 = return $ Left (Pair ty1 ty2)

    tyvar :: SwapFlag -> TcTyVar -> TcType
          -> TcS (Either (Pair TcType) TcType)
      -- Try to do as little as possible, as anything we do here is redundant
      -- with flattening. In particular, no need to zonk kinds. That's why
      -- we don't use the already-defined zonking functions
    tyvar swapped tv ty
      = case tcTyVarDetails tv of
          MetaTv { mtv_ref = ref }
            -> do { cts <- readTcRef ref
                  ; case cts of
                      Flexi        -> give_up
                      Indirect ty' -> do { trace_indirect tv ty'
                                         ; unSwap swapped go ty' ty } }
          _ -> give_up
      where
        give_up = return $ Left $ unSwap swapped Pair (mkTyVarTy tv) ty

    tyvar_tyvar tv1 tv2
      | tv1 == tv2 = return (Right (mkTyVarTy tv1))
      | otherwise  = do { (ty1', progress1) <- quick_zonk tv1
                        ; (ty2', progress2) <- quick_zonk tv2
                        ; if progress1 || progress2
                          then go ty1' ty2'
                          else return $ Left (Pair (TyVarTy tv1) (TyVarTy tv2)) }

    trace_indirect tv ty
       = traceTcS "Following filled tyvar (zonk_eq_types)"
                  (ppr tv <+> equals <+> ppr ty)

    quick_zonk tv = case tcTyVarDetails tv of
      MetaTv { mtv_ref = ref }
        -> do { cts <- readTcRef ref
              ; case cts of
                  Flexi        -> return (TyVarTy tv, False)
                  Indirect ty' -> do { trace_indirect tv ty'
                                     ; return (ty', True) } }
      _ -> return (TyVarTy tv, False)

      -- This happens for type families, too. But recall that failure
      -- here just means to try harder, so it's OK if the type function
      -- isn't injective.
    tycon :: TyCon -> [TcType] -> [TcType]
          -> TcS (Either (Pair TcType) TcType)
    tycon tc tys1 tys2
      = do { results <- zipWithM go tys1 tys2
           ; return $ case combine_results results of
               Left tys  -> Left (mkTyConApp tc <$> tys)
               Right tys -> Right (mkTyConApp tc tys) }

    combine_results :: [Either (Pair TcType) TcType]
                    -> Either (Pair [TcType]) [TcType]
    combine_results = bimap (fmap reverse) reverse .
                      foldl' (combine_rev (:)) (Right [])

      -- combine (in reverse) a new result onto an already-combined result
    combine_rev :: (a -> b -> c)
                -> Either (Pair b) b
                -> Either (Pair a) a
                -> Either (Pair c) c
    combine_rev f (Left list) (Left elt) = Left (f <$> elt     <*> list)
    combine_rev f (Left list) (Right ty) = Left (f <$> pure ty <*> list)
    combine_rev f (Right tys) (Left elt) = Left (f <$> elt     <*> pure tys)
    combine_rev f (Right tys) (Right ty) = Right (f ty tys)

{- See Note [Unwrap newtypes first]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  newtype N m a = MkN (m a)
Then N will get a conservative, Nominal role for its second parameter 'a',
because it appears as an argument to the unknown 'm'. Now consider
  [W] N Maybe a  ~R#  N Maybe b

If we decompose, we'll get
  [W] a ~N# b

But if instead we unwrap we'll get
  [W] Maybe a ~R# Maybe b
which in turn gives us
  [W] a ~R# b
which is easier to satisfy.

Bottom line: unwrap newtypes before decomposing them!
c.f. #9123 comment:52,53 for a compelling example.

Note [Newtypes can blow the stack]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)
  newtype Y = MkY (Int -> Y)

and now wish to prove

  [W] X ~R Y

This Wanted will loop, expanding out the newtypes ever deeper looking
for a solid match or a solid discrepancy. Indeed, there is something
appropriate to this looping, because X and Y *do* have the same representation,
in the limit -- they're both (Fix ((->) Int)). However, no finitely-sized
coercion will ever witness it. This loop won't actually cause GHC to hang,
though, because we check our depth when unwrapping newtypes.

Note [Eager reflexivity check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have

  newtype X = MkX (Int -> X)

and

  [W] X ~R X

Naively, we would start unwrapping X and end up in a loop. Instead,
we do this eager reflexivity check. This is necessary only for representational
equality because the flattener technology deals with the similar case
(recursive type families) for nominal equality.

Note that this check does not catch all cases, but it will catch the cases
we're most worried about, types like X above that are actually inhabited.

Here's another place where this reflexivity check is key:
Consider trying to prove (f a) ~R (f a). The AppTys in there can't
be decomposed, because representational equality isn't congruent with respect
to AppTy. So, when canonicalising the equality above, we get stuck and
would normally produce a CIrredCan. However, we really do want to
be able to solve (f a) ~R (f a). So, in the representational case only,
we do a reflexivity check.

(This would be sound in the nominal case, but unnecessary, and I [Richard
E.] am worried that it would slow down the common case.)
-}

------------------------
-- | We're able to unwrap a newtype. Update the bits accordingly.
can_eq_newtype_nc :: CtEvidence           -- ^ :: ty1 ~ ty2
                  -> SwapFlag
                  -> TcType                                    -- ^ ty1
                  -> ((Bag GlobalRdrElt, TcCoercion), TcType)  -- ^ :: ty1 ~ ty1'
                  -> TcType               -- ^ ty2
                  -> TcType               -- ^ ty2, with type synonyms
                  -> TcS (StopOrContinue Ct)
can_eq_newtype_nc ev swapped ty1 ((gres, co), ty1') ty2 ps_ty2
  = do { traceTcS "can_eq_newtype_nc" $
         vcat [ ppr ev, ppr swapped, ppr co, ppr gres, ppr ty1', ppr ty2 ]

         -- check for blowing our stack:
         -- See Note [Newtypes can blow the stack]
       ; checkReductionDepth (ctEvLoc ev) ty1

         -- Next, we record uses of newtype constructors, since coercing
         -- through newtypes is tantamount to using their constructors.
       ; addUsedGREs gre_list
         -- If a newtype constructor was imported, don't warn about not
         -- importing it...
       ; traverse_ keepAlive $ map gre_name gre_list
         -- ...and similarly, if a newtype constructor was defined in the same
         -- module, don't warn about it being unused.
         -- See Note [Tracking unused binding and imports] in GHC.Tc.Utils.

