1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
|
{-# LANGUAGE CPP, DeriveFunctor, ViewPatterns, BangPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Tc.Solver.Flatten(
FlattenMode(..),
flatten, flattenKind, flattenArgsNom,
rewriteTyVar, flattenType,
unflattenWanteds
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Tc.Types
import GHC.Core.TyCo.Ppr ( pprTyVar )
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Utils.TcType
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep -- performs delicate algorithm on types
import GHC.Core.Coercion
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Tc.Solver.Monad as TcS
import GHC.Types.Basic( SwapFlag(..) )
import GHC.Utils.Misc
import GHC.Data.Bag
import Control.Monad
import GHC.Utils.Monad ( zipWith3M )
import Data.Foldable ( foldrM )
import Control.Arrow ( first )
{-
Note [The flattening story]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* A CFunEqCan is either of form
[G] <F xis> : F xis ~ fsk -- fsk is a FlatSkolTv
[W] x : F xis ~ fmv -- fmv is a FlatMetaTv
where
x is the witness variable
xis are function-free
fsk/fmv is a flatten skolem;
it is always untouchable (level 0)
* CFunEqCans can have any flavour: [G], [W], [WD] or [D]
* KEY INSIGHTS:
- A given flatten-skolem, fsk, is known a-priori to be equal to
F xis (the LHS), with <F xis> evidence. The fsk is still a
unification variable, but it is "owned" by its CFunEqCan, and
is filled in (unflattened) only by unflattenGivens.
- A unification flatten-skolem, fmv, stands for the as-yet-unknown
type to which (F xis) will eventually reduce. It is filled in
- All fsk/fmv variables are "untouchable". To make it simple to test,
we simply give them TcLevel=0. This means that in a CTyVarEq, say,
fmv ~ Int
we NEVER unify fmv.
- A unification flatten-skolem, fmv, ONLY gets unified when either
a) The CFunEqCan takes a step, using an axiom
b) By unflattenWanteds
They are never unified in any other form of equality.
For example [W] ffmv ~ Int is stuck; it does not unify with fmv.
* We *never* substitute in the RHS (i.e. the fsk/fmv) of a CFunEqCan.
That would destroy the invariant about the shape of a CFunEqCan,
and it would risk wanted/wanted interactions. The only way we
learn information about fsk is when the CFunEqCan takes a step.
However we *do* substitute in the LHS of a CFunEqCan (else it
would never get to fire!)
* Unflattening:
- We unflatten Givens when leaving their scope (see unflattenGivens)
- We unflatten Wanteds at the end of each attempt to simplify the
wanteds; see unflattenWanteds, called from solveSimpleWanteds.
* Ownership of fsk/fmv. Each canonical [G], [W], or [WD]
CFunEqCan x : F xis ~ fsk/fmv
"owns" a distinct evidence variable x, and flatten-skolem fsk/fmv.
Why? We make a fresh fsk/fmv when the constraint is born;
and we never rewrite the RHS of a CFunEqCan.
In contrast a [D] CFunEqCan /shares/ its fmv with its partner [W],
but does not "own" it. If we reduce a [D] F Int ~ fmv, where
say type instance F Int = ty, then we don't discharge fmv := ty.
Rather we simply generate [D] fmv ~ ty (in GHC.Tc.Solver.Interact.reduce_top_fun_eq,
and dischargeFmv)
* Inert set invariant: if F xis1 ~ fsk1, F xis2 ~ fsk2
then xis1 /= xis2
i.e. at most one CFunEqCan with a particular LHS
* Flattening a type (F xis):
- If we are flattening in a Wanted/Derived constraint
then create new [W] x : F xis ~ fmv
else create new [G] x : F xis ~ fsk
with fresh evidence variable x and flatten-skolem fsk/fmv
- Add it to the work list
- Replace (F xis) with fsk/fmv in the type you are flattening
- You can also add the CFunEqCan to the "flat cache", which
simply keeps track of all the function applications you
have flattened.
- If (F xis) is in the cache already, just
use its fsk/fmv and evidence x, and emit nothing.
- No need to substitute in the flat-cache. It's not the end
of the world if we start with, say (F alpha ~ fmv1) and
(F Int ~ fmv2) and then find alpha := Int. Athat will
simply give rise to fmv1 := fmv2 via [Interacting rule] below
* Canonicalising a CFunEqCan [G/W] x : F xis ~ fsk/fmv
- Flatten xis (to substitute any tyvars; there are already no functions)
cos :: xis ~ flat_xis
- New wanted x2 :: F flat_xis ~ fsk/fmv
- Add new wanted to flat cache
- Discharge x = F cos ; x2
* [Interacting rule]
(inert) [W] x1 : F tys ~ fmv1
(work item) [W] x2 : F tys ~ fmv2
Just solve one from the other:
x2 := x1
fmv2 := fmv1
This just unites the two fsks into one.
Always solve given from wanted if poss.
* For top-level reductions, see Note [Top-level reductions for type functions]
in GHC.Tc.Solver.Interact
Why given-fsks, alone, doesn't work
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Could we get away with only flatten meta-tyvars, with no flatten-skolems? No.
[W] w : alpha ~ [F alpha Int]
---> flatten
w = ...w'...
[W] w' : alpha ~ [fsk]
[G] <F alpha Int> : F alpha Int ~ fsk
--> unify (no occurs check)
alpha := [fsk]
But since fsk = F alpha Int, this is really an occurs check error. If
that is all we know about alpha, we will succeed in constraint
solving, producing a program with an infinite type.
Even if we did finally get (g : fsk ~ Bool) by solving (F alpha Int ~ fsk)
using axiom, zonking would not see it, so (x::alpha) sitting in the
tree will get zonked to an infinite type. (Zonking always only does
refl stuff.)
Why flatten-meta-vars, alone doesn't work
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Look at Simple13, with unification-fmvs only
[G] g : a ~ [F a]
---> Flatten given
g' = g;[x]
[G] g' : a ~ [fmv]
[W] x : F a ~ fmv
--> subst a in x
g' = g;[x]
x = F g' ; x2
[W] x2 : F [fmv] ~ fmv
And now we have an evidence cycle between g' and x!
If we used a given instead (ie current story)
[G] g : a ~ [F a]
---> Flatten given
g' = g;[x]
[G] g' : a ~ [fsk]
[G] <F a> : F a ~ fsk
---> Substitute for a
[G] g' : a ~ [fsk]
[G] F (sym g'); <F a> : F [fsk] ~ fsk
Why is it right to treat fmv's differently to ordinary unification vars?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
f :: forall a. a -> a -> Bool
g :: F Int -> F Int -> Bool
Consider
f (x:Int) (y:Bool)
This gives alpha~Int, alpha~Bool. There is an inconsistency,
but really only one error. SherLoc may tell you which location
is most likely, based on other occurrences of alpha.
Consider
g (x:Int) (y:Bool)
Here we get (F Int ~ Int, F Int ~ Bool), which flattens to
(fmv ~ Int, fmv ~ Bool)
But there are really TWO separate errors.
** We must not complain about Int~Bool. **
Moreover these two errors could arise in entirely unrelated parts of
the code. (In the alpha case, there must be *some* connection (eg
v:alpha in common envt).)
Note [Unflattening can force the solver to iterate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Look at #10340:
type family Any :: * -- No instances
get :: MonadState s m => m s
instance MonadState s (State s) where ...
foo :: State Any Any
foo = get
For 'foo' we instantiate 'get' at types mm ss
[WD] MonadState ss mm, [WD] mm ss ~ State Any Any
Flatten, and decompose
[WD] MonadState ss mm, [WD] Any ~ fmv
[WD] mm ~ State fmv, [WD] fmv ~ ss
Unify mm := State fmv:
[WD] MonadState ss (State fmv)
[WD] Any ~ fmv, [WD] fmv ~ ss
Now we are stuck; the instance does not match!! So unflatten:
fmv := Any
ss := Any (*)
[WD] MonadState Any (State Any)
The unification (*) represents progress, so we must do a second
round of solving; this time it succeeds. This is done by the 'go'
loop in solveSimpleWanteds.
This story does not feel right but it's the best I can do; and the
iteration only happens in pretty obscure circumstances.
************************************************************************
* *
* Examples
Here is a long series of examples I had to work through
* *
************************************************************************
Simple20
~~~~~~~~
axiom F [a] = [F a]
[G] F [a] ~ a
-->
[G] fsk ~ a
[G] [F a] ~ fsk (nc)
-->
[G] F a ~ fsk2
[G] fsk ~ [fsk2]
[G] fsk ~ a
-->
[G] F a ~ fsk2
[G] a ~ [fsk2]
[G] fsk ~ a
----------------------------------------
indexed-types/should_compile/T44984
[W] H (F Bool) ~ H alpha
[W] alpha ~ F Bool
-->
F Bool ~ fmv0
H fmv0 ~ fmv1
H alpha ~ fmv2
fmv1 ~ fmv2
fmv0 ~ alpha
flatten
~~~~~~~
fmv0 := F Bool
fmv1 := H (F Bool)
fmv2 := H alpha
alpha := F Bool
plus
fmv1 ~ fmv2
But these two are equal under the above assumptions.
Solve by Refl.
