1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
|
{-# LANGUAGE CPP, DeriveFunctor, TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- | Type definitions for the constraint solver
module GHC.Tc.Solver.Monad (
-- The work list
WorkList(..), isEmptyWorkList, emptyWorkList,
extendWorkListNonEq, extendWorkListCt,
extendWorkListCts, extendWorkListEq, extendWorkListFunEq,
appendWorkList,
selectNextWorkItem,
workListSize, workListWantedCount,
getWorkList, updWorkListTcS, pushLevelNoWorkList,
-- The TcS monad
TcS, runTcS, runTcSDeriveds, runTcSWithEvBinds,
failTcS, warnTcS, addErrTcS,
runTcSEqualities,
nestTcS, nestImplicTcS, setEvBindsTcS,
emitImplicationTcS, emitTvImplicationTcS,
runTcPluginTcS, addUsedGRE, addUsedGREs, keepAlive,
matchGlobalInst, TcM.ClsInstResult(..),
QCInst(..),
-- Tracing etc
panicTcS, traceTcS,
traceFireTcS, bumpStepCountTcS, csTraceTcS,
wrapErrTcS, wrapWarnTcS,
-- Evidence creation and transformation
MaybeNew(..), freshGoals, isFresh, getEvExpr,
newTcEvBinds, newNoTcEvBinds,
newWantedEq, newWantedEq_SI, emitNewWantedEq,
newWanted, newWanted_SI, newWantedEvVar,
newWantedNC, newWantedEvVarNC,
newDerivedNC,
newBoundEvVarId,
unifyTyVar, unflattenFmv, reportUnifications,
setEvBind, setWantedEq,
setWantedEvTerm, setEvBindIfWanted,
newEvVar, newGivenEvVar, newGivenEvVars,
emitNewDeriveds, emitNewDerivedEq,
checkReductionDepth,
getSolvedDicts, setSolvedDicts,
getInstEnvs, getFamInstEnvs, -- Getting the environments
getTopEnv, getGblEnv, getLclEnv,
getTcEvBindsVar, getTcLevel,
getTcEvTyCoVars, getTcEvBindsMap, setTcEvBindsMap,
tcLookupClass, tcLookupId,
-- Inerts
InertSet(..), InertCans(..),
updInertTcS, updInertCans, updInertDicts, updInertIrreds,
getNoGivenEqs, setInertCans,
getInertEqs, getInertCans, getInertGivens,
getInertInsols,
getTcSInerts, setTcSInerts,
matchableGivens, prohibitedSuperClassSolve, mightMatchLater,
getUnsolvedInerts,
removeInertCts, getPendingGivenScs,
addInertCan, insertFunEq, addInertForAll,
emitWorkNC, emitWork,
isImprovable,
-- The Model
kickOutAfterUnification,
-- Inert Safe Haskell safe-overlap failures
addInertSafehask, insertSafeOverlapFailureTcS, updInertSafehask,
getSafeOverlapFailures,
-- Inert CDictCans
DictMap, emptyDictMap, lookupInertDict, findDictsByClass, addDict,
addDictsByClass, delDict, foldDicts, filterDicts, findDict,
-- Inert CTyEqCans
EqualCtList, findTyEqs, foldTyEqs, isInInertEqs,
lookupInertTyVar,
-- Inert solved dictionaries
addSolvedDict, lookupSolvedDict,
-- Irreds
foldIrreds,
-- The flattening cache
lookupFlatCache, extendFlatCache, newFlattenSkolem, -- Flatten skolems
dischargeFunEq, pprKicked,
-- Inert CFunEqCans
updInertFunEqs, findFunEq,
findFunEqsByTyCon,
instDFunType, -- Instantiation
-- MetaTyVars
newFlexiTcSTy, instFlexi, instFlexiX,
cloneMetaTyVar, demoteUnfilledFmv,
tcInstSkolTyVarsX,
TcLevel,
isFilledMetaTyVar_maybe, isFilledMetaTyVar,
zonkTyCoVarsAndFV, zonkTcType, zonkTcTypes, zonkTcTyVar, zonkCo,
zonkTyCoVarsAndFVList,
zonkSimples, zonkWC,
zonkTyCoVarKind,
-- References
newTcRef, readTcRef, writeTcRef, updTcRef,
-- Misc
getDefaultInfo, getDynFlags, getGlobalRdrEnvTcS,
matchFam, matchFamTcM,
checkWellStagedDFun,
pprEq -- Smaller utils, re-exported from TcM
-- TODO (DV): these are only really used in the
-- instance matcher in GHC.Tc.Solver. I am wondering
-- if the whole instance matcher simply belongs
-- here
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Driver.Types
import qualified GHC.Tc.Utils.Instantiate as TcM
import GHC.Core.InstEnv
import GHC.Tc.Instance.Family as FamInst
import GHC.Core.FamInstEnv
import qualified GHC.Tc.Utils.Monad as TcM
import qualified GHC.Tc.Utils.TcMType as TcM
import qualified GHC.Tc.Instance.Class as TcM( matchGlobalInst, ClsInstResult(..) )
import qualified GHC.Tc.Utils.Env as TcM
( checkWellStaged, tcGetDefaultTys, tcLookupClass, tcLookupId, topIdLvl )
import GHC.Tc.Instance.Class( InstanceWhat(..), safeOverlap, instanceReturnsDictCon )
import GHC.Tc.Utils.TcType
import GHC.Driver.Session
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Unify
import GHC.Utils.Error
import GHC.Tc.Types.Evidence
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Tc.Errors ( solverDepthErrorTcS )
import GHC.Types.Name
import GHC.Types.Module ( HasModule, getModule )
import GHC.Types.Name.Reader ( GlobalRdrEnv, GlobalRdrElt )
import qualified GHC.Rename.Env as TcM
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Utils.Outputable
import GHC.Data.Bag as Bag
import GHC.Types.Unique.Supply
import GHC.Utils.Misc
import GHC.Tc.Types
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Types.Unique
import GHC.Types.Unique.FM
import GHC.Types.Unique.DFM
import GHC.Data.Maybe
import GHC.Core.Map
import Control.Monad
import GHC.Utils.Monad
import Data.IORef
import Data.List ( partition, mapAccumL )
#if defined(DEBUG)
import GHC.Data.Graph.Directed
import GHC.Types.Unique.Set
#endif
{-
************************************************************************
* *
* Worklists *
* Canonical and non-canonical constraints that the simplifier has to *
* work on. Including their simplification depths. *
* *
* *
************************************************************************
Note [WorkList priorities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
A WorkList contains canonical and non-canonical items (of all flavors).
Notice that each Ct now has a simplification depth. We may
consider using this depth for prioritization as well in the future.
As a simple form of priority queue, our worklist separates out
* equalities (wl_eqs); see Note [Prioritise equalities]
* type-function equalities (wl_funeqs)
* all the rest (wl_rest)
Note [Prioritise equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very important to process equalities /first/:
* (Efficiency) The general reason to do so is that if we process a
class constraint first, we may end up putting it into the inert set
and then kicking it out later. That's extra work compared to just
doing the equality first.
* (Avoiding fundep iteration) As #14723 showed, it's possible to
get non-termination if we
- Emit the Derived fundep equalities for a class constraint,
generating some fresh unification variables.
- That leads to some unification
- Which kicks out the class constraint
- Which isn't solved (because there are still some more Derived
equalities in the work-list), but generates yet more fundeps
Solution: prioritise derived equalities over class constraints
* (Class equalities) We need to prioritise equalities even if they
are hidden inside a class constraint;
see Note [Prioritise class equalities]
* (Kick-out) We want to apply this priority scheme to kicked-out
constraints too (see the call to extendWorkListCt in kick_out_rewritable
E.g. a CIrredCan can be a hetero-kinded (t1 ~ t2), which may become
homo-kinded when kicked out, and hence we want to prioritise it.
* (Derived equalities) Originally we tried to postpone processing
Derived equalities, in the hope that we might never need to deal
with them at all; but in fact we must process Derived equalities
eagerly, partly for the (Efficiency) reason, and more importantly
for (Avoiding fundep iteration).
Note [Prioritise class equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We prioritise equalities in the solver (see selectWorkItem). But class
constraints like (a ~ b) and (a ~~ b) are actually equalities too;
see Note [The equality types story] in GHC.Builtin.Types.Prim.
Failing to prioritise these is inefficient (more kick-outs etc).
But, worse, it can prevent us spotting a "recursive knot" among
Wanted constraints. See comment:10 of #12734 for a worked-out
example.
So we arrange to put these particular class constraints in the wl_eqs.
NB: since we do not currently apply the substitution to the
inert_solved_dicts, the knot-tying still seems a bit fragile.
But this makes it better.
-}
-- See Note [WorkList priorities]
data WorkList
= WL { wl_eqs :: [Ct] -- CTyEqCan, CDictCan, CIrredCan
-- Given, Wanted, and Derived
-- Contains both equality constraints and their
-- class-level variants (a~b) and (a~~b);
-- See Note [Prioritise equalities]
-- See Note [Prioritise class equalities]
, wl_funeqs :: [Ct]
, wl_rest :: [Ct]
, wl_implics :: Bag Implication -- See Note [Residual implications]
}
appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList
(WL { wl_eqs = eqs1, wl_funeqs = funeqs1, wl_rest = rest1
, wl_implics = implics1 })
(WL { wl_eqs = eqs2, wl_funeqs = funeqs2, wl_rest = rest2
, wl_implics = implics2 })
= WL { wl_eqs = eqs1 ++ eqs2
, wl_funeqs = funeqs1 ++ funeqs2
, wl_rest = rest1 ++ rest2
, wl_implics = implics1 `unionBags` implics2 }
workListSize :: WorkList -> Int
workListSize (WL { wl_eqs = eqs, wl_funeqs = funeqs, wl_rest = rest })
= length eqs + length funeqs + length rest
workListWantedCount :: WorkList -> Int
-- Count the things we need to solve
-- excluding the insolubles (c.f. inert_count)
workListWantedCount (WL { wl_eqs = eqs, wl_rest = rest })
= count isWantedCt eqs + count is_wanted rest
where
is_wanted ct
| CIrredCan { cc_status = InsolubleCIS } <- ct
= False
| otherwise
= isWantedCt ct
extendWorkListEq :: Ct -> WorkList -> WorkList
extendWorkListEq ct wl = wl { wl_eqs = ct : wl_eqs wl }
extendWorkListFunEq :: Ct -> WorkList -> WorkList
extendWorkListFunEq ct wl = wl { wl_funeqs = ct : wl_funeqs wl }
extendWorkListNonEq :: Ct -> WorkList -> WorkList
-- Extension by non equality
extendWorkListNonEq ct wl = wl { wl_rest = ct : wl_rest wl }
extendWorkListDeriveds :: [CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds evs wl
= extendWorkListCts (map mkNonCanonical evs) wl
extendWorkListImplic :: Implication -> WorkList -> WorkList
extendWorkListImplic implic wl = wl { wl_implics = implic `consBag` wl_implics wl }
extendWorkListCt :: Ct -> WorkList -> WorkList
-- Agnostic
extendWorkListCt ct wl
= case classifyPredType (ctPred ct) of
EqPred NomEq ty1 _
| Just tc <- tcTyConAppTyCon_maybe ty1
, isTypeFamilyTyCon tc
-> extendWorkListFunEq ct wl
EqPred {}
-> extendWorkListEq ct wl
ClassPred cls _ -- See Note [Prioritise class equalities]
| isEqPredClass cls
-> extendWorkListEq ct wl
_ -> extendWorkListNonEq ct wl
extendWorkListCts :: [Ct] -> WorkList -> WorkList
-- Agnostic
extendWorkListCts cts wl = foldr extendWorkListCt wl cts
isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList (WL { wl_eqs = eqs, wl_funeqs = funeqs
, wl_rest = rest, wl_implics = implics })
= null eqs && null rest && null funeqs && isEmptyBag implics
emptyWorkList :: WorkList
emptyWorkList = WL { wl_eqs = [], wl_rest = []
, wl_funeqs = [], wl_implics = emptyBag }
selectWorkItem :: WorkList -> Maybe (Ct, WorkList)
-- See Note [Prioritise equalities]
selectWorkItem wl@(WL { wl_eqs = eqs, wl_funeqs = feqs
, wl_rest = rest })
| ct:cts <- eqs = Just (ct, wl { wl_eqs = cts })
| ct:fes <- feqs = Just (ct, wl { wl_funeqs = fes })
| ct:cts <- rest = Just (ct, wl { wl_rest = cts })
| otherwise = Nothing
getWorkList :: TcS WorkList
getWorkList = do { wl_var <- getTcSWorkListRef
; wrapTcS (TcM.readTcRef wl_var) }
selectNextWorkItem :: TcS (Maybe Ct)
-- Pick which work item to do next
-- See Note [Prioritise equalities]
selectNextWorkItem
= do { wl_var <- getTcSWorkListRef
; wl <- readTcRef wl_var
; case selectWorkItem wl of {
Nothing -> return Nothing ;
Just (ct, new_wl) ->
do { -- checkReductionDepth (ctLoc ct) (ctPred ct)
-- This is done by GHC.Tc.Solver.Interact.chooseInstance
; writeTcRef wl_var new_wl
; return (Just ct) } } }
-- Pretty printing
instance Outputable WorkList where
ppr (WL { wl_eqs = eqs, wl_funeqs = feqs
, wl_rest = rest, wl_implics = implics })
= text "WL" <+> (braces $
vcat [ ppUnless (null eqs) $
text "Eqs =" <+> vcat (map ppr eqs)
, ppUnless (null feqs) $
text "Funeqs =" <+> vcat (map ppr feqs)
, ppUnless (null rest) $
text "Non-eqs =" <+> vcat (map ppr rest)
, ppUnless (isEmptyBag implics) $
ifPprDebug (text "Implics =" <+> vcat (map ppr (bagToList implics)))
(text "(Implics omitted)")
])
{- *********************************************************************
* *
InertSet: the inert set
* *
* *
********************************************************************* -}
data InertSet
= IS { inert_cans :: InertCans
-- Canonical Given, Wanted, Derived
-- Sometimes called "the inert set"
, inert_fsks :: [(TcTyVar, TcType)]
-- A list of (fsk, ty) pairs; we add one element when we flatten
-- a function application in a Given constraint, creating
-- a new fsk in newFlattenSkolem. When leaving a nested scope,
-- unflattenGivens unifies fsk := ty
--
-- We could also get this info from inert_funeqs, filtered by
-- level, but it seems simpler and more direct to capture the
-- fsk as we generate them.