       ; new_ev <- rewriteEqEvidence ev swapped ty1' ps_ty2
                                     (mkTcSymCo co) (mkTcReflCo Representational ps_ty2)
       ; can_eq_nc False new_ev ReprEq ty1' ty1' ty2 ps_ty2 }
  where
    gre_list = bagToList gres

---------
-- ^ Decompose a type application.
-- All input types must be flat. See Note [Canonicalising type applications]
-- Nominal equality only!
can_eq_app :: CtEvidence       -- :: s1 t1 ~N s2 t2
           -> Xi -> Xi         -- s1 t1
           -> Xi -> Xi         -- s2 t2
           -> TcS (StopOrContinue Ct)

-- AppTys only decompose for nominal equality, so this case just leads
-- to an irreducible constraint; see typecheck/should_compile/T10494
-- See Note [Decomposing equality], note {4}
can_eq_app ev s1 t1 s2 t2
  | CtDerived {} <- ev
  = do { unifyDeriveds loc [Nominal, Nominal] [s1, t1] [s2, t2]
       ; stopWith ev "Decomposed [D] AppTy" }

  | CtWanted { ctev_dest = dest } <- ev
  = do { co_s <- unifyWanted loc Nominal s1 s2
       ; let arg_loc
               | isNextArgVisible s1 = loc
               | otherwise           = updateCtLocOrigin loc toInvisibleOrigin
       ; co_t <- unifyWanted arg_loc Nominal t1 t2
       ; let co = mkAppCo co_s co_t
       ; setWantedEq dest co
       ; stopWith ev "Decomposed [W] AppTy" }

    -- If there is a ForAll/(->) mismatch, the use of the Left coercion
    -- below is ill-typed, potentially leading to a panic in splitTyConApp
    -- Test case: typecheck/should_run/Typeable1
    -- We could also include this mismatch check above (for W and D), but it's slow
    -- and we'll get a better error message not doing it
  | s1k `mismatches` s2k
  = canEqHardFailure ev (s1 `mkAppTy` t1) (s2 `mkAppTy` t2)

  | CtGiven { ctev_evar = evar } <- ev
  = do { let co   = mkTcCoVarCo evar
             co_s = mkTcLRCo CLeft  co
             co_t = mkTcLRCo CRight co
       ; evar_s <- newGivenEvVar loc ( mkTcEqPredLikeEv ev s1 s2
                                     , evCoercion co_s )
       ; evar_t <- newGivenEvVar loc ( mkTcEqPredLikeEv ev t1 t2
                                     , evCoercion co_t )
       ; emitWorkNC [evar_t]
       ; canEqNC evar_s NomEq s1 s2 }

  where
    loc = ctEvLoc ev

    s1k = tcTypeKind s1
    s2k = tcTypeKind s2

    k1 `mismatches` k2
      =  isForAllTy k1 && not (isForAllTy k2)
      || not (isForAllTy k1) && isForAllTy k2

-----------------------
-- | Break apart an equality over a casted type
-- looking like   (ty1 |> co1) ~ ty2   (modulo a swap-flag)
canEqCast :: Bool         -- are both types flat?
          -> CtEvidence
          -> EqRel
          -> SwapFlag
          -> TcType -> Coercion   -- LHS (res. RHS), ty1 |> co1
          -> TcType -> TcType     -- RHS (res. LHS), ty2 both normal and pretty
          -> TcS (StopOrContinue Ct)
canEqCast flat ev eq_rel swapped ty1 co1 ty2 ps_ty2
  = do { traceTcS "Decomposing cast" (vcat [ ppr ev
                                           , ppr ty1 <+> text "|>" <+> ppr co1
                                           , ppr ps_ty2 ])
       ; new_ev <- rewriteEqEvidence ev swapped ty1 ps_ty2
                                     (mkTcGReflRightCo role ty1 co1)
                                     (mkTcReflCo role ps_ty2)
       ; can_eq_nc flat new_ev eq_rel ty1 ty1 ty2 ps_ty2 }
  where
    role = eqRelRole eq_rel

------------------------
canTyConApp :: CtEvidence -> EqRel
            -> TyCon -> [TcType]
            -> TyCon -> [TcType]
            -> TcS (StopOrContinue Ct)
-- See Note [Decomposing TyConApps]
-- Neither tc1 nor tc2 is a saturated funTyCon
canTyConApp ev eq_rel tc1 tys1 tc2 tys2
  | tc1 == tc2
  , tys1 `equalLength` tys2
  = do { inerts <- getTcSInerts
       ; if can_decompose inerts
         then canDecomposableTyConAppOK ev eq_rel tc1 tys1 tys2
         else canEqFailure ev eq_rel ty1 ty2 }

  -- See Note [Skolem abstract data] (at tyConSkolem)
  | tyConSkolem tc1 || tyConSkolem tc2
  = do { traceTcS "canTyConApp: skolem abstract" (ppr tc1 $$ ppr tc2)
       ; continueWith (mkIrredCt OtherCIS ev) }

  -- Fail straight away for better error messages
  -- See Note [Use canEqFailure in canDecomposableTyConApp]
  | eq_rel == ReprEq && not (isGenerativeTyCon tc1 Representational &&
                             isGenerativeTyCon tc2 Representational)
  = canEqFailure ev eq_rel ty1 ty2
  | otherwise
  = canEqHardFailure ev ty1 ty2
  where
    -- Reconstruct the types for error messages. This would do
    -- the wrong thing (from a pretty printing point of view)
    -- for functions, because we've lost the AnonArgFlag; but
    -- in fact we never call canTyConApp on a saturated FunTyCon
    ty1 = mkTyConApp tc1 tys1
    ty2 = mkTyConApp tc2 tys2

    loc  = ctEvLoc ev
    pred = ctEvPred ev

     -- See Note [Decomposing equality]
    can_decompose inerts
      =  isInjectiveTyCon tc1 (eqRelRole eq_rel)
      || (ctEvFlavour ev /= Given && isEmptyBag (matchableGivens loc pred inerts))

{-
Note [Use canEqFailure in canDecomposableTyConApp]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must use canEqFailure, not canEqHardFailure here, because there is
the possibility of success if working with a representational equality.
Here is one case:

  type family TF a where TF Char = Bool
  data family DF a
  newtype instance DF Bool = MkDF Int

Suppose we are canonicalising (Int ~R DF (TF a)), where we don't yet
know `a`. This is *not* a hard failure, because we might soon learn
that `a` is, in fact, Char, and then the equality succeeds.

Here is another case:

  [G] Age ~R Int

where Age's constructor is not in scope. We don't want to report
an "inaccessible code" error in the context of this Given!

For example, see typecheck/should_compile/T10493, repeated here:

  import Data.Ord (Down)  -- no constructor

  foo :: Coercible (Down Int) Int => Down Int -> Int
  foo = coerce

That should compile, but only because we use canEqFailure and not
canEqHardFailure.

Note [Decomposing equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have a constraint (of any flavour and role) that looks like
T tys1 ~ T tys2, what can we conclude about tys1 and tys2? The answer,
of course, is "it depends". This Note spells it all out.

In this Note, "decomposition" refers to taking the constraint
  [fl] (T tys1 ~X T tys2)
(for some flavour fl and some role X) and replacing it with
  [fls'] (tys1 ~Xs' tys2)
where that notation indicates a list of new constraints, where the
new constraints may have different flavours and different roles.

The key property to consider is injectivity. When decomposing a Given the
decomposition is sound if and only if T is injective in all of its type
arguments. When decomposing a Wanted, the decomposition is sound (assuming the
correct roles in the produced equality constraints), but it may be a guess --
that is, an unforced decision by the constraint solver. Decomposing Wanteds
over injective TyCons does not entail guessing. But sometimes we want to
decompose a Wanted even when the TyCon involved is not injective! (See below.)

So, in broad strokes, we want this rule:

(*) Decompose a constraint (T tys1 ~X T tys2) if and only if T is injective
at role X.

Pursuing the details requires exploring three axes:
* Flavour: Given vs. Derived vs. Wanted
* Role: Nominal vs. Representational
* TyCon species: datatype vs. newtype vs. data family vs. type family vs. type variable

(So a type variable isn't a TyCon, but it's convenient to put the AppTy case
in the same table.)