--- under plan B, namely solve fmv1:=fmv2 eagerly ---
[W] H (F Bool) ~ H alpha
[W] alpha ~ F Bool
-->
F Bool ~ fmv0
H fmv0 ~ fmv1
H alpha ~ fmv2
fmv1 ~ fmv2
fmv0 ~ alpha
-->
F Bool ~ fmv0
H fmv0 ~ fmv1
H alpha ~ fmv2 fmv2 := fmv1
fmv0 ~ alpha
flatten
fmv0 := F Bool
fmv1 := H fmv0 = H (F Bool)
retain H alpha ~ fmv2
because fmv2 has been filled
alpha := F Bool
----------------------------
indexed-types/should_failt/T4179
after solving
[W] fmv_1 ~ fmv_2
[W] A3 (FCon x) ~ fmv_1 (CFunEqCan)
[W] A3 (x (aoa -> fmv_2)) ~ fmv_2 (CFunEqCan)
----------------------------------------
indexed-types/should_fail/T7729a
a) [W] BasePrimMonad (Rand m) ~ m1
b) [W] tt m1 ~ BasePrimMonad (Rand m)
---> process (b) first
BasePrimMonad (Ramd m) ~ fmv_atH
fmv_atH ~ tt m1
---> now process (a)
m1 ~ s_atH ~ tt m1 -- An obscure occurs check
----------------------------------------
typecheck/TcTypeNatSimple
Original constraint
[W] x + y ~ x + alpha (non-canonical)
==>
[W] x + y ~ fmv1 (CFunEqCan)
[W] x + alpha ~ fmv2 (CFuneqCan)
[W] fmv1 ~ fmv2 (CTyEqCan)
(sigh)
----------------------------------------
indexed-types/should_fail/GADTwrong1
[G] Const a ~ ()
==> flatten
[G] fsk ~ ()
work item: Const a ~ fsk
==> fire top rule
[G] fsk ~ ()
work item fsk ~ ()
Surely the work item should rewrite to () ~ ()? Well, maybe not;
it'a very special case. More generally, our givens look like
F a ~ Int, where (F a) is not reducible.
----------------------------------------
indexed_types/should_fail/T8227:
Why using a different can-rewrite rule in CFunEqCan heads
does not work.
Assuming NOT rewriting wanteds with wanteds
Inert: [W] fsk_aBh ~ fmv_aBk -> fmv_aBk
[W] fmv_aBk ~ fsk_aBh
[G] Scalar fsk_aBg ~ fsk_aBh
[G] V a ~ f_aBg
Worklist includes [W] Scalar fmv_aBi ~ fmv_aBk
fmv_aBi, fmv_aBk are flatten unification variables
Work item: [W] V fsk_aBh ~ fmv_aBi
Note that the inert wanteds are cyclic, because we do not rewrite
wanteds with wanteds.
Then we go into a loop when normalise the work-item, because we
use rewriteOrSame on the argument of V.
Conclusion: Don't make canRewrite context specific; instead use
[W] a ~ ty to rewrite a wanted iff 'a' is a unification variable.
----------------------------------------
Here is a somewhat similar case:
type family G a :: *
blah :: (G a ~ Bool, Eq (G a)) => a -> a
blah = error "urk"
foo x = blah x
For foo we get
[W] Eq (G a), G a ~ Bool
Flattening
[W] G a ~ fmv, Eq fmv, fmv ~ Bool
We can't simplify away the Eq Bool unless we substitute for fmv.
Maybe that doesn't matter: we would still be left with unsolved
G a ~ Bool.
--------------------------
#9318 has a very simple program leading to
[W] F Int ~ Int
[W] F Int ~ Bool
We don't want to get "Error Int~Bool". But if fmv's can rewrite
wanteds, we will
[W] fmv ~ Int
[W] fmv ~ Bool
--->
[W] Int ~ Bool
************************************************************************
* *
* FlattenEnv & FlatM
* The flattening environment & monad
* *
************************************************************************
-}
type FlatWorkListRef = TcRef [Ct] -- See Note [The flattening work list]
data FlattenEnv
= FE { fe_mode :: !FlattenMode
, fe_loc :: CtLoc -- See Note [Flattener CtLoc]
-- unbanged because it's bogus in rewriteTyVar
, fe_flavour :: !CtFlavour
, fe_eq_rel :: !EqRel -- See Note [Flattener EqRels]
, fe_work :: !FlatWorkListRef } -- See Note [The flattening work list]
data FlattenMode -- Postcondition for all three: inert wrt the type substitution
= FM_FlattenAll -- Postcondition: function-free
| FM_SubstOnly -- See Note [Flattening under a forall]
-- | FM_Avoid TcTyVar Bool -- See Note [Lazy flattening]
-- -- Postcondition:
-- -- * tyvar is only mentioned in result under a rigid path
-- -- e.g. [a] is ok, but F a won't happen
-- -- * If flat_top is True, top level is not a function application
-- -- (but under type constructors is ok e.g. [F a])
instance Outputable FlattenMode where
ppr FM_FlattenAll = text "FM_FlattenAll"
ppr FM_SubstOnly = text "FM_SubstOnly"
eqFlattenMode :: FlattenMode -> FlattenMode -> Bool
eqFlattenMode FM_FlattenAll FM_FlattenAll = True
eqFlattenMode FM_SubstOnly FM_SubstOnly = True
-- FM_Avoid tv1 b1 `eq` FM_Avoid tv2 b2 = tv1 == tv2 && b1 == b2
eqFlattenMode _ _ = False
-- | The 'FlatM' monad is a wrapper around 'TcS' with the following
-- extra capabilities: (1) it offers access to a 'FlattenEnv';
-- and (2) it maintains the flattening worklist.
-- See Note [The flattening work list].
newtype FlatM a
= FlatM { runFlatM :: FlattenEnv -> TcS a }
deriving (Functor)
instance Monad FlatM where
m >>= k = FlatM $ \env ->
do { a <- runFlatM m env
; runFlatM (k a) env }
instance Applicative FlatM where
pure x = FlatM $ const (pure x)
(<*>) = ap
liftTcS :: TcS a -> FlatM a
liftTcS thing_inside
= FlatM $ const thing_inside
emitFlatWork :: Ct -> FlatM ()
-- See Note [The flattening work list]
emitFlatWork ct = FlatM $ \env -> updTcRef (fe_work env) (ct :)
-- convenient wrapper when you have a CtEvidence describing
-- the flattening operation
runFlattenCtEv :: FlattenMode -> CtEvidence -> FlatM a -> TcS a
runFlattenCtEv mode ev
= runFlatten mode (ctEvLoc ev) (ctEvFlavour ev) (ctEvEqRel ev)
-- Run thing_inside (which does flattening), and put all
-- the work it generates onto the main work list
-- See Note [The flattening work list]
runFlatten :: FlattenMode -> CtLoc -> CtFlavour -> EqRel -> FlatM a -> TcS a
runFlatten mode loc flav eq_rel thing_inside
= do { flat_ref <- newTcRef []
; let fmode = FE { fe_mode = mode
, fe_loc = bumpCtLocDepth loc
-- See Note [Flatten when discharging CFunEqCan]
, fe_flavour = flav
, fe_eq_rel = eq_rel
, fe_work = flat_ref }
; res <- runFlatM thing_inside fmode
; new_flats <- readTcRef flat_ref
; updWorkListTcS (add_flats new_flats)
; return res }
where
add_flats new_flats wl
= wl { wl_funeqs = add_funeqs new_flats (wl_funeqs wl) }
add_funeqs [] wl = wl
add_funeqs (f:fs) wl = add_funeqs fs (f:wl)
-- add_funeqs fs ws = reverse fs ++ ws
-- e.g. add_funeqs [f1,f2,f3] [w1,w2,w3,w4]
-- = [f3,f2,f1,w1,w2,w3,w4]
traceFlat :: String -> SDoc -> FlatM ()
traceFlat herald doc = liftTcS $ traceTcS herald doc
{-# INLINE traceFlat #-} -- see Note [INLINE conditional tracing utilities]
getFlatEnvField :: (FlattenEnv -> a) -> FlatM a
getFlatEnvField accessor
= FlatM $ \env -> return (accessor env)
getEqRel :: FlatM EqRel
getEqRel = getFlatEnvField fe_eq_rel
getRole :: FlatM Role
getRole = eqRelRole <$> getEqRel
getFlavour :: FlatM CtFlavour
getFlavour = getFlatEnvField fe_flavour
getFlavourRole :: FlatM CtFlavourRole
getFlavourRole
= do { flavour <- getFlavour
; eq_rel <- getEqRel
; return (flavour, eq_rel) }
getMode :: FlatM FlattenMode
getMode = getFlatEnvField fe_mode
getLoc :: FlatM CtLoc
getLoc = getFlatEnvField fe_loc
checkStackDepth :: Type -> FlatM ()
checkStackDepth ty
= do { loc <- getLoc
; liftTcS $ checkReductionDepth loc ty }
-- | Change the 'EqRel' in a 'FlatM'.
setEqRel :: EqRel -> FlatM a -> FlatM a
setEqRel new_eq_rel thing_inside
= FlatM $ \env ->
if new_eq_rel == fe_eq_rel env
then runFlatM thing_inside env
else runFlatM thing_inside (env { fe_eq_rel = new_eq_rel })
-- | Change the 'FlattenMode' in a 'FlattenEnv'.
setMode :: FlattenMode -> FlatM a -> FlatM a
setMode new_mode thing_inside
= FlatM $ \env ->
if new_mode `eqFlattenMode` fe_mode env
then runFlatM thing_inside env
else runFlatM thing_inside (env { fe_mode = new_mode })
-- | Make sure that flattening actually produces a coercion (in other
-- words, make sure our flavour is not Derived)
-- Note [No derived kind equalities]
noBogusCoercions :: FlatM a -> FlatM a
noBogusCoercions thing_inside
= FlatM $ \env ->
-- No new thunk is made if the flavour hasn't changed (note the bang).
let !env' = case fe_flavour env of
Derived -> env { fe_flavour = Wanted WDeriv }
_ -> env
in
runFlatM thing_inside env'
bumpDepth :: FlatM a -> FlatM a
bumpDepth (FlatM thing_inside)
= FlatM $ \env -> do
-- bumpDepth can be called a lot during flattening so we force the
-- new env to avoid accumulating thunks.