, inert_flat_cache :: ExactFunEqMap (TcCoercion, TcType, CtFlavour)
-- See Note [Type family equations]
-- If F tys :-> (co, rhs, flav),
-- then co :: F tys ~ rhs
-- flav is [G] or [WD]
--
-- Just a hash-cons cache for use when flattening only
-- These include entirely un-processed goals, so don't use
-- them to solve a top-level goal, else you may end up solving
-- (w:F ty ~ a) by setting w:=w! We just use the flat-cache
-- when allocating a new flatten-skolem.
-- Not necessarily inert wrt top-level equations (or inert_cans)
-- NB: An ExactFunEqMap -- this doesn't match via loose types!
, inert_solved_dicts :: DictMap CtEvidence
-- All Wanteds, of form ev :: C t1 .. tn
-- See Note [Solved dictionaries]
-- and Note [Do not add superclasses of solved dictionaries]
}
instance Outputable InertSet where
ppr (IS { inert_cans = ics
, inert_fsks = ifsks
, inert_solved_dicts = solved_dicts })
= vcat [ ppr ics
, text "Inert fsks =" <+> ppr ifsks
, ppUnless (null dicts) $
text "Solved dicts =" <+> vcat (map ppr dicts) ]
where
dicts = bagToList (dictsToBag solved_dicts)
emptyInertCans :: InertCans
emptyInertCans
= IC { inert_count = 0
, inert_eqs = emptyDVarEnv
, inert_dicts = emptyDicts
, inert_safehask = emptyDicts
, inert_funeqs = emptyFunEqs
, inert_insts = []
, inert_irreds = emptyCts }
emptyInert :: InertSet
emptyInert
= IS { inert_cans = emptyInertCans
, inert_fsks = []
, inert_flat_cache = emptyExactFunEqs
, inert_solved_dicts = emptyDictMap }
{- Note [Solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we apply a top-level instance declaration, we add the "solved"
dictionary to the inert_solved_dicts. In general, we use it to avoid
creating a new EvVar when we have a new goal that we have solved in
the past.
But in particular, we can use it to create *recursive* dictionaries.
The simplest, degenerate case is
instance C [a] => C [a] where ...
If we have
[W] d1 :: C [x]
then we can apply the instance to get
d1 = $dfCList d
[W] d2 :: C [x]
Now 'd1' goes in inert_solved_dicts, and we can solve d2 directly from d1.
d1 = $dfCList d
d2 = d1
See Note [Example of recursive dictionaries]
VERY IMPORTANT INVARIANT:
(Solved Dictionary Invariant)
Every member of the inert_solved_dicts is the result
of applying an instance declaration that "takes a step"
An instance "takes a step" if it has the form
dfunDList d1 d2 = MkD (...) (...) (...)
That is, the dfun is lazy in its arguments, and guarantees to
immediately return a dictionary constructor. NB: all dictionary
data constructors are lazy in their arguments.
This property is crucial to ensure that all dictionaries are
non-bottom, which in turn ensures that the whole "recursive
dictionary" idea works at all, even if we get something like
rec { d = dfunDList d dx }
See Note [Recursive superclasses] in GHC.Tc.TyCl.Instance.
Reason:
- All instances, except two exceptions listed below, "take a step"
in the above sense
- Exception 1: local quantified constraints have no such guarantee;
indeed, adding a "solved dictionary" when appling a quantified
constraint led to the ability to define unsafeCoerce
in #17267.
- Exception 2: the magic built-in instance for (~) has no
such guarantee. It behaves as if we had
class (a ~# b) => (a ~ b) where {}
instance (a ~# b) => (a ~ b) where {}
The "dfun" for the instance is strict in the coercion.
Anyway there's no point in recording a "solved dict" for
(t1 ~ t2); it's not going to allow a recursive dictionary
to be constructed. Ditto (~~) and Coercible.
THEREFORE we only add a "solved dictionary"
- when applying an instance declaration
- subject to Exceptions 1 and 2 above
In implementation terms
- GHC.Tc.Solver.Monad.addSolvedDict adds a new solved dictionary,
conditional on the kind of instance
- It is only called when applying an instance decl,
in GHC.Tc.Solver.Interact.doTopReactDict
- ClsInst.InstanceWhat says what kind of instance was
used to solve the constraint. In particular
* LocalInstance identifies quantified constraints
* BuiltinEqInstance identifies the strange built-in
instances for equality.
- ClsInst.instanceReturnsDictCon says which kind of
instance guarantees to return a dictionary constructor
Other notes about solved dictionaries
* See also Note [Do not add superclasses of solved dictionaries]
* The inert_solved_dicts field is not rewritten by equalities,
so it may get out of date.
* The inert_solved_dicts are all Wanteds, never givens
* We only cache dictionaries from top-level instances, not from
local quantified constraints. Reason: if we cached the latter
we'd need to purge the cache when bringing new quantified
constraints into scope, because quantified constraints "shadow"
top-level instances.
Note [Do not add superclasses of solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Every member of inert_solved_dicts is the result of applying a
dictionary function, NOT of applying superclass selection to anything.
Consider
class Ord a => C a where
instance Ord [a] => C [a] where ...
Suppose we are trying to solve
[G] d1 : Ord a
[W] d2 : C [a]
Then we'll use the instance decl to give
[G] d1 : Ord a Solved: d2 : C [a] = $dfCList d3
[W] d3 : Ord [a]
We must not add d4 : Ord [a] to the 'solved' set (by taking the
superclass of d2), otherwise we'll use it to solve d3, without ever
using d1, which would be a catastrophe.
Solution: when extending the solved dictionaries, do not add superclasses.
That's why each element of the inert_solved_dicts is the result of applying
a dictionary function.
Note [Example of recursive dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
--- Example 1
data D r = ZeroD | SuccD (r (D r));
instance (Eq (r (D r))) => Eq (D r) where
ZeroD == ZeroD = True
(SuccD a) == (SuccD b) = a == b
_ == _ = False;
equalDC :: D [] -> D [] -> Bool;
equalDC = (==);
We need to prove (Eq (D [])). Here's how we go:
[W] d1 : Eq (D [])
By instance decl of Eq (D r):
[W] d2 : Eq [D []] where d1 = dfEqD d2
By instance decl of Eq [a]:
[W] d3 : Eq (D []) where d2 = dfEqList d3
d1 = dfEqD d2
Now this wanted can interact with our "solved" d1 to get:
d3 = d1
-- Example 2:
This code arises in the context of "Scrap Your Boilerplate with Class"
class Sat a
class Data ctx a
instance Sat (ctx Char) => Data ctx Char -- dfunData1
instance (Sat (ctx [a]), Data ctx a) => Data ctx [a] -- dfunData2
class Data Maybe a => Foo a
instance Foo t => Sat (Maybe t) -- dfunSat
instance Data Maybe a => Foo a -- dfunFoo1
instance Foo a => Foo [a] -- dfunFoo2
instance Foo [Char] -- dfunFoo3
Consider generating the superclasses of the instance declaration
instance Foo a => Foo [a]
So our problem is this
[G] d0 : Foo t
[W] d1 : Data Maybe [t] -- Desired superclass
We may add the given in the inert set, along with its superclasses
Inert:
[G] d0 : Foo t
[G] d01 : Data Maybe t -- Superclass of d0
WorkList
[W] d1 : Data Maybe [t]
Solve d1 using instance dfunData2; d1 := dfunData2 d2 d3
Inert:
[G] d0 : Foo t
[G] d01 : Data Maybe t -- Superclass of d0
Solved:
d1 : Data Maybe [t]
WorkList:
[W] d2 : Sat (Maybe [t])
[W] d3 : Data Maybe t
Now, we may simplify d2 using dfunSat; d2 := dfunSat d4
Inert:
[G] d0 : Foo t
[G] d01 : Data Maybe t -- Superclass of d0
Solved:
d1 : Data Maybe [t]
d2 : Sat (Maybe [t])
WorkList:
[W] d3 : Data Maybe t
[W] d4 : Foo [t]
Now, we can just solve d3 from d01; d3 := d01
Inert
[G] d0 : Foo t
[G] d01 : Data Maybe t -- Superclass of d0
Solved:
d1 : Data Maybe [t]
d2 : Sat (Maybe [t])
WorkList
[W] d4 : Foo [t]
Now, solve d4 using dfunFoo2; d4 := dfunFoo2 d5
Inert
[G] d0 : Foo t
[G] d01 : Data Maybe t -- Superclass of d0
Solved:
d1 : Data Maybe [t]
d2 : Sat (Maybe [t])
d4 : Foo [t]
WorkList:
[W] d5 : Foo t
Now, d5 can be solved! d5 := d0
Result
d1 := dfunData2 d2 d3
d2 := dfunSat d4
d3 := d01
d4 := dfunFoo2 d5
d5 := d0
-}
{- *********************************************************************
* *
InertCans: the canonical inerts
* *
* *
********************************************************************* -}
data InertCans -- See Note [Detailed InertCans Invariants] for more
= IC { inert_eqs :: InertEqs
-- See Note [inert_eqs: the inert equalities]
-- All CTyEqCans; index is the LHS tyvar
-- Domain = skolems and untouchables; a touchable would be unified
, inert_funeqs :: FunEqMap Ct
-- All CFunEqCans; index is the whole family head type.
-- All Nominal (that's an invariant of all CFunEqCans)
-- LHS is fully rewritten (modulo eqCanRewrite constraints)
-- wrt inert_eqs
-- Can include all flavours, [G], [W], [WD], [D]
-- See Note [Type family equations]
, inert_dicts :: DictMap Ct
-- Dictionaries only
-- All fully rewritten (modulo flavour constraints)
-- wrt inert_eqs
, inert_insts :: [QCInst]
, inert_safehask :: DictMap Ct
-- Failed dictionary resolution due to Safe Haskell overlapping
-- instances restriction. We keep this separate from inert_dicts
-- as it doesn't cause compilation failure, just safe inference
-- failure.