Right away, we can say that Derived behaves just as Wanted for the purposes
of decomposition. The difference between Derived and Wanted is the handling of
evidence. Since decomposition in these cases isn't a matter of soundness but of
guessing, we want the same behavior regardless of evidence.

Here is a table (discussion following) detailing where decomposition of
   (T s1 ... sn) ~r (T t1 .. tn)
is allowed.  The first four lines (Data types ... type family) refer
to TyConApps with various TyCons T; the last line is for AppTy, where
there is presumably a type variable at the head, so it's actually
   (s s1 ... sn) ~r (t t1 .. tn)

NOMINAL               GIVEN                       WANTED

Datatype               YES                         YES
Newtype                YES                         YES
Data family            YES                         YES
Type family            YES, in injective args{1}   YES, in injective args{1}
Type variable          YES                         YES

REPRESENTATIONAL      GIVEN                       WANTED

Datatype               YES                         YES
Newtype                NO{2}                      MAYBE{2}
Data family            NO{3}                      MAYBE{3}
Type family             NO                          NO
Type variable          NO{4}                       NO{4}

{1}: Type families can be injective in some, but not all, of their arguments,
so we want to do partial decomposition. This is quite different than the way
other decomposition is done, where the decomposed equalities replace the original
one. We thus proceed much like we do with superclasses: emitting new Givens
when "decomposing" a partially-injective type family Given and new Deriveds
when "decomposing" a partially-injective type family Wanted. (As of the time of
writing, 13 June 2015, the implementation of injective type families has not
been merged, but it should be soon. Please delete this parenthetical if the
implementation is indeed merged.)

{2}: See Note [Decomposing newtypes at representational role]

{3}: Because of the possibility of newtype instances, we must treat
data families like newtypes. See also Note [Decomposing newtypes at
representational role]. See #10534 and test case
typecheck/should_fail/T10534.

{4}: Because type variables can stand in for newtypes, we conservatively do not
decompose AppTys over representational equality.

In the implementation of can_eq_nc and friends, we don't directly pattern
match using lines like in the tables above, as those tables don't cover
all cases (what about PrimTyCon? tuples?). Instead we just ask about injectivity,
boiling the tables above down to rule (*). The exceptions to rule (*) are for
injective type families, which are handled separately from other decompositions,
and the MAYBE entries above.

Note [Decomposing newtypes at representational role]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This note discusses the 'newtype' line in the REPRESENTATIONAL table
in Note [Decomposing equality]. (At nominal role, newtypes are fully
decomposable.)

Here is a representative example of why representational equality over
newtypes is tricky:

  newtype Nt a = Mk Bool         -- NB: a is not used in the RHS,
  type role Nt representational  -- but the user gives it an R role anyway

If we have [W] Nt alpha ~R Nt beta, we *don't* want to decompose to
[W] alpha ~R beta, because it's possible that alpha and beta aren't
representationally equal. Here's another example.

  newtype Nt a = MkNt (Id a)
  type family Id a where Id a = a

  [W] Nt Int ~R Nt Age

Because of its use of a type family, Nt's parameter will get inferred to have
a nominal role. Thus, decomposing the wanted will yield [W] Int ~N Age, which
is unsatisfiable. Unwrapping, though, leads to a solution.

Conclusion:
 * Unwrap newtypes before attempting to decompose them.
   This is done in can_eq_nc'.

It all comes from the fact that newtypes aren't necessarily injective
w.r.t. representational equality.

Furthermore, as explained in Note [NthCo and newtypes] in GHC.Core.TyCo.Rep, we can't use
NthCo on representational coercions over newtypes. NthCo comes into play
only when decomposing givens.

Conclusion:
 * Do not decompose [G] N s ~R N t

Is it sensible to decompose *Wanted* constraints over newtypes?  Yes!
It's the only way we could ever prove (IO Int ~R IO Age), recalling
that IO is a newtype.

However we must be careful.  Consider

  type role Nt representational

  [G] Nt a ~R Nt b       (1)
  [W] NT alpha ~R Nt b   (2)
  [W] alpha ~ a          (3)

If we focus on (3) first, we'll substitute in (2), and now it's
identical to the given (1), so we succeed.  But if we focus on (2)
first, and decompose it, we'll get (alpha ~R b), which is not soluble.
This is exactly like the question of overlapping Givens for class
constraints: see Note [Instance and Given overlap] in GHC.Tc.Solver.Interact.

Conclusion:
  * Decompose [W] N s ~R N t  iff there no given constraint that could
    later solve it.

-}

canDecomposableTyConAppOK :: CtEvidence -> EqRel
                          -> TyCon -> [TcType] -> [TcType]
                          -> TcS (StopOrContinue Ct)
-- Precondition: tys1 and tys2 are the same length, hence "OK"
canDecomposableTyConAppOK ev eq_rel tc tys1 tys2
  = ASSERT( tys1 `equalLength` tys2 )
    do { traceTcS "canDecomposableTyConAppOK"
                  (ppr ev $$ ppr eq_rel $$ ppr tc $$ ppr tys1 $$ ppr tys2)
       ; case ev of
           CtDerived {}
             -> unifyDeriveds loc tc_roles tys1 tys2

           CtWanted { ctev_dest = dest }
                  -- new_locs and tc_roles are both infinite, so
                  -- we are guaranteed that cos has the same length
                  -- as tys1 and tys2
             -> do { cos <- zipWith4M unifyWanted new_locs tc_roles tys1 tys2
                   ; setWantedEq dest (mkTyConAppCo role tc cos) }

           CtGiven { ctev_evar = evar }
             -> do { let ev_co = mkCoVarCo evar
                   ; given_evs <- newGivenEvVars loc $
                                  [ ( mkPrimEqPredRole r ty1 ty2
                                    , evCoercion $ mkNthCo r i ev_co )
                                  | (r, ty1, ty2, i) <- zip4 tc_roles tys1 tys2 [0..]
                                  , r /= Phantom
                                  , not (isCoercionTy ty1) && not (isCoercionTy ty2) ]
                   ; emitWorkNC given_evs }

    ; stopWith ev "Decomposed TyConApp" }

  where
    loc        = ctEvLoc ev
    role       = eqRelRole eq_rel

      -- infinite, as tyConRolesX returns an infinite tail of Nominal
    tc_roles   = tyConRolesX role tc

      -- Add nuances to the location during decomposition:
      --  * if the argument is a kind argument, remember this, so that error
      --    messages say "kind", not "type". This is determined based on whether
      --    the corresponding tyConBinder is named (that is, dependent)
      --  * if the argument is invisible, note this as well, again by
      --    looking at the corresponding binder
      -- For oversaturated tycons, we need the (repeat loc) tail, which doesn't
      -- do either of these changes. (Forgetting to do so led to #16188)
      --
      -- NB: infinite in length
    new_locs = [ new_loc
               | bndr <- tyConBinders tc
               , let new_loc0 | isNamedTyConBinder bndr = toKindLoc loc
                              | otherwise               = loc
                     new_loc  | isVisibleTyConBinder bndr
                              = updateCtLocOrigin new_loc0 toInvisibleOrigin
                              | otherwise
                              = new_loc0 ]
               ++ repeat loc