{ let !env' = env { fe_loc = bumpCtLocDepth (fe_loc env) }
; thing_inside env' }
{-
Note [The flattening work list]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The "flattening work list", held in the fe_work field of FlattenEnv,
is a list of CFunEqCans generated during flattening. The key idea
is this. Consider flattening (Eq (F (G Int) (H Bool)):
* The flattener recursively calls itself on sub-terms before building
the main term, so it will encounter the terms in order
G Int
H Bool
F (G Int) (H Bool)
flattening to sub-goals
w1: G Int ~ fuv0
w2: H Bool ~ fuv1
w3: F fuv0 fuv1 ~ fuv2
* Processing w3 first is BAD, because we can't reduce i t,so it'll
get put into the inert set, and later kicked out when w1, w2 are
solved. In #9872 this led to inert sets containing hundreds
of suspended calls.
* So we want to process w1, w2 first.
* So you might think that we should just use a FIFO deque for the work-list,
so that putting adding goals in order w1,w2,w3 would mean we processed
w1 first.
* BUT suppose we have 'type instance G Int = H Char'. Then processing
w1 leads to a new goal
w4: H Char ~ fuv0
We do NOT want to put that on the far end of a deque! Instead we want
to put it at the *front* of the work-list so that we continue to work
on it.
So the work-list structure is this:
* The wl_funeqs (in TcS) is a LIFO stack; we push new goals (such as w4) on
top (extendWorkListFunEq), and take new work from the top
(selectWorkItem).
* When flattening, emitFlatWork pushes new flattening goals (like
w1,w2,w3) onto the flattening work list, fe_work, another
push-down stack.
* When we finish flattening, we *reverse* the fe_work stack
onto the wl_funeqs stack (which brings w1 to the top).
The function runFlatten initialises the fe_work stack, and reverses
it onto wl_fun_eqs at the end.
Note [Flattener EqRels]
~~~~~~~~~~~~~~~~~~~~~~~
When flattening, we need to know which equality relation -- nominal
or representation -- we should be respecting. The only difference is
that we rewrite variables by representational equalities when fe_eq_rel
is ReprEq, and that we unwrap newtypes when flattening w.r.t.
representational equality.
Note [Flattener CtLoc]
~~~~~~~~~~~~~~~~~~~~~~
The flattener does eager type-family reduction.
Type families might loop, and we
don't want GHC to do so. A natural solution is to have a bounded depth
to these processes. A central difficulty is that such a solution isn't
quite compositional. For example, say it takes F Int 10 steps to get to Bool.
How many steps does it take to get from F Int -> F Int to Bool -> Bool?
10? 20? What about getting from Const Char (F Int) to Char? 11? 1? Hard to
know and hard to track. So, we punt, essentially. We store a CtLoc in
the FlattenEnv and just update the environment when recurring. In the
TyConApp case, where there may be multiple type families to flatten,
we just copy the current CtLoc into each branch. If any branch hits the
stack limit, then the whole thing fails.
A consequence of this is that setting the stack limits appropriately
will be essentially impossible. So, the official recommendation if a
stack limit is hit is to disable the check entirely. Otherwise, there
will be baffling, unpredictable errors.
Note [Lazy flattening]
~~~~~~~~~~~~~~~~~~~~~~
The idea of FM_Avoid mode is to flatten less aggressively. If we have
a ~ [F Int]
there seems to be no great merit in lifting out (F Int). But if it was
a ~ [G a Int]
then we *do* want to lift it out, in case (G a Int) reduces to Bool, say,
which gets rid of the occurs-check problem. (For the flat_top Bool, see
comments above and at call sites.)
HOWEVER, the lazy flattening actually seems to make type inference go
*slower*, not faster. perf/compiler/T3064 is a case in point; it gets
*dramatically* worse with FM_Avoid. I think it may be because
floating the types out means we normalise them, and that often makes
them smaller and perhaps allows more re-use of previously solved
goals. But to be honest I'm not absolutely certain, so I am leaving
FM_Avoid in the code base. What I'm removing is the unique place
where it is *used*, namely in GHC.Tc.Solver.Canonical.canEqTyVar.
See also Note [Conservative unification check] in GHC.Tc.Utils.Unify, which gives
other examples where lazy flattening caused problems.
Bottom line: FM_Avoid is unused for now (Nov 14).
Note: T5321Fun got faster when I disabled FM_Avoid
T5837 did too, but it's pathological anyway
Note [Phantoms in the flattener]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
data Proxy p = Proxy
and we're flattening (Proxy ty) w.r.t. ReprEq. Then, we know that `ty`
is really irrelevant -- it will be ignored when solving for representational
equality later on. So, we omit flattening `ty` entirely. This may
violate the expectation of "xi"s for a bit, but the canonicaliser will
soon throw out the phantoms when decomposing a TyConApp. (Or, the
canonicaliser will emit an insoluble, in which case the unflattened version
yields a better error message anyway.)
Note [No derived kind equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A kind-level coercion can appear in types, via mkCastTy. So, whenever
we are generating a coercion in a dependent context (in other words,
in a kind) we need to make sure that our flavour is never Derived
(as Derived constraints have no evidence). The noBogusCoercions function
changes the flavour from Derived just for this purpose.
-}
{- *********************************************************************
* *
* Externally callable flattening functions *
* *
* They are all wrapped in runFlatten, so their *
* flattening work gets put into the work list *
* *
*********************************************************************
Note [rewriteTyVar]
~~~~~~~~~~~~~~~~~~~~~~
Suppose we have an injective function F and
inert_funeqs: F t1 ~ fsk1
F t2 ~ fsk2
inert_eqs: fsk1 ~ [a]
a ~ Int
fsk2 ~ [Int]
We never rewrite the RHS (cc_fsk) of a CFunEqCan. But we /do/ want to get the
[D] t1 ~ t2 from the injectiveness of F. So we flatten cc_fsk of CFunEqCans
when trying to find derived equalities arising from injectivity.
-}
-- | See Note [Flattening].
-- If (xi, co) <- flatten mode ev ty, then co :: xi ~r ty
-- where r is the role in @ev@. If @mode@ is 'FM_FlattenAll',
-- then 'xi' is almost function-free (Note [Almost function-free]
-- in "GHC.Tc.Types").
flatten :: FlattenMode -> CtEvidence -> TcType
-> TcS (Xi, TcCoercion)
flatten mode ev ty
= do { traceTcS "flatten {" (ppr mode <+> ppr ty)
; (ty', co) <- runFlattenCtEv mode ev (flatten_one ty)
; traceTcS "flatten }" (ppr ty')
; return (ty', co) }
-- Apply the inert set as an *inert generalised substitution* to
-- a variable, zonking along the way.
-- See Note [inert_eqs: the inert equalities] in GHC.Tc.Solver.Monad.
-- Equivalently, this flattens the variable with respect to NomEq
-- in a Derived constraint. (Why Derived? Because Derived allows the
-- most about of rewriting.) Returns no coercion, because we're
-- using Derived constraints.