--
-- ^ See Note [Safe Haskell Overlapping Instances Implementation]
-- in GHC.Tc.Solver
, inert_irreds :: Cts
-- Irreducible predicates that cannot be made canonical,
-- and which don't interact with others (e.g. (c a))
-- and insoluble predicates (e.g. Int ~ Bool, or a ~ [a])
, inert_count :: Int
-- Number of Wanted goals in
-- inert_eqs, inert_dicts, inert_safehask, inert_irreds
-- Does not include insolubles
-- When non-zero, keep trying to solve
}
type InertEqs = DTyVarEnv EqualCtList
type EqualCtList = [Ct] -- See Note [EqualCtList invariants]
{- Note [Detailed InertCans Invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The InertCans represents a collection of constraints with the following properties:
* All canonical
* No two dictionaries with the same head
* No two CIrreds with the same type
* Family equations inert wrt top-level family axioms
* Dictionaries have no matching top-level instance
* Given family or dictionary constraints don't mention touchable
unification variables
* Non-CTyEqCan constraints are fully rewritten with respect
to the CTyEqCan equalities (modulo canRewrite of course;
eg a wanted cannot rewrite a given)
* CTyEqCan equalities: see Note [inert_eqs: the inert equalities]
Also see documentation in Constraint.Ct for a list of invariants
Note [EqualCtList invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* All are equalities
* All these equalities have the same LHS
* The list is never empty
* No element of the list can rewrite any other
* Derived before Wanted
From the fourth invariant it follows that the list is
- A single [G], or
- Zero or one [D] or [WD], followed by any number of [W]
The Wanteds can't rewrite anything which is why we put them last
Note [Type family equations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type-family equations, CFunEqCans, of form (ev : F tys ~ ty),
live in three places
* The work-list, of course
* The inert_funeqs are un-solved but fully processed, and in
the InertCans. They can be [G], [W], [WD], or [D].
* The inert_flat_cache. This is used when flattening, to get maximal
sharing. Everything in the inert_flat_cache is [G] or [WD]
It contains lots of things that are still in the work-list.
E.g Suppose we have (w1: F (G a) ~ Int), and (w2: H (G a) ~ Int) in the
work list. Then we flatten w1, dumping (w3: G a ~ f1) in the work
list. Now if we flatten w2 before we get to w3, we still want to
share that (G a).
Because it contains work-list things, DO NOT use the flat cache to solve
a top-level goal. Eg in the above example we don't want to solve w3
using w3 itself!
The CFunEqCan Ownership Invariant:
* Each [G/W/WD] CFunEqCan has a distinct fsk or fmv
It "owns" that fsk/fmv, in the sense that:
- reducing a [W/WD] CFunEqCan fills in the fmv
- unflattening a [W/WD] CFunEqCan fills in the fmv
(in both cases unless an occurs-check would result)
* In contrast a [D] CFunEqCan does not "own" its fmv:
- reducing a [D] CFunEqCan does not fill in the fmv;
it just generates an equality
- unflattening ignores [D] CFunEqCans altogether
Note [inert_eqs: the inert equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Definition [Can-rewrite relation]
A "can-rewrite" relation between flavours, written f1 >= f2, is a
binary relation with the following properties
(R1) >= is transitive
(R2) If f1 >= f, and f2 >= f,
then either f1 >= f2 or f2 >= f1
Lemma. If f1 >= f then f1 >= f1
Proof. By property (R2), with f1=f2
Definition [Generalised substitution]
A "generalised substitution" S is a set of triples (a -f-> t), where
a is a type variable
t is a type
f is a flavour
such that
(WF1) if (a -f1-> t1) in S
(a -f2-> t2) in S
then neither (f1 >= f2) nor (f2 >= f1) hold
(WF2) if (a -f-> t) is in S, then t /= a
Definition [Applying a generalised substitution]
If S is a generalised substitution
S(f,a) = t, if (a -fs-> t) in S, and fs >= f
= a, otherwise
Application extends naturally to types S(f,t), modulo roles.
See Note [Flavours with roles].
Theorem: S(f,a) is well defined as a function.
Proof: Suppose (a -f1-> t1) and (a -f2-> t2) are both in S,
and f1 >= f and f2 >= f
Then by (R2) f1 >= f2 or f2 >= f1, which contradicts (WF1)
Notation: repeated application.
S^0(f,t) = t
S^(n+1)(f,t) = S(f, S^n(t))
Definition: inert generalised substitution
A generalised substitution S is "inert" iff
(IG1) there is an n such that
for every f,t, S^n(f,t) = S^(n+1)(f,t)
By (IG1) we define S*(f,t) to be the result of exahaustively
applying S(f,_) to t.
----------------------------------------------------------------
Our main invariant:
the inert CTyEqCans should be an inert generalised substitution
----------------------------------------------------------------
Note that inertness is not the same as idempotence. To apply S to a
type, you may have to apply it recursive. But inertness does
guarantee that this recursive use will terminate.
Note [Extending the inert equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Main Theorem [Stability under extension]
Suppose we have a "work item"
a -fw-> t
and an inert generalised substitution S,
THEN the extended substitution T = S+(a -fw-> t)
is an inert generalised substitution
PROVIDED
(T1) S(fw,a) = a -- LHS of work-item is a fixpoint of S(fw,_)
(T2) S(fw,t) = t -- RHS of work-item is a fixpoint of S(fw,_)
(T3) a not in t -- No occurs check in the work item
AND, for every (b -fs-> s) in S:
(K0) not (fw >= fs)
Reason: suppose we kick out (a -fs-> s),
and add (a -fw-> t) to the inert set.
The latter can't rewrite the former,
so the kick-out achieved nothing
OR { (K1) not (a = b)
Reason: if fw >= fs, WF1 says we can't have both
a -fw-> t and a -fs-> s
AND (K2): guarantees inertness of the new substitution
{ (K2a) not (fs >= fs)
OR (K2b) fs >= fw
OR (K2d) a not in s }
AND (K3) See Note [K3: completeness of solving]
{ (K3a) If the role of fs is nominal: s /= a
(K3b) If the role of fs is representational:
s is not of form (a t1 .. tn) } }
Conditions (T1-T3) are established by the canonicaliser
Conditions (K1-K3) are established by GHC.Tc.Solver.Monad.kickOutRewritable
The idea is that
* (T1-2) are guaranteed by exhaustively rewriting the work-item
with S(fw,_).
* T3 is guaranteed by a simple occurs-check on the work item.
This is done during canonicalisation, in canEqTyVar; invariant
(TyEq:OC) of CTyEqCan.
* (K1-3) are the "kick-out" criteria. (As stated, they are really the
"keep" criteria.) If the current inert S contains a triple that does
not satisfy (K1-3), then we remove it from S by "kicking it out",
and re-processing it.
* Note that kicking out is a Bad Thing, because it means we have to
re-process a constraint. The less we kick out, the better.
TODO: Make sure that kicking out really *is* a Bad Thing. We've assumed
this but haven't done the empirical study to check.
* Assume we have G>=G, G>=W and that's all. Then, when performing
a unification we add a new given a -G-> ty. But doing so does NOT require
us to kick out an inert wanted that mentions a, because of (K2a). This
is a common case, hence good not to kick out.
* Lemma (L2): if not (fw >= fw), then K0 holds and we kick out nothing
Proof: using Definition [Can-rewrite relation], fw can't rewrite anything
and so K0 holds. Intuitively, since fw can't rewrite anything,
adding it cannot cause any loops
This is a common case, because Wanteds cannot rewrite Wanteds.
It's used to avoid even looking for constraint to kick out.
* Lemma (L1): The conditions of the Main Theorem imply that there is no
(a -fs-> t) in S, s.t. (fs >= fw).
Proof. Suppose the contrary (fs >= fw). Then because of (T1),
S(fw,a)=a. But since fs>=fw, S(fw,a) = s, hence s=a. But now we
have (a -fs-> a) in S, which contradicts (WF2).
* The extended substitution satisfies (WF1) and (WF2)
- (K1) plus (L1) guarantee that the extended substitution satisfies (WF1).
- (T3) guarantees (WF2).
* (K2) is about inertness. Intuitively, any infinite chain T^0(f,t),
T^1(f,t), T^2(f,T).... must pass through the new work item infinitely
often, since the substitution without the work item is inert; and must
pass through at least one of the triples in S infinitely often.
- (K2a): if not(fs>=fs) then there is no f that fs can rewrite (fs>=f),
and hence this triple never plays a role in application S(f,a).
It is always safe to extend S with such a triple.
(NB: we could strengten K1) in this way too, but see K3.
- (K2b): If this holds then, by (T2), b is not in t. So applying the
work item does not generate any new opportunities for applying S
- (K2c): If this holds, we can't pass through this triple infinitely
often, because if we did then fs>=f, fw>=f, hence by (R2)
* either fw>=fs, contradicting K2c
* or fs>=fw; so by the argument in K2b we can't have a loop
- (K2d): if a not in s, we hae no further opportunity to apply the
work item, similar to (K2b)
NB: Dimitrios has a PDF that does this in more detail
Key lemma to make it watertight.
Under the conditions of the Main Theorem,
forall f st fw >= f, a is not in S^k(f,t), for any k
Also, consider roles more carefully. See Note [Flavours with roles]
Note [K3: completeness of solving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(K3) is not necessary for the extended substitution
to be inert. In fact K1 could be made stronger by saying
... then (not (fw >= fs) or not (fs >= fs))
But it's not enough for S to be inert; we also want completeness.
That is, we want to be able to solve all soluble wanted equalities.
Suppose we have
work-item b -G-> a
inert-item a -W-> b
Assuming (G >= W) but not (W >= W), this fulfills all the conditions,
so we could extend the inerts, thus:
inert-items b -G-> a
a -W-> b
But if we kicked-out the inert item, we'd get
work-item a -W-> b
inert-item b -G-> a
Then rewrite the work-item gives us (a -W-> a), which is soluble via Refl.
So we add one more clause to the kick-out criteria
Another way to understand (K3) is that we treat an inert item
a -f-> b
in the same way as
b -f-> a
So if we kick out one, we should kick out the other. The orientation
is somewhat accidental.
When considering roles, we also need the second clause (K3b). Consider
work-item c -G/N-> a
inert-item a -W/R-> b c
The work-item doesn't get rewritten by the inert, because (>=) doesn't hold.
But we don't kick out the inert item because not (W/R >= W/R). So we just
add the work item. But then, consider if we hit the following:
work-item b -G/N-> Id
inert-items a -W/R-> b c
c -G/N-> a
where
newtype Id x = Id x
For similar reasons, if we only had (K3a), we wouldn't kick the
representational inert out. And then, we'd miss solving the inert, which
now reduced to reflexivity.
The solution here is to kick out representational inerts whenever the
tyvar of a work item is "exposed", where exposed means being at the
head of the top-level application chain (a t1 .. tn). See
TcType.isTyVarHead. This is encoded in (K3b).
Beware: if we make this test succeed too often, we kick out too much,
and the solver might loop. Consider (#14363)
work item: [G] a ~R f b
inert item: [G] b ~R f a
In GHC 8.2 the completeness tests more aggressive, and kicked out
the inert item; but no rewriting happened and there was an infinite
loop. All we need is to have the tyvar at the head.
Note [Flavours with roles]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The system described in Note [inert_eqs: the inert equalities]
discusses an abstract
set of flavours. In GHC, flavours have two components: the flavour proper,
taken from {Wanted, Derived, Given} and the equality relation (often called
role), taken from {NomEq, ReprEq}.
When substituting w.r.t. the inert set,
as described in Note [inert_eqs: the inert equalities],
we must be careful to respect all components of a flavour.
For example, if we have
inert set: a -G/R-> Int
b -G/R-> Bool
type role T nominal representational
and we wish to compute S(W/R, T a b), the correct answer is T a Bool, NOT
T Int Bool. The reason is that T's first parameter has a nominal role, and
thus rewriting a to Int in T a b is wrong. Indeed, this non-congruence of
substitution means that the proof in Note [The inert equalities] may need
to be revisited, but we don't think that the end conclusion is wrong.
-}
instance Outputable InertCans where
ppr (IC { inert_eqs = eqs
, inert_funeqs = funeqs, inert_dicts = dicts
, inert_safehask = safehask, inert_irreds = irreds
, inert_insts = insts
, inert_count = count })
= braces $ vcat
[ ppUnless (isEmptyDVarEnv eqs) $
text "Equalities:"
<+> pprCts (foldDVarEnv (\eqs rest -> listToBag eqs `andCts` rest) emptyCts eqs)
, ppUnless (isEmptyTcAppMap funeqs) $
text "Type-function equalities =" <+> pprCts (funEqsToBag funeqs)
, ppUnless (isEmptyTcAppMap dicts) $
text "Dictionaries =" <+> pprCts (dictsToBag dicts)
, ppUnless (isEmptyTcAppMap safehask) $
text "Safe Haskell unsafe overlap =" <+> pprCts (dictsToBag safehask)
, ppUnless (isEmptyCts irreds) $
text "Irreds =" <+> pprCts irreds
, ppUnless (null insts) $
text "Given instances =" <+> vcat (map ppr insts)
, text "Unsolved goals =" <+> int count
]
{- *********************************************************************
* *
Shadow constraints and improvement
* *
************************************************************************
Note [The improvement story and derived shadows]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because Wanteds cannot rewrite Wanteds (see Note [Wanteds do not
rewrite Wanteds] in GHC.Tc.Types.Constraint), we may miss some opportunities for
solving. Here's a classic example (indexed-types/should_fail/T4093a)
Ambiguity check for f: (Foo e ~ Maybe e) => Foo e
We get [G] Foo e ~ Maybe e
[W] Foo e ~ Foo ee -- ee is a unification variable
[W] Foo ee ~ Maybe ee
Flatten: [G] Foo e ~ fsk
[G] fsk ~ Maybe e -- (A)
[W] Foo ee ~ fmv
[W] fmv ~ fsk -- (B) From Foo e ~ Foo ee
[W] fmv ~ Maybe ee
--> rewrite (B) with (A)
[W] Foo ee ~ fmv
[W] fmv ~ Maybe e
[W] fmv ~ Maybe ee
But now we appear to be stuck, since we don't rewrite Wanteds with
Wanteds. This is silly because we can see that ee := e is the
only solution.