-- | Call when canonicalizing an equality fails, but if the equality is
-- representational, there is some hope for the future.
-- Examples in Note [Use canEqFailure in canDecomposableTyConApp]
canEqFailure :: CtEvidence -> EqRel
             -> TcType -> TcType -> TcS (StopOrContinue Ct)
canEqFailure ev NomEq ty1 ty2
  = canEqHardFailure ev ty1 ty2
canEqFailure ev ReprEq ty1 ty2
  = do { (xi1, co1) <- flatten FM_FlattenAll ev ty1
       ; (xi2, co2) <- flatten FM_FlattenAll ev ty2
            -- We must flatten the types before putting them in the
            -- inert set, so that we are sure to kick them out when
            -- new equalities become available
       ; traceTcS "canEqFailure with ReprEq" $
         vcat [ ppr ev, ppr ty1, ppr ty2, ppr xi1, ppr xi2 ]
       ; new_ev <- rewriteEqEvidence ev NotSwapped xi1 xi2 co1 co2
       ; continueWith (mkIrredCt OtherCIS new_ev) }

-- | Call when canonicalizing an equality fails with utterly no hope.
canEqHardFailure :: CtEvidence
                 -> TcType -> TcType -> TcS (StopOrContinue Ct)
-- See Note [Make sure that insolubles are fully rewritten]
canEqHardFailure ev ty1 ty2
  = do { traceTcS "canEqHardFailure" (ppr ty1 $$ ppr ty2)
       ; (s1, co1) <- flatten FM_SubstOnly ev ty1
       ; (s2, co2) <- flatten FM_SubstOnly ev ty2
       ; new_ev <- rewriteEqEvidence ev NotSwapped s1 s2 co1 co2
       ; continueWith (mkIrredCt InsolubleCIS new_ev) }

{-
Note [Decomposing TyConApps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we see (T s1 t1 ~ T s2 t2), then we can just decompose to
  (s1 ~ s2, t1 ~ t2)
and push those back into the work list.  But if
  s1 = K k1    s2 = K k2
then we will just decomopose s1~s2, and it might be better to
do so on the spot.  An important special case is where s1=s2,
and we get just Refl.

So canDecomposableTyCon is a fast-path decomposition that uses
unifyWanted etc to short-cut that work.

Note [Canonicalising type applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (s1 t1) ~ ty2, how should we proceed?
The simple things is to see if ty2 is of form (s2 t2), and
decompose.  By this time s1 and s2 can't be saturated type
function applications, because those have been dealt with
by an earlier equation in can_eq_nc, so it is always sound to
decompose.

However, over-eager decomposition gives bad error messages
for things like
   a b ~ Maybe c
   e f ~ p -> q
Suppose (in the first example) we already know a~Array.  Then if we
decompose the application eagerly, yielding
   a ~ Maybe
   b ~ c
we get an error        "Can't match Array ~ Maybe",
but we'd prefer to get "Can't match Array b ~ Maybe c".

So instead can_eq_wanted_app flattens the LHS and RHS, in the hope of
replacing (a b) by (Array b), before using try_decompose_app to
decompose it.

Note [Make sure that insolubles are fully rewritten]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When an equality fails, we still want to rewrite the equality
all the way down, so that it accurately reflects
 (a) the mutable reference substitution in force at start of solving
 (b) any ty-binds in force at this point in solving
See Note [Rewrite insolubles] in GHC.Tc.Solver.Monad.
And if we don't do this there is a bad danger that
GHC.Tc.Solver.applyTyVarDefaulting will find a variable
that has in fact been substituted.

Note [Do not decompose Given polytype equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider [G] (forall a. t1 ~ forall a. t2).  Can we decompose this?
No -- what would the evidence look like?  So instead we simply discard
this given evidence.


Note [Combining insoluble constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As this point we have an insoluble constraint, like Int~Bool.

 * If it is Wanted, delete it from the cache, so that subsequent
   Int~Bool constraints give rise to separate error messages

 * But if it is Derived, DO NOT delete from cache.  A class constraint
   may get kicked out of the inert set, and then have its functional
   dependency Derived constraints generated a second time. In that
   case we don't want to get two (or more) error messages by
   generating two (or more) insoluble fundep constraints from the same
   class constraint.

Note [No top-level newtypes on RHS of representational equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we're in this situation:

 work item:  [W] c1 : a ~R b
     inert:  [G] c2 : b ~R Id a

where
  newtype Id a = Id a

We want to make sure canEqTyVar sees [W] a ~R a, after b is flattened
and the Id newtype is unwrapped. This is assured by requiring only flat
types in canEqTyVar *and* having the newtype-unwrapping check above
the tyvar check in can_eq_nc.

Note [Occurs check error]
~~~~~~~~~~~~~~~~~~~~~~~~~
If we have an occurs check error, are we necessarily hosed? Say our
tyvar is tv1 and the type it appears in is xi2. Because xi2 is function
free, then if we're computing w.r.t. nominal equality, then, yes, we're
hosed. Nothing good can come from (a ~ [a]). If we're computing w.r.t.
representational equality, this is a little subtler. Once again, (a ~R [a])
is a bad thing, but (a ~R N a) for a newtype N might be just fine. This
means also that (a ~ b a) might be fine, because `b` might become a newtype.

So, we must check: does tv1 appear in xi2 under any type constructor
that is generative w.r.t. representational equality? That's what
isInsolubleOccursCheck does.

See also #10715, which induced this addition.

Note [canCFunEqCan]
~~~~~~~~~~~~~~~~~~~
Flattening the arguments to a type family can change the kind of the type
family application. As an easy example, consider (Any k) where (k ~ Type)
is in the inert set. The original (Any k :: k) becomes (Any Type :: Type).
The problem here is that the fsk in the CFunEqCan will have the old kind.

The solution is to come up with a new fsk/fmv of the right kind. For
givens, this is easy: just introduce a new fsk and update the flat-cache
with the new one. For wanteds, we want to solve the old one if favor of
the new one, so we use dischargeFmv. This also kicks out constraints
from the inert set; this behavior is correct, as the kind-change may
allow more constraints to be solved.

We use `isTcReflexiveCo`, to ensure that we only use the hetero-kinded case
if we really need to.  Of course `flattenArgsNom` should return `Refl`
whenever possible, but #15577 was an infinite loop because even
though the coercion was homo-kinded, `kind_co` was not `Refl`, so we
made a new (identical) CFunEqCan, and then the entire process repeated.
-}

canCFunEqCan :: CtEvidence
             -> TyCon -> [TcType]   -- LHS
             -> TcTyVar             -- RHS
             -> TcS (StopOrContinue Ct)
-- ^ Canonicalise a CFunEqCan.  We know that
--     the arg types are already flat,
-- and the RHS is a fsk, which we must *not* substitute.
-- So just substitute in the LHS
canCFunEqCan ev fn tys fsk
  = do { (tys', cos, kind_co) <- flattenArgsNom ev fn tys
                        -- cos :: tys' ~ tys