-- See Note [rewriteTyVar]
rewriteTyVar :: TcTyVar -> TcS TcType
rewriteTyVar tv
= do { traceTcS "rewriteTyVar {" (ppr tv)
; (ty, _) <- runFlatten FM_SubstOnly fake_loc Derived NomEq $
flattenTyVar tv
; traceTcS "rewriteTyVar }" (ppr ty)
; return ty }
where
fake_loc = pprPanic "rewriteTyVar used a CtLoc" (ppr tv)
-- specialized to flattening kinds: never Derived, always Nominal
-- See Note [No derived kind equalities]
-- See Note [Flattening]
flattenKind :: CtLoc -> CtFlavour -> TcType -> TcS (Xi, TcCoercionN)
flattenKind loc flav ty
= do { traceTcS "flattenKind {" (ppr flav <+> ppr ty)
; let flav' = case flav of
Derived -> Wanted WDeriv -- the WDeriv/WOnly choice matters not
_ -> flav
; (ty', co) <- runFlatten FM_FlattenAll loc flav' NomEq (flatten_one ty)
; traceTcS "flattenKind }" (ppr ty' $$ ppr co) -- co is never a panic
; return (ty', co) }
-- See Note [Flattening]
flattenArgsNom :: CtEvidence -> TyCon -> [TcType] -> TcS ([Xi], [TcCoercion], TcCoercionN)
-- Externally-callable, hence runFlatten
-- Flatten a vector of types all at once; in fact they are
-- always the arguments of type family or class, so
-- ctEvFlavour ev = Nominal
-- and we want to flatten all at nominal role
-- The kind passed in is the kind of the type family or class, call it T
-- The last coercion returned has type (tcTypeKind(T xis) ~N tcTypeKind(T tys))
--
-- For Derived constraints the returned coercion may be undefined
-- because flattening may use a Derived equality ([D] a ~ ty)
flattenArgsNom ev tc tys
= do { traceTcS "flatten_args {" (vcat (map ppr tys))
; (tys', cos, kind_co)
<- runFlattenCtEv FM_FlattenAll ev (flatten_args_tc tc (repeat Nominal) tys)
; traceTcS "flatten }" (vcat (map ppr tys'))
; return (tys', cos, kind_co) }
-- | Flatten a type w.r.t. nominal equality. This is useful to rewrite
-- a type w.r.t. any givens. It does not do type-family reduction. This
-- will never emit new constraints. Call this when the inert set contains
-- only givens.
flattenType :: CtLoc -> TcType -> TcS TcType
flattenType loc ty
-- More info about FM_SubstOnly in Note [Holes] in GHC.Tc.Types.Constraint
= do { (xi, _) <- runFlatten FM_SubstOnly loc Given NomEq $
flatten_one ty
-- use Given flavor so that it is rewritten
-- only w.r.t. Givens, never Wanteds/Deriveds
-- (Shouldn't matter, if only Givens are present
-- anyway)
; return xi }
{- *********************************************************************
* *
* The main flattening functions
* *
********************************************************************* -}
{- Note [Flattening]
~~~~~~~~~~~~~~~~~~~~
flatten ty ==> (xi, co)
where
xi has no type functions, unless they appear under ForAlls
has no skolems that are mapped in the inert set
has no filled-in metavariables
co :: xi ~ ty
Key invariants:
(F0) co :: xi ~ zonk(ty)
(F1) tcTypeKind(xi) succeeds and returns a fully zonked kind
(F2) tcTypeKind(xi) `eqType` zonk(tcTypeKind(ty))
Note that it is flatten's job to flatten *every type function it sees*.
flatten is only called on *arguments* to type functions, by canEqGiven.
Flattening also:
* zonks, removing any metavariables, and
* applies the substitution embodied in the inert set
The result of flattening is *almost function-free*. See
Note [Almost function-free] in GHC.Tc.Utils.
Because flattening zonks and the returned coercion ("co" above) is also
zonked, it's possible that (co :: xi ~ ty) isn't quite true. So, instead,
we can rely on this fact:
(F0) co :: xi ~ zonk(ty)
Note that the left-hand type of co is *always* precisely xi. The right-hand
type may or may not be ty, however: if ty has unzonked filled-in metavariables,
then the right-hand type of co will be the zonked version of ty.
It is for this reason that we
occasionally have to explicitly zonk, when (co :: xi ~ ty) is important
even before we zonk the whole program. For example, see the FTRNotFollowed
case in flattenTyVar.
Why have these invariants on flattening? Because we sometimes use tcTypeKind
during canonicalisation, and we want this kind to be zonked (e.g., see
GHC.Tc.Solver.Canonical.canEqTyVar).
Flattening is always homogeneous. That is, the kind of the result of flattening is
always the same as the kind of the input, modulo zonking. More formally:
(F2) tcTypeKind(xi) `eqType` zonk(tcTypeKind(ty))
This invariant means that the kind of a flattened type might not itself be flat.
Recall that in comments we use alpha[flat = ty] to represent a
flattening skolem variable alpha which has been generated to stand in
for ty.
----- Example of flattening a constraint: ------
flatten (List (F (G Int))) ==> (xi, cc)
where
xi = List alpha
cc = { G Int ~ beta[flat = G Int],
F beta ~ alpha[flat = F beta] }
Here
* alpha and beta are 'flattening skolem variables'.
* All the constraints in cc are 'given', and all their coercion terms
are the identity.
NB: Flattening Skolems only occur in canonical constraints, which
are never zonked, so we don't need to worry about zonking doing
accidental unflattening.
Note that we prefer to leave type synonyms unexpanded when possible,
so when the flattener encounters one, it first asks whether its
transitive expansion contains any type function applications. If so,
it expands the synonym and proceeds; if not, it simply returns the
unexpanded synonym.
Note [flatten_args performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In programs with lots of type-level evaluation, flatten_args becomes
part of a tight loop. For example, see test perf/compiler/T9872a, which
calls flatten_args a whopping 7,106,808 times. It is thus important
that flatten_args be efficient.
Performance testing showed that the current implementation is indeed
efficient. It's critically important that zipWithAndUnzipM be
specialized to TcS, and it's also quite helpful to actually `inline`
it. On test T9872a, here are the allocation stats (Dec 16, 2014):
* Unspecialized, uninlined: 8,472,613,440 bytes allocated in the heap
* Specialized, uninlined: 6,639,253,488 bytes allocated in the heap
* Specialized, inlined: 6,281,539,792 bytes allocated in the heap
To improve performance even further, flatten_args_nom is split off
from flatten_args, as nominal equality is the common case. This would
be natural to write using mapAndUnzipM, but even inlined, that function
is not as performant as a hand-written loop.
* mapAndUnzipM, inlined: 7,463,047,432 bytes allocated in the heap
* hand-written recursion: 5,848,602,848 bytes allocated in the heap
If you make any change here, pay close attention to the T9872{a,b,c} tests
and T5321Fun.
If we need to make this yet more performant, a possible way forward is to
duplicate the flattener code for the nominal case, and make that case
faster. This doesn't seem quite worth it, yet.
Note [flatten_exact_fam_app_fully performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The refactor of GRefl seems to cause performance trouble for T9872x:
the allocation of flatten_exact_fam_app_fully_performance
increased. See note [Generalized reflexive coercion] in
GHC.Core.TyCo.Rep for more information about GRefl and #15192 for the
current state.
The explicit pattern match in homogenise_result helps with T9872a, b, c.
Still, it increases the expected allocation of T9872d by ~2%.
TODO: a step-by-step replay of the refactor to analyze the performance.
-}
{-# INLINE flatten_args_tc #-}
flatten_args_tc
:: TyCon -- T
-> [Role] -- Role r
-> [Type] -- Arg types [t1,..,tn]
-> FlatM ( [Xi] -- List of flattened args [x1,..,xn]
-- 1-1 corresp with [t1,..,tn]
, [Coercion] -- List of arg coercions [co1,..,con]
-- 1-1 corresp with [t1,..,tn]
-- coi :: xi ~r ti
, CoercionN) -- Result coercion, rco
-- rco : (T t1..tn) ~N (T (x1 |> co1) .. (xn |> con))
flatten_args_tc tc = flatten_args all_bndrs any_named_bndrs inner_ki emptyVarSet
-- NB: TyCon kinds are always closed
where
(bndrs, named)
= ty_con_binders_ty_binders' (tyConBinders tc)
-- it's possible that the result kind has arrows (for, e.g., a type family)
-- so we must split it
(inner_bndrs, inner_ki, inner_named) = split_pi_tys' (tyConResKind tc)
!all_bndrs = bndrs `chkAppend` inner_bndrs
!any_named_bndrs = named || inner_named
-- NB: Those bangs there drop allocations in T9872{a,c,d} by 8%.
{-# INLINE flatten_args #-}
flatten_args :: [TyCoBinder] -> Bool -- Binders, and True iff any of them are
-- named.
-> Kind -> TcTyCoVarSet -- function kind; kind's free vars
-> [Role] -> [Type] -- these are in 1-to-1 correspondence
-> FlatM ([Xi], [Coercion], CoercionN)
-- Coercions :: Xi ~ Type, at roles given
-- Third coercion :: tcTypeKind(fun xis) ~N tcTypeKind(fun tys)
-- That is, the third coercion relates the kind of some function (whose kind is
-- passed as the first parameter) instantiated at xis to the kind of that
-- function instantiated at the tys. This is useful in keeping flattening
-- homoegeneous. The list of roles must be at least as long as the list of
-- types.
flatten_args orig_binders
any_named_bndrs
orig_inner_ki
orig_fvs
orig_roles
orig_tys
= if any_named_bndrs
then flatten_args_slow orig_binders
orig_inner_ki
orig_fvs
orig_roles
orig_tys
else flatten_args_fast orig_binders orig_inner_ki orig_roles orig_tys
{-# INLINE flatten_args_fast #-}
-- | fast path flatten_args, in which none of the binders are named and
-- therefore we can avoid tracking a lifting context.
-- There are many bang patterns in here. It's been observed that they
-- greatly improve performance of an optimized build.
-- The T9872 test cases are good witnesses of this fact.
flatten_args_fast :: [TyCoBinder]
-> Kind
-> [Role]
-> [Type]
-> FlatM ([Xi], [Coercion], CoercionN)
flatten_args_fast orig_binders orig_inner_ki orig_roles orig_tys
= fmap finish (iterate orig_tys orig_roles orig_binders)
where
iterate :: [Type]
-> [Role]
-> [TyCoBinder]
-> FlatM ([Xi], [Coercion], [TyCoBinder])
iterate (ty:tys) (role:roles) (_:binders) = do
(xi, co) <- go role ty
(xis, cos, binders) <- iterate tys roles binders
pure (xi : xis, co : cos, binders)
iterate [] _ binders = pure ([], [], binders)
iterate _ _ _ = pprPanic
"flatten_args wandered into deeper water than usual" (vcat [])
-- This debug information is commented out because leaving it in
-- causes a ~2% increase in allocations in T9872{a,c,d}.