The basic plan is
* generate Derived constraints that shadow Wanted constraints
* allow Derived to rewrite Derived
* in order to cause some unifications to take place
* that in turn solve the original Wanteds
The ONLY reason for all these Derived equalities is to tell us how to
unify a variable: that is, what Mark Jones calls "improvement".
The same idea is sometimes also called "saturation"; find all the
equalities that must hold in any solution.
Or, equivalently, you can think of the derived shadows as implementing
the "model": a non-idempotent but no-occurs-check substitution,
reflecting *all* *Nominal* equalities (a ~N ty) that are not
immediately soluble by unification.
More specifically, here's how it works (Oct 16):
* Wanted constraints are born as [WD]; this behaves like a
[W] and a [D] paired together.
* When we are about to add a [WD] to the inert set, if it can
be rewritten by a [D] a ~ ty, then we split it into [W] and [D],
putting the latter into the work list (see maybeEmitShadow).
In the example above, we get to the point where we are stuck:
[WD] Foo ee ~ fmv
[WD] fmv ~ Maybe e
[WD] fmv ~ Maybe ee
But now when [WD] fmv ~ Maybe ee is about to be added, we'll
split it into [W] and [D], since the inert [WD] fmv ~ Maybe e
can rewrite it. Then:
work item: [D] fmv ~ Maybe ee
inert: [W] fmv ~ Maybe ee
[WD] fmv ~ Maybe e -- (C)
[WD] Foo ee ~ fmv
See Note [Splitting WD constraints]. Now the work item is rewritten
by (C) and we soon get ee := e.
Additional notes:
* The derived shadow equalities live in inert_eqs, along with
the Givens and Wanteds; see Note [EqualCtList invariants].
* We make Derived shadows only for Wanteds, not Givens. So we
have only [G], not [GD] and [G] plus splitting. See
Note [Add derived shadows only for Wanteds]
* We also get Derived equalities from functional dependencies
and type-function injectivity; see calls to unifyDerived.
* This splitting business applies to CFunEqCans too; and then
we do apply type-function reductions to the [D] CFunEqCan.
See Note [Reduction for Derived CFunEqCans]
* It's worth having [WD] rather than just [W] and [D] because
* efficiency: silly to process the same thing twice
* inert_funeqs, inert_dicts is a finite map keyed by
the type; it's inconvenient for it to map to TWO constraints
Note [Splitting WD constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We are about to add a [WD] constraint to the inert set; and we
know that the inert set has fully rewritten it. Should we split
it into [W] and [D], and put the [D] in the work list for further
work?
* CDictCan (C tys) or CFunEqCan (F tys ~ fsk):
Yes if the inert set could rewrite tys to make the class constraint,
or type family, fire. That is, yes if the inert_eqs intersects
with the free vars of tys. For this test we use
(anyRewritableTyVar True) which ignores casts and coercions in tys,
because rewriting the casts or coercions won't make the thing fire
more often.
* CTyEqCan (a ~ ty): Yes if the inert set could rewrite 'a' or 'ty'.
We need to check both 'a' and 'ty' against the inert set:
- Inert set contains [D] a ~ ty2
Then we want to put [D] a ~ ty in the worklist, so we'll
get [D] ty ~ ty2 with consequent good things
- Inert set contains [D] b ~ a, where b is in ty.
We can't just add [WD] a ~ ty[b] to the inert set, because
that breaks the inert-set invariants. If we tried to
canonicalise another [D] constraint mentioning 'a', we'd
get an infinite loop
Moreover we must use (anyRewritableTyVar False) for the RHS,
because even tyvars in the casts and coercions could give
an infinite loop if we don't expose it
* CIrredCan: Yes if the inert set can rewrite the constraint.
We used to think splitting irreds was unnecessary, but
see Note [Splitting Irred WD constraints]
* Others: nothing is gained by splitting.
Note [Splitting Irred WD constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Splitting Irred constraints can make a difference. Here is the
scenario:
a[sk] :: F v -- F is a type family
beta :: alpha
work item: [WD] a ~ beta
This is heterogeneous, so we try flattening the kinds.
co :: F v ~ fmv
[WD] (a |> co) ~ beta
This is still hetero, so we emit a kind equality and make the work item an
inert Irred.
work item: [D] fmv ~ alpha
inert: [WD] (a |> co) ~ beta (CIrredCan)
Can't make progress on the work item. Add to inert set. This kicks out the
old inert, because a [D] can rewrite a [WD].
work item: [WD] (a |> co) ~ beta
inert: [D] fmv ~ alpha (CTyEqCan)
Can't make progress on this work item either (although GHC tries by
decomposing the cast and reflattening... but that doesn't make a difference),
which is still hetero. Emit a new kind equality and add to inert set. But,
critically, we split the Irred.
work list:
[D] fmv ~ alpha (CTyEqCan)
[D] (a |> co) ~ beta (CIrred) -- this one was split off
inert:
[W] (a |> co) ~ beta
[D] fmv ~ alpha
We quickly solve the first work item, as it's the same as an inert.
work item: [D] (a |> co) ~ beta
inert:
[W] (a |> co) ~ beta
[D] fmv ~ alpha
We decompose the cast, yielding
[D] a ~ beta
We then flatten the kinds. The lhs kind is F v, which flattens to fmv which
then rewrites to alpha.
co' :: F v ~ alpha
[D] (a |> co') ~ beta
Now this equality is homo-kinded. So we swizzle it around to
[D] beta ~ (a |> co')
and set beta := a |> co', and go home happy.
If we don't split the Irreds, we loop. This is all dangerously subtle.
This is triggered by test case typecheck/should_compile/SplitWD.
Note [Examples of how Derived shadows helps completeness]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#10009, a very nasty example:
f :: (UnF (F b) ~ b) => F b -> ()
g :: forall a. (UnF (F a) ~ a) => a -> ()
g _ = f (undefined :: F a)
For g we get [G] UnF (F a) ~ a
[WD] UnF (F beta) ~ beta
[WD] F a ~ F beta
Flatten:
[G] g1: F a ~ fsk1 fsk1 := F a
[G] g2: UnF fsk1 ~ fsk2 fsk2 := UnF fsk1
[G] g3: fsk2 ~ a
[WD] w1: F beta ~ fmv1
[WD] w2: UnF fmv1 ~ fmv2
[WD] w3: fmv2 ~ beta
[WD] w4: fmv1 ~ fsk1 -- From F a ~ F beta using flat-cache
-- and re-orient to put meta-var on left
Rewrite w2 with w4: [D] d1: UnF fsk1 ~ fmv2
React that with g2: [D] d2: fmv2 ~ fsk2
React that with w3: [D] beta ~ fsk2
and g3: [D] beta ~ a -- Hooray beta := a
And that is enough to solve everything
Note [Add derived shadows only for Wanteds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We only add shadows for Wanted constraints. That is, we have
[WD] but not [GD]; and maybeEmitShaodw looks only at [WD]
constraints.
It does just possibly make sense ot add a derived shadow for a
Given. If we created a Derived shadow of a Given, it could be
rewritten by other Deriveds, and that could, conceivably, lead to a
useful unification.
But (a) I have been unable to come up with an example of this
happening
(b) see #12660 for how adding the derived shadows
of a Given led to an infinite loop.
(c) It's unlikely that rewriting derived Givens will lead
to a unification because Givens don't mention touchable
unification variables
For (b) there may be other ways to solve the loop, but simply
reraining from adding derived shadows of Givens is particularly
simple. And it's more efficient too!
Still, here's one possible reason for adding derived shadows
for Givens. Consider
work-item [G] a ~ [b], inerts has [D] b ~ a.
If we added the derived shadow (into the work list)
[D] a ~ [b]
When we process it, we'll rewrite to a ~ [a] and get an
occurs check. Without it we'll miss the occurs check (reporting
inaccessible code); but that's probably OK.
Note [Keep CDictCan shadows as CDictCan]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
class C a => D a b
and [G] D a b, [G] C a in the inert set. Now we insert
[D] b ~ c. We want to kick out a derived shadow for [D] D a b,
so we can rewrite it with the new constraint, and perhaps get
instance reduction or other consequences.
BUT we do not want to kick out a *non-canonical* (D a b). If we
did, we would do this:
- rewrite it to [D] D a c, with pend_sc = True
- use expandSuperClasses to add C a
- go round again, which solves C a from the givens
This loop goes on for ever and triggers the simpl_loop limit.
Solution: kick out the CDictCan which will have pend_sc = False,
because we've already added its superclasses. So we won't re-add
them. If we forget the pend_sc flag, our cunning scheme for avoiding
generating superclasses repeatedly will fail.
See #11379 for a case of this.
Note [Do not do improvement for WOnly]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do improvement between two constraints (e.g. for injectivity
or functional dependencies) only if both are "improvable". And
we improve a constraint wrt the top-level instances only if
it is improvable.
Improvable: [G] [WD] [D}
Not improvable: [W]
Reasons:
* It's less work: fewer pairs to compare
* Every [W] has a shadow [D] so nothing is lost
* Consider [WD] C Int b, where 'b' is a skolem, and
class C a b | a -> b
instance C Int Bool
We'll do a fundep on it and emit [D] b ~ Bool
That will kick out constraint [WD] C Int b
Then we'll split it to [W] C Int b (keep in inert)
and [D] C Int b (in work list)
When processing the latter we'll rewrite it to
[D] C Int Bool
At that point it would be /stupid/ to interact it
with the inert [W] C Int b in the inert set; after all,
it's the very constraint from which the [D] C Int Bool
was split! We can avoid this by not doing improvement
on [W] constraints. This came up in #12860.
-}
maybeEmitShadow :: InertCans -> Ct -> TcS Ct
-- See Note [The improvement story and derived shadows]
maybeEmitShadow ics ct
| let ev = ctEvidence ct
, CtWanted { ctev_pred = pred, ctev_loc = loc
, ctev_nosh = WDeriv } <- ev
, shouldSplitWD (inert_eqs ics) ct
= do { traceTcS "Emit derived shadow" (ppr ct)
; let derived_ev = CtDerived { ctev_pred = pred
, ctev_loc = loc }
shadow_ct = ct { cc_ev = derived_ev }
-- Te shadow constraint keeps the canonical shape.