       ; let lhs_co  = mkTcTyConAppCo Nominal fn cos
                        -- :: F tys' ~ F tys
             new_lhs = mkTyConApp fn tys'

             flav    = ctEvFlavour ev
       ; (ev', fsk')
           <- if isTcReflexiveCo kind_co   -- See Note [canCFunEqCan]
              then do { traceTcS "canCFunEqCan: refl" (ppr new_lhs)
                      ; let fsk_ty = mkTyVarTy fsk
                      ; ev' <- rewriteEqEvidence ev NotSwapped new_lhs fsk_ty
                                                 lhs_co (mkTcNomReflCo fsk_ty)
                      ; return (ev', fsk) }
              else do { traceTcS "canCFunEqCan: non-refl" $
                        vcat [ text "Kind co:" <+> ppr kind_co
                             , text "RHS:" <+> ppr fsk <+> dcolon <+> ppr (tyVarKind fsk)
                             , text "LHS:" <+> hang (ppr (mkTyConApp fn tys))
                                                  2 (dcolon <+> ppr (tcTypeKind (mkTyConApp fn tys)))
                             , text "New LHS" <+> hang (ppr new_lhs)
                                                     2 (dcolon <+> ppr (tcTypeKind new_lhs)) ]
                      ; (ev', new_co, new_fsk)
                          <- newFlattenSkolem flav (ctEvLoc ev) fn tys'
                      ; let xi = mkTyVarTy new_fsk `mkCastTy` kind_co
                               -- sym lhs_co :: F tys ~ F tys'
                               -- new_co     :: F tys' ~ new_fsk
                               -- co         :: F tys ~ (new_fsk |> kind_co)
                            co = mkTcSymCo lhs_co `mkTcTransCo`
                                 mkTcCoherenceRightCo Nominal
                                                      (mkTyVarTy new_fsk)
                                                      kind_co
                                                      new_co

                      ; traceTcS "Discharging fmv/fsk due to hetero flattening" (ppr ev)
                      ; dischargeFunEq ev fsk co xi
                      ; return (ev', new_fsk) }

       ; extendFlatCache fn tys' (ctEvCoercion ev', mkTyVarTy fsk', ctEvFlavour ev')
       ; continueWith (CFunEqCan { cc_ev = ev', cc_fun = fn
                                 , cc_tyargs = tys', cc_fsk = fsk' }) }

---------------------
canEqTyVar :: CtEvidence          -- ev :: lhs ~ rhs
           -> EqRel -> SwapFlag
           -> TcTyVar               -- tv1
           -> TcType                -- lhs: pretty lhs, already flat
           -> TcType -> TcType      -- rhs: already flat
           -> TcS (StopOrContinue Ct)
canEqTyVar ev eq_rel swapped tv1 ps_xi1 xi2 ps_xi2
  | k1 `tcEqType` k2
  = canEqTyVarHomo ev eq_rel swapped tv1 ps_xi1 xi2 ps_xi2

  | otherwise
  = canEqTyVarHetero ev eq_rel swapped tv1 ps_xi1 k1 xi2 ps_xi2 k2

  where
    k1 = tyVarKind tv1
    k2 = tcTypeKind xi2

canEqTyVarHetero :: CtEvidence         -- :: (tv1 :: ki1) ~ (xi2 :: ki2)
                 -> EqRel -> SwapFlag
                 -> TcTyVar -> TcType  -- tv1, pretty tv1
                 -> TcKind             -- ki1
                 -> TcType -> TcType   -- xi2, pretty xi2 :: ki2
                 -> TcKind             -- ki2
                 -> TcS (StopOrContinue Ct)
canEqTyVarHetero ev eq_rel swapped tv1 ps_tv1 ki1 xi2 ps_xi2 ki2
  -- See Note [Equalities with incompatible kinds]
  = do { kind_co <- emit_kind_co   -- :: ki2 ~N ki1

       ; let  -- kind_co :: (ki2 :: *) ~N (ki1 :: *)   (whether swapped or not)
              -- co1     :: kind(tv1) ~N ki1
             rhs'    = xi2    `mkCastTy` kind_co   -- :: ki1
             ps_rhs' = ps_xi2 `mkCastTy` kind_co   -- :: ki1
             rhs_co  = mkTcGReflLeftCo role xi2 kind_co
               -- rhs_co :: (xi2 |> kind_co) ~ xi2

             lhs'   = mkTyVarTy tv1  -- same as old lhs
             lhs_co = mkTcReflCo role lhs'

       ; traceTcS "Hetero equality gives rise to kind equality"
           (ppr kind_co <+> dcolon <+> sep [ ppr ki2, text "~#", ppr ki1 ])
       ; type_ev <- rewriteEqEvidence ev swapped lhs' rhs' lhs_co rhs_co

          -- rewriteEqEvidence carries out the swap, so we're NotSwapped any more
       ; canEqTyVarHomo type_ev eq_rel NotSwapped tv1 ps_tv1 rhs' ps_rhs' }
  where
    emit_kind_co :: TcS CoercionN
    emit_kind_co
      | CtGiven { ctev_evar = evar } <- ev
      = do { let kind_co = maybe_sym $ mkTcKindCo (mkTcCoVarCo evar)  -- :: k2 ~ k1
           ; kind_ev <- newGivenEvVar kind_loc (kind_pty, evCoercion kind_co)
           ; emitWorkNC [kind_ev]
           ; return (ctEvCoercion kind_ev) }

      | otherwise
      = unifyWanted kind_loc Nominal ki2 ki1

    loc      = ctev_loc ev
    role     = eqRelRole eq_rel
    kind_loc = mkKindLoc (mkTyVarTy tv1) xi2 loc
    kind_pty = mkHeteroPrimEqPred liftedTypeKind liftedTypeKind ki2 ki1

    maybe_sym = case swapped of
          IsSwapped  -> id         -- if the input is swapped, then we already
                                   -- will have k2 ~ k1
          NotSwapped -> mkTcSymCo

-- guaranteed that tcTypeKind lhs == tcTypeKind rhs
canEqTyVarHomo :: CtEvidence
               -> EqRel -> SwapFlag
               -> TcTyVar                -- lhs: tv1
               -> TcType                 -- pretty lhs, flat
               -> TcType -> TcType       -- rhs, flat
               -> TcS (StopOrContinue Ct)
canEqTyVarHomo ev eq_rel swapped tv1 ps_xi1 xi2 _
  | Just (tv2, _) <- tcGetCastedTyVar_maybe xi2
  , tv1 == tv2
  = canEqReflexive ev eq_rel (mkTyVarTy tv1)
    -- we don't need to check co because it must be reflexive

    -- this guarantees (TyEq:TV)
  | Just (tv2, co2) <- tcGetCastedTyVar_maybe xi2
  , swapOverTyVars (isGiven ev) tv1 tv2
  = do { traceTcS "canEqTyVar swapOver" (ppr tv1 $$ ppr tv2 $$ ppr swapped)
       ; let role    = eqRelRole eq_rel
             sym_co2 = mkTcSymCo co2
             ty1     = mkTyVarTy tv1
             new_lhs = ty1 `mkCastTy` sym_co2
             lhs_co  = mkTcGReflLeftCo role ty1 sym_co2

             new_rhs = mkTyVarTy tv2
             rhs_co  = mkTcGReflRightCo role new_rhs co2

       ; new_ev <- rewriteEqEvidence ev swapped new_lhs new_rhs lhs_co rhs_co

       ; dflags <- getDynFlags
       ; canEqTyVar2 dflags new_ev eq_rel IsSwapped tv2 (ps_xi1 `mkCastTy` sym_co2) }

canEqTyVarHomo ev eq_rel swapped tv1 _ _ ps_xi2
  = do { dflags <- getDynFlags
       ; canEqTyVar2 dflags ev eq_rel swapped tv1 ps_xi2 }