{-
(vcat [ppr orig_binders,
ppr orig_inner_ki,
ppr (take 10 orig_roles), -- often infinite!
ppr orig_tys])
-}
{-# INLINE go #-}
go :: Role
-> Type
-> FlatM (Xi, Coercion)
go role ty
= case role of
-- In the slow path we bind the Xi and Coercion from the recursive
-- call and then use it such
--
-- let kind_co = mkTcSymCo $ mkReflCo Nominal (tyBinderType binder)
-- casted_xi = xi `mkCastTy` kind_co
-- casted_co = xi |> kind_co ~r xi ; co
--
-- but this isn't necessary:
-- mkTcSymCo (Refl a b) = Refl a b,
-- mkCastTy x (Refl _ _) = x
-- mkTcGReflLeftCo _ ty (Refl _ _) `mkTransCo` co = co
--
-- Also, no need to check isAnonTyCoBinder or isNamedBinder, since
-- we've already established that they're all anonymous.
Nominal -> setEqRel NomEq $ flatten_one ty
Representational -> setEqRel ReprEq $ flatten_one ty
Phantom -> -- See Note [Phantoms in the flattener]
do { ty <- liftTcS $ zonkTcType ty
; return (ty, mkReflCo Phantom ty) }
{-# INLINE finish #-}
finish :: ([Xi], [Coercion], [TyCoBinder]) -> ([Xi], [Coercion], CoercionN)
finish (xis, cos, binders) = (xis, cos, kind_co)
where
final_kind = mkPiTys binders orig_inner_ki
kind_co = mkNomReflCo final_kind
{-# INLINE flatten_args_slow #-}
-- | Slow path, compared to flatten_args_fast, because this one must track
-- a lifting context.
flatten_args_slow :: [TyCoBinder] -> Kind -> TcTyCoVarSet
-> [Role] -> [Type]
-> FlatM ([Xi], [Coercion], CoercionN)
flatten_args_slow binders inner_ki fvs roles tys
-- Arguments used dependently must be flattened with proper coercions, but
-- we're not guaranteed to get a proper coercion when flattening with the
-- "Derived" flavour. So we must call noBogusCoercions when flattening arguments
-- corresponding to binders that are dependent. However, we might legitimately
-- have *more* arguments than binders, in the case that the inner_ki is a variable
-- that gets instantiated with a Π-type. We conservatively choose not to produce
-- bogus coercions for these, too. Note that this might miss an opportunity for
-- a Derived rewriting a Derived. The solution would be to generate evidence for
-- Deriveds, thus avoiding this whole noBogusCoercions idea. See also
-- Note [No derived kind equalities]
= do { flattened_args <- zipWith3M fl (map isNamedBinder binders ++ repeat True)
roles tys
; return (simplifyArgsWorker binders inner_ki fvs roles flattened_args) }
where
{-# INLINE fl #-}
fl :: Bool -- must we ensure to produce a real coercion here?
-- see comment at top of function
-> Role -> Type -> FlatM (Xi, Coercion)
fl True r ty = noBogusCoercions $ fl1 r ty
fl False r ty = fl1 r ty
{-# INLINE fl1 #-}
fl1 :: Role -> Type -> FlatM (Xi, Coercion)
fl1 Nominal ty
= setEqRel NomEq $
flatten_one ty
fl1 Representational ty
= setEqRel ReprEq $
flatten_one ty
fl1 Phantom ty
-- See Note [Phantoms in the flattener]
= do { ty <- liftTcS $ zonkTcType ty
; return (ty, mkReflCo Phantom ty) }
------------------
flatten_one :: TcType -> FlatM (Xi, Coercion)
-- Flatten a type to get rid of type function applications, returning
-- the new type-function-free type, and a collection of new equality
-- constraints. See Note [Flattening] for more detail.
--
-- Postcondition: Coercion :: Xi ~ TcType
-- The role on the result coercion matches the EqRel in the FlattenEnv
flatten_one xi@(LitTy {})
= do { role <- getRole
; return (xi, mkReflCo role xi) }
flatten_one (TyVarTy tv)
= flattenTyVar tv
flatten_one (AppTy ty1 ty2)
= flatten_app_tys ty1 [ty2]
flatten_one (TyConApp tc tys)
-- Expand type synonyms that mention type families
-- on the RHS; see Note [Flattening synonyms]
| Just (tenv, rhs, tys') <- expandSynTyCon_maybe tc tys
, let expanded_ty = mkAppTys (substTy (mkTvSubstPrs tenv) rhs) tys'
= do { mode <- getMode
; case mode of
FM_FlattenAll | not (isFamFreeTyCon tc)
-> flatten_one expanded_ty
_ -> flatten_ty_con_app tc tys }
-- Otherwise, it's a type function application, and we have to
-- flatten it away as well, and generate a new given equality constraint
-- between the application and a newly generated flattening skolem variable.
| isTypeFamilyTyCon tc
= flatten_fam_app tc tys
-- For * a normal data type application
-- * data family application
-- we just recursively flatten the arguments.
| otherwise
-- FM_Avoid stuff commented out; see Note [Lazy flattening]
-- , let fmode' = case fmode of -- Switch off the flat_top bit in FM_Avoid
-- FE { fe_mode = FM_Avoid tv _ }
-- -> fmode { fe_mode = FM_Avoid tv False }
-- _ -> fmode
= flatten_ty_con_app tc tys
flatten_one ty@(FunTy { ft_mult = mult, ft_arg = ty1, ft_res = ty2 })
= do { (xi1,co1) <- flatten_one ty1
; (xi2,co2) <- flatten_one ty2
; (xi3,co3) <- setEqRel NomEq $ flatten_one mult
; role <- getRole
; return (ty { ft_mult = xi3, ft_arg = xi1, ft_res = xi2 }
, mkFunCo role co3 co1 co2) }
flatten_one ty@(ForAllTy {})
-- TODO (RAE): This is inadequate, as it doesn't flatten the kind of
-- the bound tyvar. Doing so will require carrying around a substitution
-- and the usual substTyVarBndr-like silliness. Argh.
-- We allow for-alls when, but only when, no type function
-- applications inside the forall involve the bound type variables.
= do { let (bndrs, rho) = tcSplitForAllVarBndrs ty
tvs = binderVars bndrs
; (rho', co) <- setMode FM_SubstOnly $ flatten_one rho
-- Substitute only under a forall
-- See Note [Flattening under a forall]
; return (mkForAllTys bndrs rho', mkHomoForAllCos tvs co) }
flatten_one (CastTy ty g)
= do { (xi, co) <- flatten_one ty
; (g', _) <- flatten_co g
; role <- getRole
; return (mkCastTy xi g', castCoercionKind co role xi ty g' g) }
flatten_one (CoercionTy co) = first mkCoercionTy <$> flatten_co co
-- | "Flatten" a coercion. Really, just zonk it so we can uphold
-- (F1) of Note [Flattening]
flatten_co :: Coercion -> FlatM (Coercion, Coercion)
flatten_co co
= do { co <- liftTcS $ zonkCo co
; env_role <- getRole
; let co' = mkTcReflCo env_role (mkCoercionTy co)
; return (co, co') }
-- flatten (nested) AppTys
flatten_app_tys :: Type -> [Type] -> FlatM (Xi, Coercion)
-- commoning up nested applications allows us to look up the function's kind
-- only once. Without commoning up like this, we would spend a quadratic amount
-- of time looking up functions' types
flatten_app_tys (AppTy ty1 ty2) tys = flatten_app_tys ty1 (ty2:tys)
flatten_app_tys fun_ty arg_tys
= do { (fun_xi, fun_co) <- flatten_one fun_ty
; flatten_app_ty_args fun_xi fun_co arg_tys }
-- Given a flattened function (with the coercion produced by flattening) and
-- a bunch of unflattened arguments, flatten the arguments and apply.
-- The coercion argument's role matches the role stored in the FlatM monad.