-- This just saves work, but is sometimes important;
-- see Note [Keep CDictCan shadows as CDictCan]
; emitWork [shadow_ct]
; let ev' = ev { ctev_nosh = WOnly }
ct' = ct { cc_ev = ev' }
-- Record that it now has a shadow
-- This is /the/ place we set the flag to WOnly
; return ct' }
| otherwise
= return ct
shouldSplitWD :: InertEqs -> Ct -> Bool
-- Precondition: 'ct' is [WD], and is inert
-- True <=> we should split ct ito [W] and [D] because
-- the inert_eqs can make progress on the [D]
-- See Note [Splitting WD constraints]
shouldSplitWD inert_eqs (CFunEqCan { cc_tyargs = tys })
= should_split_match_args inert_eqs tys
-- We don't need to split if the tv is the RHS fsk
shouldSplitWD inert_eqs (CDictCan { cc_tyargs = tys })
= should_split_match_args inert_eqs tys
-- NB True: ignore coercions
-- See Note [Splitting WD constraints]
shouldSplitWD inert_eqs (CTyEqCan { cc_tyvar = tv, cc_rhs = ty
, cc_eq_rel = eq_rel })
= tv `elemDVarEnv` inert_eqs
|| anyRewritableTyVar False eq_rel (canRewriteTv inert_eqs) ty
-- NB False: do not ignore casts and coercions
-- See Note [Splitting WD constraints]
shouldSplitWD inert_eqs (CIrredCan { cc_ev = ev })
= anyRewritableTyVar False (ctEvEqRel ev) (canRewriteTv inert_eqs) (ctEvPred ev)
shouldSplitWD _ _ = False -- No point in splitting otherwise
should_split_match_args :: InertEqs -> [TcType] -> Bool
-- True if the inert_eqs can rewrite anything in the argument
-- types, ignoring casts and coercions
should_split_match_args inert_eqs tys
= any (anyRewritableTyVar True NomEq (canRewriteTv inert_eqs)) tys
-- NB True: ignore casts coercions
-- See Note [Splitting WD constraints]
canRewriteTv :: InertEqs -> EqRel -> TyVar -> Bool
canRewriteTv inert_eqs eq_rel tv
| Just (ct : _) <- lookupDVarEnv inert_eqs tv
, CTyEqCan { cc_eq_rel = eq_rel1 } <- ct
= eq_rel1 `eqCanRewrite` eq_rel
| otherwise
= False
isImprovable :: CtEvidence -> Bool
-- See Note [Do not do improvement for WOnly]
isImprovable (CtWanted { ctev_nosh = WOnly }) = False
isImprovable _ = True
{- *********************************************************************
* *
Inert equalities
* *
********************************************************************* -}
addTyEq :: InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq old_eqs tv ct
= extendDVarEnv_C add_eq old_eqs tv [ct]
where
add_eq old_eqs _
| isWantedCt ct
, (eq1 : eqs) <- old_eqs
= eq1 : ct : eqs
| otherwise
= ct : old_eqs
foldTyEqs :: (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs k eqs z
= foldDVarEnv (\cts z -> foldr k z cts) z eqs
findTyEqs :: InertCans -> TyVar -> EqualCtList
findTyEqs icans tv = lookupDVarEnv (inert_eqs icans) tv `orElse` []
delTyEq :: InertEqs -> TcTyVar -> TcType -> InertEqs
delTyEq m tv t = modifyDVarEnv (filter (not . isThisOne)) m tv
where isThisOne (CTyEqCan { cc_rhs = t1 }) = eqType t t1
isThisOne _ = False
lookupInertTyVar :: InertEqs -> TcTyVar -> Maybe TcType
lookupInertTyVar ieqs tv
= case lookupDVarEnv ieqs tv of
Just (CTyEqCan { cc_rhs = rhs, cc_eq_rel = NomEq } : _ ) -> Just rhs
_ -> Nothing
{- *********************************************************************
* *
Inert instances: inert_insts
* *
********************************************************************* -}
addInertForAll :: QCInst -> TcS ()
-- Add a local Given instance, typically arising from a type signature
addInertForAll new_qci
= do { ics <- getInertCans
; insts' <- add_qci (inert_insts ics)
; setInertCans (ics { inert_insts = insts' }) }
where
add_qci :: [QCInst] -> TcS [QCInst]
-- See Note [Do not add duplicate quantified instances]
add_qci qcis
| any same_qci qcis
= do { traceTcS "skipping duplicate quantified instance" (ppr new_qci)
; return qcis }
| otherwise
= do { traceTcS "adding new inert quantified instance" (ppr new_qci)
; return (new_qci : qcis) }
same_qci old_qci = tcEqType (ctEvPred (qci_ev old_qci))
(ctEvPred (qci_ev new_qci))
{- Note [Do not add duplicate quantified instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (#15244):
f :: (C g, D g) => ....
class S g => C g where ...
class S g => D g where ...
class (forall a. Eq a => Eq (g a)) => S g where ...
Then in f's RHS there are two identical quantified constraints
available, one via the superclasses of C and one via the superclasses
of D. The two are identical, and it seems wrong to reject the program
because of that. But without doing duplicate-elimination we will have
two matching QCInsts when we try to solve constraints arising from f's
RHS.
The simplest thing is simply to eliminate duplicates, which we do here.
-}
{- *********************************************************************
* *
Adding an inert
* *
************************************************************************
Note [Adding an equality to the InertCans]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When adding an equality to the inerts:
* Split [WD] into [W] and [D] if the inerts can rewrite the latter;
done by maybeEmitShadow.
* Kick out any constraints that can be rewritten by the thing
we are adding. Done by kickOutRewritable.
* Note that unifying a:=ty, is like adding [G] a~ty; just use
kickOutRewritable with Nominal, Given. See kickOutAfterUnification.
Note [Kicking out CFunEqCan for fundeps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
New: [D] fmv1 ~ fmv2
Inert: [W] F alpha ~ fmv1
[W] F beta ~ fmv2
where F is injective. The new (derived) equality certainly can't
rewrite the inerts. But we *must* kick out the first one, to get:
New: [W] F alpha ~ fmv1
Inert: [W] F beta ~ fmv2
[D] fmv1 ~ fmv2
and now improvement will discover [D] alpha ~ beta. This is important;
eg in #9587.
So in kickOutRewritable we look at all the tyvars of the
CFunEqCan, including the fsk.
-}
addInertCan :: Ct -> TcS () -- Constraints *other than* equalities
-- Precondition: item /is/ canonical
-- See Note [Adding an equality to the InertCans]
addInertCan ct
= do { traceTcS "insertInertCan {" $
text "Trying to insert new inert item:" <+> ppr ct
; ics <- getInertCans
; ct <- maybeEmitShadow ics ct
; ics <- maybeKickOut ics ct
; setInertCans (add_item ics ct)
; traceTcS "addInertCan }" $ empty }
maybeKickOut :: InertCans -> Ct -> TcS InertCans
-- For a CTyEqCan, kick out any inert that can be rewritten by the CTyEqCan
maybeKickOut ics ct
| CTyEqCan { cc_tyvar = tv, cc_ev = ev, cc_eq_rel = eq_rel } <- ct
= do { (_, ics') <- kickOutRewritable (ctEvFlavour ev, eq_rel) tv ics
; return ics' }
| otherwise
= return ics
add_item :: InertCans -> Ct -> InertCans
add_item ics item@(CFunEqCan { cc_fun = tc, cc_tyargs = tys })
= ics { inert_funeqs = insertFunEq (inert_funeqs ics) tc tys item }
add_item ics item@(CTyEqCan { cc_tyvar = tv, cc_ev = ev })
= ics { inert_eqs = addTyEq (inert_eqs ics) tv item
, inert_count = bumpUnsolvedCount ev (inert_count ics) }
add_item ics@(IC { inert_irreds = irreds, inert_count = count })
item@(CIrredCan { cc_ev = ev, cc_status = status })
= ics { inert_irreds = irreds `Bag.snocBag` item
, inert_count = case status of
InsolubleCIS -> count
_ -> bumpUnsolvedCount ev count }
-- inert_count does not include insolubles
add_item ics item@(CDictCan { cc_ev = ev, cc_class = cls, cc_tyargs = tys })
= ics { inert_dicts = addDict (inert_dicts ics) cls tys item
, inert_count = bumpUnsolvedCount ev (inert_count ics) }
add_item _ item
= pprPanic "upd_inert set: can't happen! Inserting " $
ppr item -- Can't be CNonCanonical, CHoleCan,
-- because they only land in inert_irreds
bumpUnsolvedCount :: CtEvidence -> Int -> Int
bumpUnsolvedCount ev n | isWanted ev = n+1
| otherwise = n
-----------------------------------------
kickOutRewritable :: CtFlavourRole -- Flavour/role of the equality that
-- is being added to the inert set
-> TcTyVar -- The new equality is tv ~ ty
-> InertCans
-> TcS (Int, InertCans)
kickOutRewritable new_fr new_tv ics
= do { let (kicked_out, ics') = kick_out_rewritable new_fr new_tv ics
n_kicked = workListSize kicked_out
; unless (n_kicked == 0) $
do { updWorkListTcS (appendWorkList kicked_out)
; csTraceTcS $
hang (text "Kick out, tv =" <+> ppr new_tv)
2 (vcat [ text "n-kicked =" <+> int n_kicked
, text "kicked_out =" <+> ppr kicked_out
, text "Residual inerts =" <+> ppr ics' ]) }
; return (n_kicked, ics') }
kick_out_rewritable :: CtFlavourRole -- Flavour/role of the equality that
-- is being added to the inert set
-> TcTyVar -- The new equality is tv ~ ty
-> InertCans
-> (WorkList, InertCans)
-- See Note [kickOutRewritable]
kick_out_rewritable new_fr new_tv
ics@(IC { inert_eqs = tv_eqs
, inert_dicts = dictmap
, inert_safehask = safehask
, inert_funeqs = funeqmap
, inert_irreds = irreds
, inert_insts = old_insts
, inert_count = n })
| not (new_fr `eqMayRewriteFR` new_fr)
= (emptyWorkList, ics)
-- If new_fr can't rewrite itself, it can't rewrite
-- anything else, so no need to kick out anything.
-- (This is a common case: wanteds can't rewrite wanteds)
-- Lemma (L2) in Note [Extending the inert equalities]
| otherwise
= (kicked_out, inert_cans_in)
where
inert_cans_in = IC { inert_eqs = tv_eqs_in
, inert_dicts = dicts_in
, inert_safehask = safehask -- ??
, inert_funeqs = feqs_in
, inert_irreds = irs_in
, inert_insts = insts_in
, inert_count = n - workListWantedCount kicked_out }
kicked_out :: WorkList
-- NB: use extendWorkList to ensure that kicked-out equalities get priority
-- See Note [Prioritise equalities] (Kick-out).
-- The irreds may include non-canonical (hetero-kinded) equality
-- constraints, which perhaps may have become soluble after new_tv
-- is substituted; ditto the dictionaries, which may include (a~b)
-- or (a~~b) constraints.
kicked_out = foldr extendWorkListCt
(emptyWorkList { wl_eqs = tv_eqs_out
, wl_funeqs = feqs_out })
((dicts_out `andCts` irs_out)
`extendCtsList` insts_out)
(tv_eqs_out, tv_eqs_in) = foldDVarEnv kick_out_eqs ([], emptyDVarEnv) tv_eqs
(feqs_out, feqs_in) = partitionFunEqs kick_out_ct funeqmap
-- See Note [Kicking out CFunEqCan for fundeps]
(dicts_out, dicts_in) = partitionDicts kick_out_ct dictmap
(irs_out, irs_in) = partitionBag kick_out_ct irreds
-- Kick out even insolubles: See Note [Rewrite insolubles]
-- Of course we must kick out irreducibles like (c a), in case
-- we can rewrite 'c' to something more useful
-- Kick-out for inert instances
-- See Note [Quantified constraints] in GHC.Tc.Solver.Canonical
insts_out :: [Ct]
insts_in :: [QCInst]
(insts_out, insts_in)
| fr_may_rewrite (Given, NomEq) -- All the insts are Givens
= partitionWith kick_out_qci old_insts
| otherwise
= ([], old_insts)
kick_out_qci qci
| let ev = qci_ev qci
, fr_can_rewrite_ty NomEq (ctEvPred (qci_ev qci))
= Left (mkNonCanonical ev)
| otherwise
= Right qci
(_, new_role) = new_fr
fr_can_rewrite_ty :: EqRel -> Type -> Bool
fr_can_rewrite_ty role ty = anyRewritableTyVar False role
fr_can_rewrite_tv ty
fr_can_rewrite_tv :: EqRel -> TyVar -> Bool
fr_can_rewrite_tv role tv = new_role `eqCanRewrite` role
&& tv == new_tv
fr_may_rewrite :: CtFlavourRole -> Bool
fr_may_rewrite fs = new_fr `eqMayRewriteFR` fs
-- Can the new item rewrite the inert item?