-- The RHS here is either not a casted tyvar, or it's a tyvar but we want
-- to rewrite the LHS to the RHS (as per swapOverTyVars)
canEqTyVar2 :: DynFlags
            -> CtEvidence   -- lhs ~ rhs (or, if swapped, orhs ~ olhs)
            -> EqRel
            -> SwapFlag
            -> TcTyVar                  -- lhs = tv, flat
            -> TcType                   -- rhs, flat
            -> TcS (StopOrContinue Ct)
-- LHS is an inert type variable,
-- and RHS is fully rewritten, but with type synonyms
-- preserved as much as possible
-- guaranteed that tyVarKind lhs == typeKind rhs, for (TyEq:K)
-- the "flat" requirement guarantees (TyEq:AFF)
-- (TyEq:N) is checked in can_eq_nc', and (TyEq:TV) is handled in canEqTyVarHomo
canEqTyVar2 dflags ev eq_rel swapped tv1 rhs
    -- this next line checks also for coercion holes; see
    -- Note [Equalities with incompatible kinds]
  | MTVU_OK rhs' <- mtvu  -- No occurs check
     -- Must do the occurs check even on tyvar/tyvar
     -- equalities, in case have  x ~ (y :: ..x...)
     -- #12593
     -- guarantees (TyEq:OC), (TyEq:F), and (TyEq:H)
  = do { new_ev <- rewriteEqEvidence ev swapped lhs rhs' rewrite_co1 rewrite_co2
       ; continueWith (CTyEqCan { cc_ev = new_ev, cc_tyvar = tv1
                                , cc_rhs = rhs', cc_eq_rel = eq_rel }) }

  | otherwise  -- For some reason (occurs check, or forall) we can't unify
               -- We must not use it for further rewriting!
  = do { traceTcS "canEqTyVar2 can't unify" (ppr tv1 $$ ppr rhs)
       ; new_ev <- rewriteEqEvidence ev swapped lhs rhs rewrite_co1 rewrite_co2
       ; let status | isInsolubleOccursCheck eq_rel tv1 rhs
                    = InsolubleCIS
             -- If we have a ~ [a], it is not canonical, and in particular
             -- we don't want to rewrite existing inerts with it, otherwise
             -- we'd risk divergence in the constraint solver

                    | MTVU_HoleBlocker <- mtvu
                    = BlockedCIS
             -- This is the case detailed in
             -- Note [Equalities with incompatible kinds]

                    | otherwise
                    = OtherCIS
             -- A representational equality with an occurs-check problem isn't
             -- insoluble! For example:
             --   a ~R b a
             -- We might learn that b is the newtype Id.
             -- But, the occurs-check certainly prevents the equality from being
             -- canonical, and we might loop if we were to use it in rewriting.

       ; continueWith (mkIrredCt status new_ev) }
  where
    mtvu = metaTyVarUpdateOK dflags tv1 rhs

    role = eqRelRole eq_rel

    lhs = mkTyVarTy tv1

    rewrite_co1  = mkTcReflCo role lhs
    rewrite_co2  = mkTcReflCo role rhs

-- | Solve a reflexive equality constraint
canEqReflexive :: CtEvidence    -- ty ~ ty
               -> EqRel
               -> TcType        -- ty
               -> TcS (StopOrContinue Ct)   -- always Stop
canEqReflexive ev eq_rel ty
  = do { setEvBindIfWanted ev (evCoercion $
                               mkTcReflCo (eqRelRole eq_rel) ty)
       ; stopWith ev "Solved by reflexivity" }

{- Note [Equalities with incompatible kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
What do we do when we have an equality

  (tv :: k1) ~ (rhs :: k2)

where k1 and k2 differ? Easy: we create a coercion that relates k1 and
k2 and use this to cast. To wit, from

  [X] (tv :: k1) ~ (rhs :: k2)

we go to

  [noDerived X] co :: k2 ~ k1
  [X]           (tv :: k1) ~ ((rhs |> co) :: k1)

where

  noDerived G = G
  noDerived _ = W

Wrinkles:

 (1) The noDerived step is because Derived equalities have no evidence.
     And yet we absolutely need evidence to be able to proceed here.
     Given evidence will use the KindCo coercion; Wanted evidence will
     be a coercion hole. Even a Derived hetero equality begets a Wanted
     kind equality.

 (2) Though it would be sound to do so, we must not mark the rewritten Wanted
       [W] (tv :: k1) ~ ((rhs |> co) :: k1)
     as canonical in the inert set. In particular, we must not unify tv.
     If we did, the Wanted becomes a Given (effectively), and then can
     rewrite other Wanteds. But that's bad: See Note [Wanteds to not rewrite Wanteds]
     in GHC.Tc.Types.Constraint. The problem is about poor error messages. See #11198 for
     tales of destruction.

     So, we have an invariant on CTyEqCan (TyEq:H) that the RHS does not have
     any coercion holes. This is checked in metaTyVarUpdateOK. We also
     must be sure to kick out any constraints that mention coercion holes
     when those holes get filled in.

     (2a) We don't want to do this for CoercionHoles that witness
          CFunEqCans (that are produced by the flattener), as these will disappear
          once we unflatten. So we remember in the CoercionHole structure
          whether the presence of the hole should block substitution or not.
          A bit gross, this.

     (2b) We must now absolutely make sure to kick out any constraints that
          mention a newly-filled-in coercion hole. This is done in
          kickOutAfterFillingCoercionHole.

 (3) Suppose we have [W] (a :: k1) ~ (rhs :: k2). We duly follow the
     algorithm detailed here, producing [W] co :: k2 ~ k1, and adding
     [W] (a :: k1) ~ ((rhs |> co) :: k1) to the irreducibles. Some time
     later, we solve co, and fill in co's coercion hole. This kicks out
     the irreducible as described in (2b).
     But now, during canonicalization, we see the cast
     and remove it, in canEqCast. By the time we get into canEqTyVar, the equality
     is heterogeneous again, and the process repeats.

     To avoid this, we don't strip casts off a type if the other type
     in the equality is a tyvar. And this is an improvement regardless:
     because tyvars can, generally, unify with casted types, there's no
     reason to go through the work of stripping off the cast when the
     cast appears opposite a tyvar. This is implemented in the cast case
     of can_eq_nc'.

 (4) Reporting an error for a constraint that is blocked only because
     of wrinkle (2) is hard: what would we say to users? And we don't
     really need to report, because if a constraint is blocked, then
     there is unsolved wanted blocking it; that unsolved wanted will
     be reported. We thus push such errors to the bottom of the queue
     in the error-reporting code; they should never be printed.

     (4a) It would seem possible to do this filtering just based on the
          presence of a blocking coercion hole. However, this is no good,
          as it suppresses e.g. no-instance-found errors. We thus record
          a CtIrredStatus in CIrredCan and filter based on this status.
          This happened in T14584. An alternative approach is to expressly
          look for *equalities* with blocking coercion holes, but actually
          recording the blockage in a status field seems nicer.

     (4b) The error message might be printed with -fdefer-type-errors,
          so it still must exist. This is the only reason why there is
          a message at all. Otherwise, we could simply do nothing.

Historical note:

We used to do this via emitting a Derived kind equality and then parking
the heterogeneous equality as irreducible. But this new approach is much
more direct. And it doesn't produce duplicate Deriveds (as the old one did).