--
-- The bang patterns used here were observed to improve performance. If you
-- wish to remove them, be sure to check for regeressions in allocations.
flatten_app_ty_args :: Xi -> Coercion -> [Type] -> FlatM (Xi, Coercion)
flatten_app_ty_args fun_xi fun_co []
-- this will be a common case when called from flatten_fam_app, so shortcut
= return (fun_xi, fun_co)
flatten_app_ty_args fun_xi fun_co arg_tys
= do { (xi, co, kind_co) <- case tcSplitTyConApp_maybe fun_xi of
Just (tc, xis) ->
do { let tc_roles = tyConRolesRepresentational tc
arg_roles = dropList xis tc_roles
; (arg_xis, arg_cos, kind_co)
<- flatten_vector (tcTypeKind fun_xi) arg_roles arg_tys
-- Here, we have fun_co :: T xi1 xi2 ~ ty
-- and we need to apply fun_co to the arg_cos. The problem is
-- that using mkAppCo is wrong because that function expects
-- its second coercion to be Nominal, and the arg_cos might
-- not be. The solution is to use transitivity:
-- T <xi1> <xi2> arg_cos ;; fun_co <arg_tys>
; eq_rel <- getEqRel
; let app_xi = mkTyConApp tc (xis ++ arg_xis)
app_co = case eq_rel of
NomEq -> mkAppCos fun_co arg_cos
ReprEq -> mkTcTyConAppCo Representational tc
(zipWith mkReflCo tc_roles xis ++ arg_cos)
`mkTcTransCo`
mkAppCos fun_co (map mkNomReflCo arg_tys)
; return (app_xi, app_co, kind_co) }
Nothing ->
do { (arg_xis, arg_cos, kind_co)
<- flatten_vector (tcTypeKind fun_xi) (repeat Nominal) arg_tys
; let arg_xi = mkAppTys fun_xi arg_xis
arg_co = mkAppCos fun_co arg_cos
; return (arg_xi, arg_co, kind_co) }
; role <- getRole
; return (homogenise_result xi co role kind_co) }
flatten_ty_con_app :: TyCon -> [TcType] -> FlatM (Xi, Coercion)
flatten_ty_con_app tc tys
= do { role <- getRole
; (xis, cos, kind_co) <- flatten_args_tc tc (tyConRolesX role tc) tys
; let tyconapp_xi = mkTyConApp tc xis
tyconapp_co = mkTyConAppCo role tc cos
; return (homogenise_result tyconapp_xi tyconapp_co role kind_co) }
-- Make the result of flattening homogeneous (Note [Flattening] (F2))
homogenise_result :: Xi -- a flattened type
-> Coercion -- :: xi ~r original ty
-> Role -- r
-> CoercionN -- kind_co :: tcTypeKind(xi) ~N tcTypeKind(ty)
-> (Xi, Coercion) -- (xi |> kind_co, (xi |> kind_co)
-- ~r original ty)
homogenise_result xi co r kind_co
-- the explicit pattern match here improves the performance of T9872a, b, c by
-- ~2%
| isGReflCo kind_co = (xi `mkCastTy` kind_co, co)
| otherwise = (xi `mkCastTy` kind_co
, (mkSymCo $ GRefl r xi (MCo kind_co)) `mkTransCo` co)
{-# INLINE homogenise_result #-}
-- Flatten a vector (list of arguments).
flatten_vector :: Kind -- of the function being applied to these arguments
-> [Role] -- If we're flatten w.r.t. ReprEq, what roles do the
-- args have?
-> [Type] -- the args to flatten
-> FlatM ([Xi], [Coercion], CoercionN)
flatten_vector ki roles tys
= do { eq_rel <- getEqRel
; case eq_rel of
NomEq -> flatten_args bndrs
any_named_bndrs
inner_ki
fvs
(repeat Nominal)
tys
ReprEq -> flatten_args bndrs
any_named_bndrs
inner_ki
fvs
roles
tys
}
where
(bndrs, inner_ki, any_named_bndrs) = split_pi_tys' ki
fvs = tyCoVarsOfType ki
{-# INLINE flatten_vector #-}
{-
Note [Flattening synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Not expanding synonyms aggressively improves error messages, and
keeps types smaller. But we need to take care.
Suppose
type T a = a -> a
and we want to flatten the type (T (F a)). Then we can safely flatten
the (F a) to a skolem, and return (T fsk). We don't need to expand the
synonym. This works because TcTyConAppCo can deal with synonyms
(unlike TyConAppCo), see Note [TcCoercions] in GHC.Tc.Types.Evidence.
But (#8979) for
type T a = (F a, a) where F is a type function
we must expand the synonym in (say) T Int, to expose the type function
to the flattener.
Note [Flattening under a forall]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Under a forall, we
(a) MUST apply the inert substitution
(b) MUST NOT flatten type family applications
Hence FMSubstOnly.
For (a) consider c ~ a, a ~ T (forall b. (b, [c]))
If we don't apply the c~a substitution to the second constraint
we won't see the occurs-check error.
For (b) consider (a ~ forall b. F a b), we don't want to flatten
to (a ~ forall b.fsk, F a b ~ fsk)
because now the 'b' has escaped its scope. We'd have to flatten to
(a ~ forall b. fsk b, forall b. F a b ~ fsk b)
and we have not begun to think about how to make that work!
************************************************************************
* *
Flattening a type-family application
* *
************************************************************************
-}
flatten_fam_app :: TyCon -> [TcType] -> FlatM (Xi, Coercion)
-- flatten_fam_app can be over-saturated
-- flatten_exact_fam_app is exactly saturated
-- flatten_exact_fam_app_fully lifts out the application to top level
-- Postcondition: Coercion :: Xi ~ F tys
flatten_fam_app tc tys -- Can be over-saturated
= ASSERT2( tys `lengthAtLeast` tyConArity tc
, ppr tc $$ ppr (tyConArity tc) $$ ppr tys)
do { mode <- getMode
; case mode of
{ FM_SubstOnly -> flatten_ty_con_app tc tys
; FM_FlattenAll ->
-- Type functions are saturated
-- The type function might be *over* saturated
-- in which case the remaining arguments should
-- be dealt with by AppTys
do { let (tys1, tys_rest) = splitAt (tyConArity tc) tys
; (xi1, co1) <- flatten_exact_fam_app_fully tc tys1
-- co1 :: xi1 ~ F tys1
; flatten_app_ty_args xi1 co1 tys_rest } } }
-- the [TcType] exactly saturate the TyCon
-- See note [flatten_exact_fam_app_fully performance]
flatten_exact_fam_app_fully :: TyCon -> [TcType] -> FlatM (Xi, Coercion)
flatten_exact_fam_app_fully tc tys
-- See Note [Reduce type family applications eagerly]
-- the following tcTypeKind should never be evaluated, as it's just used in
-- casting, and casts by refl are dropped
= do { mOut <- try_to_reduce_nocache tc tys
; case mOut of
Just out -> pure out
Nothing -> do
{ -- First, flatten the arguments
; (xis, cos, kind_co)
<- setEqRel NomEq $ -- just do this once, instead of for
-- each arg
flatten_args_tc tc (repeat Nominal) tys
-- kind_co :: tcTypeKind(F xis) ~N tcTypeKind(F tys)
; eq_rel <- getEqRel
; cur_flav <- getFlavour
; let role = eqRelRole eq_rel
ret_co = mkTyConAppCo role tc cos
-- ret_co :: F xis ~ F tys; might be heterogeneous
-- Now, look in the cache
; mb_ct <- liftTcS $ lookupFlatCache tc xis
; case mb_ct of
Just (co, rhs_ty, flav) -- co :: F xis ~ fsk
-- flav is [G] or [WD]
-- See Note [Type family equations] in GHC.Tc.Solver.Monad
| (NotSwapped, _) <- flav `funEqCanDischargeF` cur_flav
-> -- Usable hit in the flat-cache
do { traceFlat "flatten/flat-cache hit" $
(ppr tc <+> ppr xis $$ ppr rhs_ty)
; (fsk_xi, fsk_co) <- flatten_one rhs_ty
-- The fsk may already have been unified, so
-- flatten it
-- fsk_co :: fsk_xi ~ fsk
; let xi = fsk_xi `mkCastTy` kind_co
co' = mkTcCoherenceLeftCo role fsk_xi kind_co fsk_co
`mkTransCo`
maybeTcSubCo eq_rel (mkSymCo co)
`mkTransCo` ret_co
; return (xi, co')
}
-- :: fsk_xi ~ F xis
-- Try to reduce the family application right now
-- See Note [Reduce type family applications eagerly]
_ -> do { mOut <- try_to_reduce tc
xis
kind_co
(`mkTransCo` ret_co)
; case mOut of
Just out -> pure out
Nothing -> do
{ loc <- getLoc
; (ev, co, fsk) <- liftTcS $
newFlattenSkolem cur_flav loc tc xis
-- The new constraint (F xis ~ fsk) is not
-- necessarily inert (e.g. the LHS may be a
-- redex) so we must put it in the work list
; let ct = CFunEqCan { cc_ev = ev
, cc_fun = tc
, cc_tyargs = xis
, cc_fsk = fsk }
; emitFlatWork ct
; traceFlat "flatten/flat-cache miss" $
(ppr tc <+> ppr xis $$ ppr fsk $$ ppr ev)
-- NB: fsk's kind is already flattened because
-- the xis are flattened
; let fsk_ty = mkTyVarTy fsk
xi = fsk_ty `mkCastTy` kind_co
co' = mkTcCoherenceLeftCo role fsk_ty kind_co (maybeTcSubCo eq_rel (mkSymCo co))
`mkTransCo` ret_co
; return (xi, co')
}
}
}
}
where
-- try_to_reduce and try_to_reduce_nocache (below) could be unified into
-- a more general definition, but it was observed that separating them
-- gives better performance (lower allocation numbers in T9872x).
try_to_reduce :: TyCon -- F, family tycon
-> [Type] -- args, not necessarily flattened
-> CoercionN -- kind_co :: tcTypeKind(F args) ~N
-- tcTypeKind(F orig_args)
-- where
-- orig_args is what was passed to the outer
-- function
-> ( Coercion -- :: (xi |> kind_co) ~ F args
-> Coercion ) -- what to return from outer function
-> FlatM (Maybe (Xi, Coercion))
try_to_reduce tc tys kind_co update_co
= do { checkStackDepth (mkTyConApp tc tys)
; mb_match <- liftTcS $ matchFam tc tys
; case mb_match of
-- NB: norm_co will always be homogeneous. All type families
-- are homogeneous.