kick_out_ct :: Ct -> Bool
-- Kick it out if the new CTyEqCan can rewrite the inert one
-- See Note [kickOutRewritable]
kick_out_ct ct | let fs@(_,role) = ctFlavourRole ct
= fr_may_rewrite fs
&& fr_can_rewrite_ty role (ctPred ct)
-- False: ignore casts and coercions
-- NB: this includes the fsk of a CFunEqCan. It can't
-- actually be rewritten, but we need to kick it out
-- so we get to take advantage of injectivity
-- See Note [Kicking out CFunEqCan for fundeps]
kick_out_eqs :: EqualCtList -> ([Ct], DTyVarEnv EqualCtList)
-> ([Ct], DTyVarEnv EqualCtList)
kick_out_eqs eqs (acc_out, acc_in)
= (eqs_out ++ acc_out, case eqs_in of
[] -> acc_in
(eq1:_) -> extendDVarEnv acc_in (cc_tyvar eq1) eqs_in)
where
(eqs_out, eqs_in) = partition kick_out_eq eqs
-- Implements criteria K1-K3 in Note [Extending the inert equalities]
kick_out_eq (CTyEqCan { cc_tyvar = tv, cc_rhs = rhs_ty
, cc_ev = ev, cc_eq_rel = eq_rel })
| not (fr_may_rewrite fs)
= False -- Keep it in the inert set if the new thing can't rewrite it
-- Below here (fr_may_rewrite fs) is True
| tv == new_tv = True -- (K1)
| kick_out_for_inertness = True
| kick_out_for_completeness = True
| otherwise = False
where
fs = (ctEvFlavour ev, eq_rel)
kick_out_for_inertness
= (fs `eqMayRewriteFR` fs) -- (K2a)
&& not (fs `eqMayRewriteFR` new_fr) -- (K2b)
&& fr_can_rewrite_ty eq_rel rhs_ty -- (K2d)
-- (K2c) is guaranteed by the first guard of keep_eq
kick_out_for_completeness
= case eq_rel of
NomEq -> rhs_ty `eqType` mkTyVarTy new_tv
ReprEq -> isTyVarHead new_tv rhs_ty
kick_out_eq ct = pprPanic "keep_eq" (ppr ct)
kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification new_tv
= do { ics <- getInertCans
; (n_kicked, ics2) <- kickOutRewritable (Given,NomEq)
new_tv ics
-- Given because the tv := xi is given; NomEq because
-- only nominal equalities are solved by unification
; setInertCans ics2
; return n_kicked }
-- See Wrinkle (2b) in Note [Equalities with incompatible kinds] in TcCanonical
kickOutAfterFillingCoercionHole :: CoercionHole -> TcS ()
kickOutAfterFillingCoercionHole hole
= do { ics <- getInertCans
; let (kicked_out, ics') = kick_out ics
n_kicked = workListSize kicked_out
; unless (n_kicked == 0) $
do { updWorkListTcS (appendWorkList kicked_out)
; csTraceTcS $
hang (text "Kick out, hole =" <+> ppr hole)
2 (vcat [ text "n-kicked =" <+> int n_kicked
, text "kicked_out =" <+> ppr kicked_out
, text "Residual inerts =" <+> ppr ics' ]) }
; setInertCans ics' }
where
kick_out :: InertCans -> (WorkList, InertCans)
kick_out ics@(IC { inert_irreds = irreds })
= let (to_kick, to_keep) = partitionBag kick_ct irreds
kicked_out = extendWorkListCts (bagToList to_kick) emptyWorkList
ics' = ics { inert_irreds = to_keep }
in
(kicked_out, ics')
kick_ct :: Ct -> Bool
-- This is not particularly efficient. Ways to do better:
-- 1) Have a custom function that looks for a coercion hole and returns a Bool
-- 2) Keep co-hole-blocked constraints in a separate part of the inert set,
-- keyed by their co-hole. (Is it possible for more than one co-hole to be
-- in a constraint? I doubt it.)
kick_ct (CIrredCan { cc_ev = ev, cc_status = BlockedCIS })
= coHoleCoVar hole `elemVarSet` tyCoVarsOfType (ctEvPred ev)
kick_ct _other = False
{- Note [kickOutRewritable]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [inert_eqs: the inert equalities].
When we add a new inert equality (a ~N ty) to the inert set,
we must kick out any inert items that could be rewritten by the
new equality, to maintain the inert-set invariants.
- We want to kick out an existing inert constraint if
a) the new constraint can rewrite the inert one
b) 'a' is free in the inert constraint (so that it *will*)
rewrite it if we kick it out.
For (b) we use tyCoVarsOfCt, which returns the type variables /and
the kind variables/ that are directly visible in the type. Hence
we will have exposed all the rewriting we care about to make the
most precise kinds visible for matching classes etc. No need to
kick out constraints that mention type variables whose kinds
contain this variable!
- A Derived equality can kick out [D] constraints in inert_eqs,
inert_dicts, inert_irreds etc.
- We don't kick out constraints from inert_solved_dicts, and
inert_solved_funeqs optimistically. But when we lookup we have to
take the substitution into account
Note [Rewrite insolubles]
~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have an insoluble alpha ~ [alpha], which is insoluble
because an occurs check. And then we unify alpha := [Int]. Then we
really want to rewrite the insoluble to [Int] ~ [[Int]]. Now it can
be decomposed. Otherwise we end up with a "Can't match [Int] ~
[[Int]]" which is true, but a bit confusing because the outer type
constructors match.
Similarly, if we have a CHoleCan, we'd like to rewrite it with any
Givens, to give as informative an error messasge as possible
(#12468, #11325).
Hence:
* In the main simplifier loops in GHC.Tc.Solver (solveWanteds,
simpl_loop), we feed the insolubles in solveSimpleWanteds,
so that they get rewritten (albeit not solved).
* We kick insolubles out of the inert set, if they can be
rewritten (see GHC.Tc.Solver.Monad.kick_out_rewritable)
* We rewrite those insolubles in GHC.Tc.Solver.Canonical.
See Note [Make sure that insolubles are fully rewritten]
-}
--------------
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask ics item@(CDictCan { cc_class = cls, cc_tyargs = tys })
= ics { inert_safehask = addDict (inert_dicts ics) cls tys item }
addInertSafehask _ item
= pprPanic "addInertSafehask: can't happen! Inserting " $ ppr item
insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
-- See Note [Safe Haskell Overlapping Instances Implementation] in GHC.Tc.Solver
insertSafeOverlapFailureTcS what item
| safeOverlap what = return ()
| otherwise = updInertCans (\ics -> addInertSafehask ics item)
getSafeOverlapFailures :: TcS Cts
-- See Note [Safe Haskell Overlapping Instances Implementation] in GHC.Tc.Solver
getSafeOverlapFailures
= do { IC { inert_safehask = safehask } <- getInertCans
; return $ foldDicts consCts safehask emptyCts }
--------------
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [Type] -> TcS ()
-- Conditionally add a new item in the solved set of the monad
-- See Note [Solved dictionaries]
addSolvedDict what item cls tys
| isWanted item
, instanceReturnsDictCon what
= do { traceTcS "updSolvedSetTcs:" $ ppr item
; updInertTcS $ \ ics ->
ics { inert_solved_dicts = addDict (inert_solved_dicts ics) cls tys item } }
| otherwise
= return ()
getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts = do { ics <- getTcSInerts; return (inert_solved_dicts ics) }
setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts solved_dicts
= updInertTcS $ \ ics ->
ics { inert_solved_dicts = solved_dicts }
{- *********************************************************************
* *
Other inert-set operations
* *
********************************************************************* -}
updInertTcS :: (InertSet -> InertSet) -> TcS ()
-- Modify the inert set with the supplied function
updInertTcS upd_fn
= do { is_var <- getTcSInertsRef
; wrapTcS (do { curr_inert <- TcM.readTcRef is_var
; TcM.writeTcRef is_var (upd_fn curr_inert) }) }
getInertCans :: TcS InertCans
getInertCans = do { inerts <- getTcSInerts; return (inert_cans inerts) }
setInertCans :: InertCans -> TcS ()
setInertCans ics = updInertTcS $ \ inerts -> inerts { inert_cans = ics }
updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
-- Modify the inert set with the supplied function
updRetInertCans upd_fn
= do { is_var <- getTcSInertsRef
; wrapTcS (do { inerts <- TcM.readTcRef is_var
; let (res, cans') = upd_fn (inert_cans inerts)
; TcM.writeTcRef is_var (inerts { inert_cans = cans' })
; return res }) }
updInertCans :: (InertCans -> InertCans) -> TcS ()
-- Modify the inert set with the supplied function
updInertCans upd_fn
= updInertTcS $ \ inerts -> inerts { inert_cans = upd_fn (inert_cans inerts) }
updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertDicts upd_fn
= updInertCans $ \ ics -> ics { inert_dicts = upd_fn (inert_dicts ics) }
updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertSafehask upd_fn
= updInertCans $ \ ics -> ics { inert_safehask = upd_fn (inert_safehask ics) }
updInertFunEqs :: (FunEqMap Ct -> FunEqMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertFunEqs upd_fn
= updInertCans $ \ ics -> ics { inert_funeqs = upd_fn (inert_funeqs ics) }
updInertIrreds :: (Cts -> Cts) -> TcS ()
-- Modify the inert set with the supplied function
updInertIrreds upd_fn
= updInertCans $ \ ics -> ics { inert_irreds = upd_fn (inert_irreds ics) }
getInertEqs :: TcS (DTyVarEnv EqualCtList)
getInertEqs = do { inert <- getInertCans; return (inert_eqs inert) }
getInertInsols :: TcS Cts
-- Returns insoluble equality constraints
-- specifically including Givens
getInertInsols = do { inert <- getInertCans
; return (filterBag insolubleEqCt (inert_irreds inert)) }
getInertGivens :: TcS [Ct]
-- Returns the Given constraints in the inert set,
-- with type functions *not* unflattened
getInertGivens
= do { inerts <- getInertCans
; let all_cts = foldDicts (:) (inert_dicts inerts)
$ foldFunEqs (:) (inert_funeqs inerts)
$ concat (dVarEnvElts (inert_eqs inerts))
; return (filter isGivenCt all_cts) }
getPendingGivenScs :: TcS [Ct]
-- Find all inert Given dictionaries, or quantified constraints,
-- whose cc_pend_sc flag is True
-- and that belong to the current level
-- Set their cc_pend_sc flag to False in the inert set, and return that Ct
getPendingGivenScs = do { lvl <- getTcLevel
; updRetInertCans (get_sc_pending lvl) }
get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending this_lvl ic@(IC { inert_dicts = dicts, inert_insts = insts })
= ASSERT2( all isGivenCt sc_pending, ppr sc_pending )
-- When getPendingScDics is called,
-- there are never any Wanteds in the inert set
(sc_pending, ic { inert_dicts = dicts', inert_insts = insts' })
where
sc_pending = sc_pend_insts ++ sc_pend_dicts
sc_pend_dicts = foldDicts get_pending dicts []
dicts' = foldr add dicts sc_pend_dicts
(sc_pend_insts, insts') = mapAccumL get_pending_inst [] insts
get_pending :: Ct -> [Ct] -> [Ct] -- Get dicts with cc_pend_sc = True
-- but flipping the flag
get_pending dict dicts
| Just dict' <- isPendingScDict dict
, belongs_to_this_level (ctEvidence dict)
= dict' : dicts
| otherwise
= dicts
add :: Ct -> DictMap Ct -> DictMap Ct
add ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) dicts
= addDict dicts cls tys ct
add ct _ = pprPanic "getPendingScDicts" (ppr ct)
get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst cts qci@(QCI { qci_ev = ev })
| Just qci' <- isPendingScInst qci
, belongs_to_this_level ev
= (CQuantCan qci' : cts, qci')
| otherwise
= (cts, qci)
belongs_to_this_level ev = ctLocLevel (ctEvLoc ev) == this_lvl
-- We only want Givens from this level; see (3a) in
-- Note [The superclass story] in GHC.Tc.Solver.Canonical
getUnsolvedInerts :: TcS ( Bag Implication
, Cts -- Tyvar eqs: a ~ ty
, Cts -- Fun eqs: F a ~ ty
, Cts ) -- All others
-- Return all the unsolved [Wanted] or [Derived] constraints
--
-- Post-condition: the returned simple constraints are all fully zonked
-- (because they come from the inert set)
-- the unsolved implics may not be
getUnsolvedInerts
= do { IC { inert_eqs = tv_eqs
, inert_funeqs = fun_eqs
, inert_irreds = irreds
, inert_dicts = idicts
} <- getInertCans
; let unsolved_tv_eqs = foldTyEqs add_if_unsolved tv_eqs emptyCts
unsolved_fun_eqs = foldFunEqs add_if_wanted fun_eqs emptyCts
unsolved_irreds = Bag.filterBag is_unsolved irreds
unsolved_dicts = foldDicts add_if_unsolved idicts emptyCts
unsolved_others = unsolved_irreds `unionBags` unsolved_dicts
; implics <- getWorkListImplics
; traceTcS "getUnsolvedInerts" $
vcat [ text " tv eqs =" <+> ppr unsolved_tv_eqs
, text "fun eqs =" <+> ppr unsolved_fun_eqs
, text "others =" <+> ppr unsolved_others
, text "implics =" <+> ppr implics ]
; return ( implics, unsolved_tv_eqs, unsolved_fun_eqs, unsolved_others) }
where
add_if_unsolved :: Ct -> Cts -> Cts
add_if_unsolved ct cts | is_unsolved ct = ct `consCts` cts
| otherwise = cts
is_unsolved ct = not (isGivenCt ct) -- Wanted or Derived
-- For CFunEqCans we ignore the Derived ones, and keep
-- only the Wanteds for flattening. The Derived ones
-- share a unification variable with the corresponding
-- Wanted, so we definitely don't want to participate
-- in unflattening
-- See Note [Type family equations]
add_if_wanted ct cts | isWantedCt ct = ct `consCts` cts
| otherwise = cts
isInInertEqs :: DTyVarEnv EqualCtList -> TcTyVar -> TcType -> Bool
-- True if (a ~N ty) is in the inert set, in either Given or Wanted
isInInertEqs eqs tv rhs
= case lookupDVarEnv eqs tv of
Nothing -> False
Just cts -> any (same_pred rhs) cts
where
same_pred rhs ct
| CTyEqCan { cc_rhs = rhs2, cc_eq_rel = eq_rel } <- ct
, NomEq <- eq_rel
, rhs `eqType` rhs2 = True
| otherwise = False
getNoGivenEqs :: TcLevel -- TcLevel of this implication
-> [TcTyVar] -- Skolems of this implication
-> TcS ( Bool -- True <=> definitely no residual given equalities
, Cts ) -- Insoluble equalities arising from givens
-- See Note [When does an implication have given equalities?]
getNoGivenEqs tclvl skol_tvs
= do { inerts@(IC { inert_eqs = ieqs, inert_irreds = irreds })
<- getInertCans
; let has_given_eqs = foldr ((||) . ct_given_here) False irreds
|| anyDVarEnv eqs_given_here ieqs
insols = filterBag insolubleEqCt irreds
-- Specifically includes ones that originated in some
-- outer context but were refined to an insoluble by
-- a local equality; so do /not/ add ct_given_here.