Note [Type synonyms and canonicalization]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat type synonym applications as xi types, that is, they do not
count as type function applications.  However, we do need to be a bit
careful with type synonyms: like type functions they may not be
generative or injective.  However, unlike type functions, they are
parametric, so there is no problem in expanding them whenever we see
them, since we do not need to know anything about their arguments in
order to expand them; this is what justifies not having to treat them
as specially as type function applications.  The thing that causes
some subtleties is that we prefer to leave type synonym applications
*unexpanded* whenever possible, in order to generate better error
messages.

If we encounter an equality constraint with type synonym applications
on both sides, or a type synonym application on one side and some sort
of type application on the other, we simply must expand out the type
synonyms in order to continue decomposing the equality constraint into
primitive equality constraints.  For example, suppose we have

  type F a = [Int]

and we encounter the equality

  F a ~ [b]

In order to continue we must expand F a into [Int], giving us the
equality

  [Int] ~ [b]

which we can then decompose into the more primitive equality
constraint

  Int ~ b.

However, if we encounter an equality constraint with a type synonym
application on one side and a variable on the other side, we should
NOT (necessarily) expand the type synonym, since for the purpose of
good error messages we want to leave type synonyms unexpanded as much
as possible.  Hence the ps_xi1, ps_xi2 argument passed to canEqTyVar.

-}

{-
************************************************************************
*                                                                      *
                  Evidence transformation
*                                                                      *
************************************************************************
-}

data StopOrContinue a
  = ContinueWith a    -- The constraint was not solved, although it may have
                      --   been rewritten

  | Stop CtEvidence   -- The (rewritten) constraint was solved
         SDoc         -- Tells how it was solved
                      -- Any new sub-goals have been put on the work list
  deriving (Functor)

instance Outputable a => Outputable (StopOrContinue a) where
  ppr (Stop ev s)      = text "Stop" <> parens s <+> ppr ev
  ppr (ContinueWith w) = text "ContinueWith" <+> ppr w

continueWith :: a -> TcS (StopOrContinue a)
continueWith = return . ContinueWith

stopWith :: CtEvidence -> String -> TcS (StopOrContinue a)
stopWith ev s = return (Stop ev (text s))

andWhenContinue :: TcS (StopOrContinue a)
                -> (a -> TcS (StopOrContinue b))
                -> TcS (StopOrContinue b)
andWhenContinue tcs1 tcs2
  = do { r <- tcs1
       ; case r of
           Stop ev s       -> return (Stop ev s)
           ContinueWith ct -> tcs2 ct }
infixr 0 `andWhenContinue`    -- allow chaining with ($)

rewriteEvidence :: CtEvidence   -- old evidence
                -> TcPredType   -- new predicate
                -> TcCoercion   -- Of type :: new predicate ~ <type of old evidence>
                -> TcS (StopOrContinue CtEvidence)
-- Returns Just new_ev iff either (i)  'co' is reflexivity
--                             or (ii) 'co' is not reflexivity, and 'new_pred' not cached
-- In either case, there is nothing new to do with new_ev
{-
     rewriteEvidence old_ev new_pred co
Main purpose: create new evidence for new_pred;
              unless new_pred is cached already
* Returns a new_ev : new_pred, with same wanted/given/derived flag as old_ev
* If old_ev was wanted, create a binding for old_ev, in terms of new_ev
* If old_ev was given, AND not cached, create a binding for new_ev, in terms of old_ev
* Returns Nothing if new_ev is already cached

        Old evidence    New predicate is               Return new evidence
        flavour                                        of same flavor
        -------------------------------------------------------------------
        Wanted          Already solved or in inert     Nothing
        or Derived      Not                            Just new_evidence

        Given           Already in inert               Nothing
                        Not                            Just new_evidence