Just (norm_co, norm_ty)
-> do { traceFlat "Eager T.F. reduction success" $
vcat [ ppr tc, ppr tys, ppr norm_ty
, ppr norm_co <+> dcolon
<+> ppr (coercionKind norm_co)
]
; (xi, final_co) <- bumpDepth $ flatten_one norm_ty
; eq_rel <- getEqRel
; let co = maybeTcSubCo eq_rel norm_co
`mkTransCo` mkSymCo final_co
; flavour <- getFlavour
-- NB: only extend cache with nominal equalities
; when (eq_rel == NomEq) $
liftTcS $
extendFlatCache tc tys ( co, xi, flavour )
; let role = eqRelRole eq_rel
xi' = xi `mkCastTy` kind_co
co' = update_co $
mkTcCoherenceLeftCo role xi kind_co (mkSymCo co)
; return $ Just (xi', co') }
Nothing -> pure Nothing }
try_to_reduce_nocache :: TyCon -- F, family tycon
-> [Type] -- args, not necessarily flattened
-> FlatM (Maybe (Xi, Coercion))
try_to_reduce_nocache tc tys
= do { checkStackDepth (mkTyConApp tc tys)
; mb_match <- liftTcS $ matchFam tc tys
; case mb_match of
-- NB: norm_co will always be homogeneous. All type families
-- are homogeneous.
Just (norm_co, norm_ty)
-> do { (xi, final_co) <- bumpDepth $ flatten_one norm_ty
; eq_rel <- getEqRel
; let co = mkSymCo (maybeTcSubCo eq_rel norm_co
`mkTransCo` mkSymCo final_co)
; return $ Just (xi, co) }
Nothing -> pure Nothing }
{- Note [Reduce type family applications eagerly]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we come across a type-family application like (Append (Cons x Nil) t),
then, rather than flattening to a skolem etc, we may as well just reduce
it on the spot to (Cons x t). This saves a lot of intermediate steps.
Examples that are helped are tests T9872, and T5321Fun.
Performance testing indicates that it's best to try this *twice*, once
before flattening arguments and once after flattening arguments.
Adding the extra reduction attempt before flattening arguments cut
the allocation amounts for the T9872{a,b,c} tests by half.
An example of where the early reduction appears helpful:
type family Last x where
Last '[x] = x
Last (h ': t) = Last t
workitem: (x ~ Last '[1,2,3,4,5,6])
Flattening the argument never gets us anywhere, but trying to flatten
it at every step is quadratic in the length of the list. Reducing more
eagerly makes simplifying the right-hand type linear in its length.
Testing also indicated that the early reduction should *not* use the
flat-cache, but that the later reduction *should*. (Although the
effect was not large.) Hence the Bool argument to try_to_reduce. To
me (SLPJ) this seems odd; I get that eager reduction usually succeeds;
and if don't use the cache for eager reduction, we will miss most of
the opportunities for using it at all. More exploration would be good
here.
At the end, once we've got a flat rhs, we extend the flatten-cache to record
the result. Doing so can save lots of work when the same redex shows up more
than once. Note that we record the link from the redex all the way to its
*final* value, not just the single step reduction. Interestingly, using the
flat-cache for the first reduction resulted in an increase in allocations
of about 3% for the four T9872x tests. However, using the flat-cache in
the later reduction is a similar gain. I (Richard E) don't currently (Dec '14)
have any knowledge as to *why* these facts are true.
************************************************************************
* *
Flattening a type variable
* *
********************************************************************* -}
-- | The result of flattening a tyvar "one step".
data FlattenTvResult
= FTRNotFollowed
-- ^ The inert set doesn't make the tyvar equal to anything else
| FTRFollowed TcType Coercion
-- ^ The tyvar flattens to a not-necessarily flat other type.
-- co :: new type ~r old type, where the role is determined by
-- the FlattenEnv
flattenTyVar :: TyVar -> FlatM (Xi, Coercion)
flattenTyVar tv
= do { mb_yes <- flatten_tyvar1 tv
; case mb_yes of
FTRFollowed ty1 co1 -- Recur
-> do { (ty2, co2) <- flatten_one ty1
-- ; traceFlat "flattenTyVar2" (ppr tv $$ ppr ty2)
; return (ty2, co2 `mkTransCo` co1) }
FTRNotFollowed -- Done, but make sure the kind is zonked
-- Note [Flattening] invariant (F0) and (F1)
-> do { tv' <- liftTcS $ updateTyVarKindM zonkTcType tv
; role <- getRole
; let ty' = mkTyVarTy tv'
; return (ty', mkTcReflCo role ty') } }
flatten_tyvar1 :: TcTyVar -> FlatM FlattenTvResult
-- "Flattening" a type variable means to apply the substitution to it
-- Specifically, look up the tyvar in
-- * the internal MetaTyVar box
-- * the inerts
-- See also the documentation for FlattenTvResult
flatten_tyvar1 tv
= do { mb_ty <- liftTcS $ isFilledMetaTyVar_maybe tv
; case mb_ty of
Just ty -> do { traceFlat "Following filled tyvar"
(ppr tv <+> equals <+> ppr ty)
; role <- getRole
; return (FTRFollowed ty (mkReflCo role ty)) } ;
Nothing -> do { traceFlat "Unfilled tyvar" (pprTyVar tv)
; fr <- getFlavourRole
; flatten_tyvar2 tv fr } }
flatten_tyvar2 :: TcTyVar -> CtFlavourRole -> FlatM FlattenTvResult
-- The tyvar is not a filled-in meta-tyvar
-- Try in the inert equalities
-- See Definition [Applying a generalised substitution] in GHC.Tc.Solver.Monad
-- See Note [Stability of flattening] in GHC.Tc.Solver.Monad
flatten_tyvar2 tv fr@(_, eq_rel)
= do { ieqs <- liftTcS $ getInertEqs
; mode <- getMode
; case lookupDVarEnv ieqs tv of
Just (ct:_) -- If the first doesn't work,
-- the subsequent ones won't either
| CTyEqCan { cc_ev = ctev, cc_tyvar = tv
, cc_rhs = rhs_ty, cc_eq_rel = ct_eq_rel } <- ct
, let ct_fr = (ctEvFlavour ctev, ct_eq_rel)
, ct_fr `eqCanRewriteFR` fr -- This is THE key call of eqCanRewriteFR
-> do { traceFlat "Following inert tyvar"
(ppr mode <+>
ppr tv <+>
equals <+>
ppr rhs_ty $$ ppr ctev)
; let rewrite_co1 = mkSymCo (ctEvCoercion ctev)
rewrite_co = case (ct_eq_rel, eq_rel) of
(ReprEq, _rel) -> ASSERT( _rel == ReprEq )
-- if this ASSERT fails, then
-- eqCanRewriteFR answered incorrectly
rewrite_co1
(NomEq, NomEq) -> rewrite_co1
(NomEq, ReprEq) -> mkSubCo rewrite_co1
; return (FTRFollowed rhs_ty rewrite_co) }
-- NB: ct is Derived then fmode must be also, hence
-- we are not going to touch the returned coercion
-- so ctEvCoercion is fine.
_other -> return FTRNotFollowed }
{-
Note [An alternative story for the inert substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This entire note is just background, left here in case we ever want
to return the previous state of affairs)
We used (GHC 7.8) to have this story for the inert substitution inert_eqs
* 'a' is not in fvs(ty)
* They are *inert* in the weaker sense that there is no infinite chain of
(i1 `eqCanRewrite` i2), (i2 `eqCanRewrite` i3), etc
This means that flattening must be recursive, but it does allow
[G] a ~ [b]
[G] b ~ Maybe c
This avoids "saturating" the Givens, which can save a modest amount of work.
It is easy to implement, in GHC.Tc.Solver.Interact.kick_out, by only kicking out an inert
only if (a) the work item can rewrite the inert AND
(b) the inert cannot rewrite the work item
This is significantly harder to think about. It can save a LOT of work
in occurs-check cases, but we don't care about them much. #5837
is an example; all the constraints here are Givens
[G] a ~ TF (a,Int)
-->
work TF (a,Int) ~ fsk
inert fsk ~ a
--->
work fsk ~ (TF a, TF Int)
inert fsk ~ a
--->
work a ~ (TF a, TF Int)
inert fsk ~ a
---> (attempting to flatten (TF a) so that it does not mention a
work TF a ~ fsk2
inert a ~ (fsk2, TF Int)
inert fsk ~ (fsk2, TF Int)
---> (substitute for a)
work TF (fsk2, TF Int) ~ fsk2
inert a ~ (fsk2, TF Int)
inert fsk ~ (fsk2, TF Int)
---> (top-level reduction, re-orient)
work fsk2 ~ (TF fsk2, TF Int)
inert a ~ (fsk2, TF Int)
inert fsk ~ (fsk2, TF Int)
---> (attempt to flatten (TF fsk2) to get rid of fsk2
work TF fsk2 ~ fsk3
work fsk2 ~ (fsk3, TF Int)
inert a ~ (fsk2, TF Int)
inert fsk ~ (fsk2, TF Int)
--->
work TF fsk2 ~ fsk3
inert fsk2 ~ (fsk3, TF Int)
inert a ~ ((fsk3, TF Int), TF Int)
inert fsk ~ ((fsk3, TF Int), TF Int)
Because the incoming given rewrites all the inert givens, we get more and
more duplication in the inert set. But this really only happens in pathological
casee, so we don't care.