; traceTcS "getNoGivenEqs" $
vcat [ if has_given_eqs then text "May have given equalities"
else text "No given equalities"
, text "Skols:" <+> ppr skol_tvs
, text "Inerts:" <+> ppr inerts
, text "Insols:" <+> ppr insols]
; return (not has_given_eqs, insols) }
where
eqs_given_here :: EqualCtList -> Bool
eqs_given_here [ct@(CTyEqCan { cc_tyvar = tv })]
-- Givens are always a singleton
= not (skolem_bound_here tv) && ct_given_here ct
eqs_given_here _ = False
ct_given_here :: Ct -> Bool
-- True for a Given bound by the current implication,
-- i.e. the current level
ct_given_here ct = isGiven ev
&& tclvl == ctLocLevel (ctEvLoc ev)
where
ev = ctEvidence ct
skol_tv_set = mkVarSet skol_tvs
skolem_bound_here tv -- See Note [Let-bound skolems]
= case tcTyVarDetails tv of
SkolemTv {} -> tv `elemVarSet` skol_tv_set
_ -> False
-- | Returns Given constraints that might,
-- potentially, match the given pred. This is used when checking to see if a
-- Given might overlap with an instance. See Note [Instance and Given overlap]
-- in GHC.Tc.Solver.Interact.
matchableGivens :: CtLoc -> PredType -> InertSet -> Cts
matchableGivens loc_w pred_w (IS { inert_cans = inert_cans })
= filterBag matchable_given all_relevant_givens
where
-- just look in class constraints and irreds. matchableGivens does get called
-- for ~R constraints, but we don't need to look through equalities, because
-- canonical equalities are used for rewriting. We'll only get caught by
-- non-canonical -- that is, irreducible -- equalities.
all_relevant_givens :: Cts
all_relevant_givens
| Just (clas, _) <- getClassPredTys_maybe pred_w
= findDictsByClass (inert_dicts inert_cans) clas
`unionBags` inert_irreds inert_cans
| otherwise
= inert_irreds inert_cans
matchable_given :: Ct -> Bool
matchable_given ct
| CtGiven { ctev_loc = loc_g, ctev_pred = pred_g } <- ctEvidence ct
= mightMatchLater pred_g loc_g pred_w loc_w
| otherwise
= False
mightMatchLater :: TcPredType -> CtLoc -> TcPredType -> CtLoc -> Bool
mightMatchLater given_pred given_loc wanted_pred wanted_loc
= not (prohibitedSuperClassSolve given_loc wanted_loc)
&& isJust (tcUnifyTys bind_meta_tv [given_pred] [wanted_pred])
where
bind_meta_tv :: TcTyVar -> BindFlag
-- Any meta tyvar may be unified later, so we treat it as
-- bindable when unifying with givens. That ensures that we
-- conservatively assume that a meta tyvar might get unified with
-- something that matches the 'given', until demonstrated
-- otherwise. More info in Note [Instance and Given overlap]
-- in GHC.Tc.Solver.Interact
bind_meta_tv tv | isMetaTyVar tv
, not (isFskTyVar tv) = BindMe
| otherwise = Skolem
prohibitedSuperClassSolve :: CtLoc -> CtLoc -> Bool
-- See Note [Solving superclass constraints] in GHC.Tc.TyCl.Instance
prohibitedSuperClassSolve from_loc solve_loc
| GivenOrigin (InstSC given_size) <- ctLocOrigin from_loc
, ScOrigin wanted_size <- ctLocOrigin solve_loc
= given_size >= wanted_size
| otherwise
= False
{- Note [Unsolved Derived equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In getUnsolvedInerts, we return a derived equality from the inert_eqs
because it is a candidate for floating out of this implication. We
only float equalities with a meta-tyvar on the left, so we only pull
those out here.
Note [When does an implication have given equalities?]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider an implication
beta => alpha ~ Int
where beta is a unification variable that has already been unified
to () in an outer scope. Then we can float the (alpha ~ Int) out
just fine. So when deciding whether the givens contain an equality,
we should canonicalise first, rather than just looking at the original
givens (#8644).
So we simply look at the inert, canonical Givens and see if there are
any equalities among them, the calculation of has_given_eqs. There
are some wrinkles:
* We must know which ones are bound in *this* implication and which
are bound further out. We can find that out from the TcLevel
of the Given, which is itself recorded in the tcl_tclvl field
of the TcLclEnv stored in the Given (ev_given_here).
What about interactions between inner and outer givens?
- Outer given is rewritten by an inner given, then there must
have been an inner given equality, hence the “given-eq” flag
will be true anyway.
- Inner given rewritten by outer, retains its level (ie. The inner one)
* We must take account of *potential* equalities, like the one above:
beta => ...blah...
If we still don't know what beta is, we conservatively treat it as potentially
becoming an equality. Hence including 'irreds' in the calculation or has_given_eqs.
* When flattening givens, we generate Given equalities like
<F [a]> : F [a] ~ f,
with Refl evidence, and we *don't* want those to count as an equality
in the givens! After all, the entire flattening business is just an
internal matter, and the evidence does not mention any of the 'givens'
of this implication. So we do not treat inert_funeqs as a 'given equality'.
* See Note [Let-bound skolems] for another wrinkle
* We do *not* need to worry about representational equalities, because
these do not affect the ability to float constraints.
Note [Let-bound skolems]
~~~~~~~~~~~~~~~~~~~~~~~~
If * the inert set contains a canonical Given CTyEqCan (a ~ ty)
and * 'a' is a skolem bound in this very implication,
then:
a) The Given is pretty much a let-binding, like
f :: (a ~ b->c) => a -> a
Here the equality constraint is like saying
let a = b->c in ...
It is not adding any new, local equality information,
and hence can be ignored by has_given_eqs
b) 'a' will have been completely substituted out in the inert set,
so we can safely discard it. Notably, it doesn't need to be
returned as part of 'fsks'
For an example, see #9211.
See also GHC.Tc.Utils.Unify Note [Deeper level on the left] for how we ensure
that the right variable is on the left of the equality when both are
tyvars.
You might wonder whether the skokem really needs to be bound "in the
very same implication" as the equuality constraint.
(c.f. #15009) Consider this:
data S a where
MkS :: (a ~ Int) => S a
g :: forall a. S a -> a -> blah
g x y = let h = \z. ( z :: Int
, case x of
MkS -> [y,z])
in ...
From the type signature for `g`, we get `y::a` . Then when when we
encounter the `\z`, we'll assign `z :: alpha[1]`, say. Next, from the
body of the lambda we'll get
[W] alpha[1] ~ Int -- From z::Int
[W] forall[2]. (a ~ Int) => [W] alpha[1] ~ a -- From [y,z]
Now, suppose we decide to float `alpha ~ a` out of the implication
and then unify `alpha := a`. Now we are stuck! But if treat
`alpha ~ Int` first, and unify `alpha := Int`, all is fine.
But we absolutely cannot float that equality or we will get stuck.
-}
removeInertCts :: [Ct] -> InertCans -> InertCans
-- ^ Remove inert constraints from the 'InertCans', for use when a
-- typechecker plugin wishes to discard a given.
removeInertCts cts icans = foldl' removeInertCt icans cts
removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt is ct =
case ct of
CDictCan { cc_class = cl, cc_tyargs = tys } ->
is { inert_dicts = delDict (inert_dicts is) cl tys }
CFunEqCan { cc_fun = tf, cc_tyargs = tys } ->
is { inert_funeqs = delFunEq (inert_funeqs is) tf tys }
CTyEqCan { cc_tyvar = x, cc_rhs = ty } ->
is { inert_eqs = delTyEq (inert_eqs is) x ty }
CQuantCan {} -> panic "removeInertCt: CQuantCan"
CIrredCan {} -> panic "removeInertCt: CIrredEvCan"
CNonCanonical {} -> panic "removeInertCt: CNonCanonical"
CHoleCan {} -> panic "removeInertCt: CHoleCan"
lookupFlatCache :: TyCon -> [Type] -> TcS (Maybe (TcCoercion, TcType, CtFlavour))
lookupFlatCache fam_tc tys
= do { IS { inert_flat_cache = flat_cache
, inert_cans = IC { inert_funeqs = inert_funeqs } } <- getTcSInerts
; return (firstJusts [lookup_inerts inert_funeqs,
lookup_flats flat_cache]) }
where
lookup_inerts inert_funeqs
| Just (CFunEqCan { cc_ev = ctev, cc_fsk = fsk, cc_tyargs = xis })
<- findFunEq inert_funeqs fam_tc tys
, tys `eqTypes` xis -- The lookup might find a near-match; see
-- Note [Use loose types in inert set]
= Just (ctEvCoercion ctev, mkTyVarTy fsk, ctEvFlavour ctev)
| otherwise = Nothing
lookup_flats flat_cache = findExactFunEq flat_cache fam_tc tys
lookupInInerts :: CtLoc -> TcPredType -> TcS (Maybe CtEvidence)
-- Is this exact predicate type cached in the solved or canonicals of the InertSet?
lookupInInerts loc pty
| ClassPred cls tys <- classifyPredType pty
= do { inerts <- getTcSInerts
; return (lookupSolvedDict inerts loc cls tys `mplus`
lookupInertDict (inert_cans inerts) loc cls tys) }
| otherwise -- NB: No caching for equalities, IPs, holes, or errors
= return Nothing
-- | Look up a dictionary inert. NB: the returned 'CtEvidence' might not
-- match the input exactly. Note [Use loose types in inert set].
lookupInertDict :: InertCans -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
lookupInertDict (IC { inert_dicts = dicts }) loc cls tys
= case findDict dicts loc cls tys of
Just ct -> Just (ctEvidence ct)
_ -> Nothing
-- | Look up a solved inert. NB: the returned 'CtEvidence' might not
-- match the input exactly. See Note [Use loose types in inert set].
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
-- Returns just if exactly this predicate type exists in the solved.
lookupSolvedDict (IS { inert_solved_dicts = solved }) loc cls tys
= case findDict solved loc cls tys of
Just ev -> Just ev
_ -> Nothing
{- *********************************************************************
* *
Irreds
* *
********************************************************************* -}
foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds k irreds z = foldr k z irreds
{- *********************************************************************
* *
TcAppMap
* *
************************************************************************
Note [Use loose types in inert set]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Say we know (Eq (a |> c1)) and we need (Eq (a |> c2)). One is clearly
solvable from the other. So, we do lookup in the inert set using
loose types, which omit the kind-check.
We must be careful when using the result of a lookup because it may
not match the requested info exactly!
-}
type TcAppMap a = UniqDFM (ListMap LooseTypeMap a)
-- Indexed by tycon then the arg types, using "loose" matching, where
-- we don't require kind equality. This allows, for example, (a |> co)
-- to match (a).