Note [Rewriting with Refl]
~~~~~~~~~~~~~~~~~~~~~~~~~~
If the coercion is just reflexivity then you may re-use the same
variable.  But be careful!  Although the coercion is Refl, new_pred
may reflect the result of unification alpha := ty, so new_pred might
not _look_ the same as old_pred, and it's vital to proceed from now on
using new_pred.

qThe flattener preserves type synonyms, so they should appear in new_pred
as well as in old_pred; that is important for good error messages.
 -}


rewriteEvidence old_ev@(CtDerived {}) new_pred _co
  = -- If derived, don't even look at the coercion.
    -- This is very important, DO NOT re-order the equations for
    -- rewriteEvidence to put the isTcReflCo test first!
    -- Why?  Because for *Derived* constraints, c, the coercion, which
    -- was produced by flattening, may contain suspended calls to
    -- (ctEvExpr c), which fails for Derived constraints.
    -- (Getting this wrong caused #7384.)
    continueWith (old_ev { ctev_pred = new_pred })

rewriteEvidence old_ev new_pred co
  | isTcReflCo co -- See Note [Rewriting with Refl]
  = continueWith (old_ev { ctev_pred = new_pred })

rewriteEvidence ev@(CtGiven { ctev_evar = old_evar, ctev_loc = loc }) new_pred co
  = do { new_ev <- newGivenEvVar loc (new_pred, new_tm)
       ; continueWith new_ev }
  where
    -- mkEvCast optimises ReflCo
    new_tm = mkEvCast (evId old_evar) (tcDowngradeRole Representational
                                                       (ctEvRole ev)
                                                       (mkTcSymCo co))

rewriteEvidence ev@(CtWanted { ctev_dest = dest
                             , ctev_nosh = si
                             , ctev_loc = loc }) new_pred co
  = do { mb_new_ev <- newWanted_SI si loc new_pred
               -- The "_SI" variant ensures that we make a new Wanted
               -- with the same shadow-info as the existing one
               -- with the same shadow-info as the existing one (#16735)
       ; MASSERT( tcCoercionRole co == ctEvRole ev )
       ; setWantedEvTerm dest
            (mkEvCast (getEvExpr mb_new_ev)
                      (tcDowngradeRole Representational (ctEvRole ev) co))
       ; case mb_new_ev of
            Fresh  new_ev -> continueWith new_ev
            Cached _      -> stopWith ev "Cached wanted" }


rewriteEqEvidence :: CtEvidence         -- Old evidence :: olhs ~ orhs (not swapped)
                                        --              or orhs ~ olhs (swapped)
                  -> SwapFlag
                  -> TcType -> TcType   -- New predicate  nlhs ~ nrhs
                  -> TcCoercion         -- lhs_co, of type :: nlhs ~ olhs
                  -> TcCoercion         -- rhs_co, of type :: nrhs ~ orhs
                  -> TcS CtEvidence     -- Of type nlhs ~ nrhs
-- For (rewriteEqEvidence (Given g olhs orhs) False nlhs nrhs lhs_co rhs_co)
-- we generate
-- If not swapped
--      g1 : nlhs ~ nrhs = lhs_co ; g ; sym rhs_co
-- If 'swapped'
--      g1 : nlhs ~ nrhs = lhs_co ; Sym g ; sym rhs_co
--
-- For (Wanted w) we do the dual thing.
-- New  w1 : nlhs ~ nrhs
-- If not swapped
--      w : olhs ~ orhs = sym lhs_co ; w1 ; rhs_co
-- If swapped
--      w : orhs ~ olhs = sym rhs_co ; sym w1 ; lhs_co
--
-- It's all a form of rewwriteEvidence, specialised for equalities
rewriteEqEvidence old_ev swapped nlhs nrhs lhs_co rhs_co
  | CtDerived {} <- old_ev  -- Don't force the evidence for a Derived
  = return (old_ev { ctev_pred = new_pred })

  | NotSwapped <- swapped
  , isTcReflCo lhs_co      -- See Note [Rewriting with Refl]
  , isTcReflCo rhs_co
  = return (old_ev { ctev_pred = new_pred })

  | CtGiven { ctev_evar = old_evar } <- old_ev
  = do { let new_tm = evCoercion (lhs_co
                                  `mkTcTransCo` maybeSym swapped (mkTcCoVarCo old_evar)
                                  `mkTcTransCo` mkTcSymCo rhs_co)
       ; newGivenEvVar loc' (new_pred, new_tm) }

  | CtWanted { ctev_dest = dest, ctev_nosh = si } <- old_ev
  = case dest of
      HoleDest hole ->
        do { (new_ev, hole_co) <- newWantedEq_SI (ch_blocker hole) si loc'
                                                 (ctEvRole old_ev) nlhs nrhs
                   -- The "_SI" variant ensures that we make a new Wanted
                   -- with the same shadow-info as the existing one (#16735)
           ; let co = maybeSym swapped $
                      mkSymCo lhs_co
                      `mkTransCo` hole_co
                      `mkTransCo` rhs_co
           ; setWantedEq dest co
           ; traceTcS "rewriteEqEvidence" (vcat [ppr old_ev, ppr nlhs, ppr nrhs, ppr co])
           ; return new_ev }

      _ -> panic "rewriteEqEvidence"

#if __GLASGOW_HASKELL__ <= 810
  | otherwise
  = panic "rewriteEvidence"
#endif
  where
    new_pred = mkTcEqPredLikeEv old_ev nlhs nrhs

      -- equality is like a type class. Bumping the depth is necessary because
      -- of recursive newtypes, where "reducing" a newtype can actually make
      -- it bigger. See Note [Newtypes can blow the stack].
    loc      = ctEvLoc old_ev
    loc'     = bumpCtLocDepth loc

{- Note [unifyWanted and unifyDerived]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When decomposing equalities we often create new wanted constraints for
(s ~ t).  But what if s=t?  Then it'd be faster to return Refl right away.
Similar remarks apply for Derived.

Rather than making an equality test (which traverses the structure of the
type, perhaps fruitlessly), unifyWanted traverses the common structure, and
bales out when it finds a difference by creating a new Wanted constraint.
But where it succeeds in finding common structure, it just builds a coercion
to reflect it.
-}

unifyWanted :: CtLoc -> Role
            -> TcType -> TcType -> TcS Coercion
-- Return coercion witnessing the equality of the two types,
-- emitting new work equalities where necessary to achieve that
-- Very good short-cut when the two types are equal, or nearly so
-- See Note [unifyWanted and unifyDerived]
-- The returned coercion's role matches the input parameter
unifyWanted loc Phantom ty1 ty2
  = do { kind_co <- unifyWanted loc Nominal (tcTypeKind ty1) (tcTypeKind ty2)
       ; return (mkPhantomCo kind_co ty1 ty2) }

unifyWanted loc role orig_ty1 orig_ty2
  = go orig_ty1 orig_ty2
  where
    go ty1 ty2 | Just ty1' <- tcView ty1 = go ty1' ty2
    go ty1 ty2 | Just ty2' <- tcView ty2 = go ty1 ty2'

    go (FunTy _ w1 s1 t1) (FunTy _ w2 s2 t2)
      = do { co_s <- unifyWanted loc role s1 s2
           ; co_t <- unifyWanted loc role t1 t2
           ; co_w <- unifyWanted loc Nominal w1 w2
           ; return (mkFunCo role co_w co_s co_t) }
    go (TyConApp tc1 tys1) (TyConApp tc2 tys2)
      | tc1 == tc2, tys1 `equalLength` tys2
      , isInjectiveTyCon tc1 role -- don't look under newtypes at Rep equality
      = do { cos <- zipWith3M (unifyWanted loc)
                              (tyConRolesX role tc1) tys1 tys2
           ; return (mkTyConAppCo role tc1 cos) }

    go ty1@(TyVarTy tv) ty2
      = do { mb_ty <- isFilledMetaTyVar_maybe tv
           ; case mb_ty of
                Just ty1' -> go ty1' ty2
                Nothing   -> bale_out ty1 ty2}
    go ty1 ty2@(TyVarTy tv)
      = do { mb_ty <- isFilledMetaTyVar_maybe tv
           ; case mb_ty of
                Just ty2' -> go ty1 ty2'
                Nothing   -> bale_out ty1 ty2 }

    go ty1@(CoercionTy {}) (CoercionTy {})
      = return (mkReflCo role ty1) -- we just don't care about coercions!

    go ty1 ty2 = bale_out ty1 ty2

    bale_out ty1 ty2
       | ty1 `tcEqType` ty2 = return (mkTcReflCo role ty1)
        -- Check for equality; e.g. a ~ a, or (m a) ~ (m a)
       | otherwise = emitNewWantedEq loc role orig_ty1 orig_ty2

unifyDeriveds :: CtLoc -> [Role] -> [TcType] -> [TcType] -> TcS ()
-- See Note [unifyWanted and unifyDerived]
unifyDeriveds loc roles tys1 tys2 = zipWith3M_ (unify_derived loc) roles tys1 tys2

unifyDerived :: CtLoc -> Role -> Pair TcType -> TcS ()
-- See Note [unifyWanted and unifyDerived]
unifyDerived loc role (Pair ty1 ty2) = unify_derived loc role ty1 ty2

unify_derived :: CtLoc -> Role -> TcType -> TcType -> TcS ()
-- Create new Derived and put it in the work list
-- Should do nothing if the two types are equal
-- See Note [unifyWanted and unifyDerived]
unify_derived _   Phantom _        _        = return ()
unify_derived loc role    orig_ty1 orig_ty2
  = go orig_ty1 orig_ty2
  where
    go ty1 ty2 | Just ty1' <- tcView ty1 = go ty1' ty2
    go ty1 ty2 | Just ty2' <- tcView ty2 = go ty1 ty2'

    go (FunTy _ w1 s1 t1) (FunTy _ w2 s2 t2)
      = do { unify_derived loc role s1 s2
           ; unify_derived loc role t1 t2
           ; unify_derived loc role w1 w2 }
    go (TyConApp tc1 tys1) (TyConApp tc2 tys2)
      | tc1 == tc2, tys1 `equalLength` tys2
      , isInjectiveTyCon tc1 role
      = unifyDeriveds loc (tyConRolesX role tc1) tys1 tys2
    go ty1@(TyVarTy tv) ty2
      = do { mb_ty <- isFilledMetaTyVar_maybe tv
           ; case mb_ty of
                Just ty1' -> go ty1' ty2
                Nothing   -> bale_out ty1 ty2 }
    go ty1 ty2@(TyVarTy tv)
      = do { mb_ty <- isFilledMetaTyVar_maybe tv
           ; case mb_ty of
                Just ty2' -> go ty1 ty2'
                Nothing   -> bale_out ty1 ty2 }
    go ty1 ty2 = bale_out ty1 ty2

    bale_out ty1 ty2
       | ty1 `tcEqType` ty2 = return ()
        -- Check for equality; e.g. a ~ a, or (m a) ~ (m a)
       | otherwise = emitNewDerivedEq loc role orig_ty1 orig_ty2

maybeSym :: SwapFlag -> TcCoercion -> TcCoercion
maybeSym IsSwapped  co = mkTcSymCo co
maybeSym NotSwapped co = co