************************************************************************
* *
Unflattening
* *
************************************************************************
An unflattening example:
[W] F a ~ alpha
flattens to
[W] F a ~ fmv (CFunEqCan)
[W] fmv ~ alpha (CTyEqCan)
We must solve both!
-}
unflattenWanteds :: Cts -> Cts -> TcS Cts
unflattenWanteds tv_eqs funeqs
= do { tclvl <- getTcLevel
; traceTcS "Unflattening" $ braces $
vcat [ text "Funeqs =" <+> pprCts funeqs
, text "Tv eqs =" <+> pprCts tv_eqs ]
-- Step 1: unflatten the CFunEqCans, except if that causes an occurs check
-- Occurs check: consider [W] alpha ~ [F alpha]
-- ==> (flatten) [W] F alpha ~ fmv, [W] alpha ~ [fmv]
-- ==> (unify) [W] F [fmv] ~ fmv
-- See Note [Unflatten using funeqs first]
; funeqs <- foldrM unflatten_funeq emptyCts funeqs
; traceTcS "Unflattening 1" $ braces (pprCts funeqs)
-- Step 2: unify the tv_eqs, if possible
; tv_eqs <- foldrM (unflatten_eq tclvl) emptyCts tv_eqs
; traceTcS "Unflattening 2" $ braces (pprCts tv_eqs)
-- Step 3: fill any remaining fmvs with fresh unification variables
; funeqs <- mapBagM finalise_funeq funeqs
; traceTcS "Unflattening 3" $ braces (pprCts funeqs)
-- Step 4: remove any tv_eqs that look like ty ~ ty
; tv_eqs <- foldrM finalise_eq emptyCts tv_eqs
; let all_flat = tv_eqs `andCts` funeqs
; traceTcS "Unflattening done" $ braces (pprCts all_flat)
; return all_flat }
where
----------------
unflatten_funeq :: Ct -> Cts -> TcS Cts
unflatten_funeq ct@(CFunEqCan { cc_fun = tc, cc_tyargs = xis
, cc_fsk = fmv, cc_ev = ev }) rest
= do { -- fmv should be an un-filled flatten meta-tv;
-- we now fix its final value by filling it, being careful
-- to observe the occurs check. Zonking will eliminate it
-- altogether in due course
rhs' <- zonkTcType (mkTyConApp tc xis)
; case occCheckExpand [fmv] rhs' of
Just rhs'' -- Normal case: fill the tyvar
-> do { setReflEvidence ev NomEq rhs''
; unflattenFmv fmv rhs''
; return rest }
Nothing -> -- Occurs check
return (ct `consCts` rest) }
unflatten_funeq other_ct _
= pprPanic "unflatten_funeq" (ppr other_ct)
----------------
finalise_funeq :: Ct -> TcS Ct
finalise_funeq (CFunEqCan { cc_fsk = fmv, cc_ev = ev })
= do { demoteUnfilledFmv fmv
; return (mkNonCanonical ev) }
finalise_funeq ct = pprPanic "finalise_funeq" (ppr ct)
----------------
unflatten_eq :: TcLevel -> Ct -> Cts -> TcS Cts
unflatten_eq tclvl ct@(CTyEqCan { cc_ev = ev, cc_tyvar = tv
, cc_rhs = rhs, cc_eq_rel = eq_rel }) rest
| NomEq <- eq_rel -- See Note [Do not unify representational equalities]
-- in GHC.Tc.Solver.Interact
, isFmvTyVar tv -- Previously these fmvs were untouchable,
-- but now they are touchable
-- NB: unlike unflattenFmv, filling a fmv here /does/
-- bump the unification count; it is "improvement"
-- Note [Unflattening can force the solver to iterate]
= ASSERT2( tyVarKind tv `eqType` tcTypeKind rhs, ppr ct )
-- CTyEqCan invariant (TyEq:K) should ensure this is true
do { is_filled <- isFilledMetaTyVar tv
; elim <- case is_filled of
False -> do { traceTcS "unflatten_eq 2" (ppr ct)
; tryFill ev tv rhs }
True -> do { traceTcS "unflatten_eq 3" (ppr ct)
; try_fill_rhs ev tclvl tv rhs }
; if elim
then do { setReflEvidence ev eq_rel (mkTyVarTy tv)
; return rest }
else return (ct `consCts` rest) }
| otherwise
= return (ct `consCts` rest)
unflatten_eq _ ct _ = pprPanic "unflatten_irred" (ppr ct)
----------------
try_fill_rhs ev tclvl lhs_tv rhs
-- Constraint is lhs_tv ~ rhs_tv,
-- and lhs_tv is filled, so try RHS
| Just (rhs_tv, co) <- getCastedTyVar_maybe rhs
-- co :: kind(rhs_tv) ~ kind(lhs_tv)
, isFmvTyVar rhs_tv || (isTouchableMetaTyVar tclvl rhs_tv
&& not (isTyVarTyVar rhs_tv))
-- LHS is a filled fmv, and so is a type
-- family application, which a TyVarTv should
-- not unify with
= do { is_filled <- isFilledMetaTyVar rhs_tv
; if is_filled then return False
else tryFill ev rhs_tv
(mkTyVarTy lhs_tv `mkCastTy` mkSymCo co) }
| otherwise
= return False
----------------
finalise_eq :: Ct -> Cts -> TcS Cts
finalise_eq (CTyEqCan { cc_ev = ev, cc_tyvar = tv
, cc_rhs = rhs, cc_eq_rel = eq_rel }) rest
| isFmvTyVar tv
= do { ty1 <- zonkTcTyVar tv
; rhs' <- zonkTcType rhs
; if ty1 `tcEqType` rhs'
then do { setReflEvidence ev eq_rel rhs'
; return rest }
else return (mkNonCanonical ev `consCts` rest) }
| otherwise
= return (mkNonCanonical ev `consCts` rest)
finalise_eq ct _ = pprPanic "finalise_irred" (ppr ct)
tryFill :: CtEvidence -> TcTyVar -> TcType -> TcS Bool
-- (tryFill tv rhs ev) assumes 'tv' is an /un-filled/ MetaTv
-- If tv does not appear in 'rhs', it set tv := rhs,
-- binds the evidence (which should be a CtWanted) to Refl<rhs>
-- and return True. Otherwise returns False
tryFill ev tv rhs
= ASSERT2( not (isGiven ev), ppr ev )
do { rhs' <- zonkTcType rhs
; case () of
_ | Just tv' <- tcGetTyVar_maybe rhs'
, tv == tv' -- tv == rhs
-> return True
_ | Just rhs'' <- occCheckExpand [tv] rhs'
-> do { -- Fill the tyvar
unifyTyVar tv rhs''
; return True }
_ | otherwise -- Occurs check
-> return False
}
setReflEvidence :: CtEvidence -> EqRel -> TcType -> TcS ()
setReflEvidence ev eq_rel rhs
= setEvBindIfWanted ev (evCoercion refl_co)
where
refl_co = mkTcReflCo (eqRelRole eq_rel) rhs
{-
Note [Unflatten using funeqs first]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[W] G a ~ Int
[W] F (G a) ~ G a
do not want to end up with
[W] F Int ~ Int
because that might actually hold! Better to end up with the two above
unsolved constraints. The flat form will be
G a ~ fmv1 (CFunEqCan)
F fmv1 ~ fmv2 (CFunEqCan)
fmv1 ~ Int (CTyEqCan)
fmv1 ~ fmv2 (CTyEqCan)
Flatten using the fun-eqs first.
-}
-- | Like 'splitPiTys'' but comes with a 'Bool' which is 'True' iff there is at
-- least one named binder.
split_pi_tys' :: Type -> ([TyCoBinder], Type, Bool)
split_pi_tys' ty = split ty ty
where
-- put common cases first
split _ (ForAllTy b res) = let (bs, ty, _) = split res res
in (Named b : bs, ty, True)
split _ (FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res })
= let (bs, ty, named) = split res res
in (Anon af (mkScaled w arg) : bs, ty, named)
split orig_ty ty | Just ty' <- coreView ty = split orig_ty ty'
split orig_ty _ = ([], orig_ty, False)
{-# INLINE split_pi_tys' #-}
-- | Like 'tyConBindersTyCoBinders' but you also get a 'Bool' which is true iff
-- there is at least one named binder.
ty_con_binders_ty_binders' :: [TyConBinder] -> ([TyCoBinder], Bool)
ty_con_binders_ty_binders' = foldr go ([], False)
where
go (Bndr tv (NamedTCB vis)) (bndrs, _)
= (Named (Bndr tv vis) : bndrs, True)
go (Bndr tv (AnonTCB af)) (bndrs, n)
= (Anon af (unrestricted (tyVarKind tv)) : bndrs, n)
{-# INLINE go #-}
{-# INLINE ty_con_binders_ty_binders' #-}
|