-- See Note [Use loose types in inert set]
-- Used for types and classes; hence UniqDFM
-- See Note [foldTM determinism] for why we use UniqDFM here
isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap m = isNullUDFM m
emptyTcAppMap :: TcAppMap a
emptyTcAppMap = emptyUDFM
findTcApp :: TcAppMap a -> Unique -> [Type] -> Maybe a
findTcApp m u tys = do { tys_map <- lookupUDFM m u
; lookupTM tys tys_map }
delTcApp :: TcAppMap a -> Unique -> [Type] -> TcAppMap a
delTcApp m cls tys = adjustUDFM (deleteTM tys) m cls
insertTcApp :: TcAppMap a -> Unique -> [Type] -> a -> TcAppMap a
insertTcApp m cls tys ct = alterUDFM alter_tm m cls
where
alter_tm mb_tm = Just (insertTM tys ct (mb_tm `orElse` emptyTM))
-- mapTcApp :: (a->b) -> TcAppMap a -> TcAppMap b
-- mapTcApp f = mapUDFM (mapTM f)
filterTcAppMap :: (Ct -> Bool) -> TcAppMap Ct -> TcAppMap Ct
filterTcAppMap f m
= mapUDFM do_tm m
where
do_tm tm = foldTM insert_mb tm emptyTM
insert_mb ct tm
| f ct = insertTM tys ct tm
| otherwise = tm
where
tys = case ct of
CFunEqCan { cc_tyargs = tys } -> tys
CDictCan { cc_tyargs = tys } -> tys
_ -> pprPanic "filterTcAppMap" (ppr ct)
tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag m = foldTcAppMap consBag m emptyBag
foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap k m z = foldUDFM (foldTM k) z m
{- *********************************************************************
* *
DictMap
* *
********************************************************************* -}
{- Note [Tuples hiding implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
f,g :: (?x::Int, C a) => a -> a
f v = let ?x = 4 in g v
The call to 'g' gives rise to a Wanted constraint (?x::Int, C a).
We must /not/ solve this from the Given (?x::Int, C a), because of
the intervening binding for (?x::Int). #14218.
We deal with this by arranging that we always fail when looking up a
tuple constraint that hides an implicit parameter. Not that this applies
* both to the inert_dicts (lookupInertDict)
* and to the solved_dicts (looukpSolvedDict)
An alternative would be not to extend these sets with such tuple
constraints, but it seemed more direct to deal with the lookup.
Note [Solving CallStack constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose f :: HasCallStack => blah. Then
* Each call to 'f' gives rise to
[W] s1 :: IP "callStack" CallStack -- CtOrigin = OccurrenceOf f
with a CtOrigin that says "OccurrenceOf f".
Remember that HasCallStack is just shorthand for
IP "callStack CallStack
See Note [Overview of implicit CallStacks] in GHC.Tc.Types.Evidence
* We cannonicalise such constraints, in GHC.Tc.Solver.Canonical.canClassNC, by
pushing the call-site info on the stack, and changing the CtOrigin
to record that has been done.
Bind: s1 = pushCallStack <site-info> s2
[W] s2 :: IP "callStack" CallStack -- CtOrigin = IPOccOrigin
* Then, and only then, we can solve the constraint from an enclosing
Given.
So we must be careful /not/ to solve 's1' from the Givens. Again,
we ensure this by arranging that findDict always misses when looking
up souch constraints.
-}
type DictMap a = TcAppMap a
emptyDictMap :: DictMap a
emptyDictMap = emptyTcAppMap
findDict :: DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict m loc cls tys
| isCTupleClass cls
, any hasIPPred tys -- See Note [Tuples hiding implicit parameters]
= Nothing
| Just {} <- isCallStackPred cls tys
, OccurrenceOf {} <- ctLocOrigin loc
= Nothing -- See Note [Solving CallStack constraints]
| otherwise
= findTcApp m (getUnique cls) tys
findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass m cls
| Just tm <- lookupUDFM m cls = foldTM consBag tm emptyBag
| otherwise = emptyBag
delDict :: DictMap a -> Class -> [Type] -> DictMap a
delDict m cls tys = delTcApp m (getUnique cls) tys
addDict :: DictMap a -> Class -> [Type] -> a -> DictMap a
addDict m cls tys item = insertTcApp m (getUnique cls) tys item
addDictsByClass :: DictMap Ct -> Class -> Bag Ct -> DictMap Ct
addDictsByClass m cls items
= addToUDFM m cls (foldr add emptyTM items)
where
add ct@(CDictCan { cc_tyargs = tys }) tm = insertTM tys ct tm
add ct _ = pprPanic "addDictsByClass" (ppr ct)
filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts f m = filterTcAppMap f m
partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts f m = foldTcAppMap k m (emptyBag, emptyDicts)
where
k ct (yeses, noes) | f ct = (ct `consBag` yeses, noes)
| otherwise = (yeses, add ct noes)
add ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) m
= addDict m cls tys ct
add ct _ = pprPanic "partitionDicts" (ppr ct)
dictsToBag :: DictMap a -> Bag a
dictsToBag = tcAppMapToBag
foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts = foldTcAppMap
emptyDicts :: DictMap a
emptyDicts = emptyTcAppMap
{- *********************************************************************
* *
FunEqMap
* *
********************************************************************* -}
type FunEqMap a = TcAppMap a -- A map whose key is a (TyCon, [Type]) pair
emptyFunEqs :: TcAppMap a
emptyFunEqs = emptyTcAppMap
findFunEq :: FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq m tc tys = findTcApp m (getUnique tc) tys
funEqsToBag :: FunEqMap a -> Bag a
funEqsToBag m = foldTcAppMap consBag m emptyBag
findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
-- Get inert function equation constraints that have the given tycon
-- in their head. Not that the constraints remain in the inert set.
-- We use this to check for derived interactions with built-in type-function
-- constructors.
findFunEqsByTyCon m tc
| Just tm <- lookupUDFM m tc = foldTM (:) tm []
| otherwise = []
foldFunEqs :: (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs = foldTcAppMap
-- mapFunEqs :: (a -> b) -> FunEqMap a -> FunEqMap b
-- mapFunEqs = mapTcApp
-- filterFunEqs :: (Ct -> Bool) -> FunEqMap Ct -> FunEqMap Ct
-- filterFunEqs = filterTcAppMap
insertFunEq :: FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
insertFunEq m tc tys val = insertTcApp m (getUnique tc) tys val
partitionFunEqs :: (Ct -> Bool) -> FunEqMap Ct -> ([Ct], FunEqMap Ct)
-- Optimise for the case where the predicate is false
-- partitionFunEqs is called only from kick-out, and kick-out usually
-- kicks out very few equalities, so we want to optimise for that case
partitionFunEqs f m = (yeses, foldr del m yeses)
where
yeses = foldTcAppMap k m []
k ct yeses | f ct = ct : yeses
| otherwise = yeses
del (CFunEqCan { cc_fun = tc, cc_tyargs = tys }) m
= delFunEq m tc tys
del ct _ = pprPanic "partitionFunEqs" (ppr ct)
delFunEq :: FunEqMap a -> TyCon -> [Type] -> FunEqMap a
delFunEq m tc tys = delTcApp m (getUnique tc) tys
------------------------------
type ExactFunEqMap a = UniqFM (ListMap TypeMap a)
emptyExactFunEqs :: ExactFunEqMap a
emptyExactFunEqs = emptyUFM
findExactFunEq :: ExactFunEqMap a -> TyCon -> [Type] -> Maybe a
findExactFunEq m tc tys = do { tys_map <- lookupUFM m (getUnique tc)
; lookupTM tys tys_map }
insertExactFunEq :: ExactFunEqMap a -> TyCon -> [Type] -> a -> ExactFunEqMap a
insertExactFunEq m tc tys val = alterUFM alter_tm m (getUnique tc)
where alter_tm mb_tm = Just (insertTM tys val (mb_tm `orElse` emptyTM))
{-
************************************************************************
* *
* The TcS solver monad *
* *
************************************************************************
Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad
All you can do is
* fail
* allocate new variables
* fill in evidence variables
Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added. This is initialised from the innermost implication constraint.
-}
data TcSEnv
= TcSEnv {
tcs_ev_binds :: EvBindsVar,
tcs_unified :: IORef Int,
-- The number of unification variables we have filled
-- The important thing is whether it is non-zero
tcs_count :: IORef Int, -- Global step count
tcs_inerts :: IORef InertSet, -- Current inert set
-- The main work-list and the flattening worklist
-- See Note [Work list priorities] and
tcs_worklist :: IORef WorkList -- Current worklist
}
---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a } deriving (Functor)
instance Applicative TcS where
pure x = TcS (\_ -> return x)
(<*>) = ap
instance Monad TcS where
m >>= k = TcS (\ebs -> unTcS m ebs >>= \r -> unTcS (k r) ebs)
instance MonadFail TcS where
fail err = TcS (\_ -> fail err)
instance MonadUnique TcS where
getUniqueSupplyM = wrapTcS getUniqueSupplyM
instance HasModule TcS where
getModule = wrapTcS getModule
instance MonadThings TcS where
lookupThing n = wrapTcS (lookupThing n)
-- Basic functionality
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS = TcS . const -- a TcM action will not use the TcEvBinds
wrapErrTcS :: TcM a -> TcS a
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS
wrapWarnTcS :: TcM a -> TcS a
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS
failTcS, panicTcS :: SDoc -> TcS a
warnTcS :: WarningFlag -> SDoc -> TcS ()
addErrTcS :: SDoc -> TcS ()
failTcS = wrapTcS . TcM.failWith
warnTcS flag = wrapTcS . TcM.addWarn (Reason flag)
addErrTcS = wrapTcS . TcM.addErr
panicTcS doc = pprPanic "GHC.Tc.Solver.Canonical" doc
traceTcS :: String -> SDoc -> TcS ()
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)
runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS m = wrapTcS . runTcPluginM m =<< getTcEvBindsVar
instance HasDynFlags TcS where
getDynFlags = wrapTcS getDynFlags
getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS = wrapTcS TcM.getGlobalRdrEnv
bumpStepCountTcS :: TcS ()
bumpStepCountTcS = TcS $ \env -> do { let ref = tcs_count env
; n <- TcM.readTcRef ref
; TcM.writeTcRef ref (n+1) }
csTraceTcS :: SDoc -> TcS ()
csTraceTcS doc
= wrapTcS $ csTraceTcM (return doc)
traceFireTcS :: CtEvidence -> SDoc -> TcS ()
-- Dump a rule-firing trace
traceFireTcS ev doc
= TcS $ \env -> csTraceTcM $
do { n <- TcM.readTcRef (tcs_count env)
; tclvl <- TcM.getTcLevel
; return (hang (text "Step" <+> int n
<> brackets (text "l:" <> ppr tclvl <> comma <>
text "d:" <> ppr (ctLocDepth (ctEvLoc ev)))
<+> doc <> colon)
4 (ppr ev)) }
csTraceTcM :: TcM SDoc -> TcM ()
-- Constraint-solver tracing, -ddump-cs-trace
csTraceTcM mk_doc
= do { dflags <- getDynFlags
; when ( dopt Opt_D_dump_cs_trace dflags
|| dopt Opt_D_dump_tc_trace dflags )
( do { msg <- mk_doc
; TcM.dumpTcRn False
(dumpOptionsFromFlag Opt_D_dump_cs_trace)
"" FormatText
msg }) }
runTcS :: TcS a -- What to run
-> TcM (a, EvBindMap)
runTcS tcs
= do { ev_binds_var <- TcM.newTcEvBinds
; res <- runTcSWithEvBinds ev_binds_var tcs
; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
; return (res, ev_binds) }
-- | This variant of 'runTcS' will keep solving, even when only Deriveds
-- are left around. It also doesn't return any evidence, as callers won't
-- need it.
runTcSDeriveds :: TcS a -> TcM a
runTcSDeriveds tcs
= do { ev_binds_var <- TcM.newTcEvBinds
; runTcSWithEvBinds ev_binds_var tcs }
-- | This can deal only with equality constraints.
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities thing_inside
= do { ev_binds_var <- TcM.newNoTcEvBinds
; runTcSWithEvBinds ev_binds_var thing_inside }
runTcSWithEvBinds :: EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds ev_binds_var tcs
= do { unified_var <- TcM.newTcRef 0
; step_count <- TcM.newTcRef 0
; inert_var <- TcM.newTcRef emptyInert
; wl_var <- TcM.newTcRef emptyWorkList
; let env = TcSEnv { tcs_ev_binds = ev_binds_var
, tcs_unified = unified_var
, tcs_count = step_count
, tcs_inerts = inert_var
, tcs_worklist = wl_var }
-- Run the computation
; res <- unTcS tcs env
; count <- TcM.readTcRef step_count
; when (count > 0) $
csTraceTcM $ return (text "Constraint solver steps =" <+> int count)
; unflattenGivens inert_var
#if defined(DEBUG)
; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
; checkForCyclicBinds ev_binds
#endif
; return res }
----------------------------
#if defined(DEBUG)
checkForCyclicBinds :: EvBindMap -> TcM ()
checkForCyclicBinds ev_binds_map
| null cycles
= return ()
| null coercion_cycles
= TcM.traceTc "Cycle in evidence binds" $ ppr cycles
| otherwise
= pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
where
ev_binds = evBindMapBinds ev_binds_map
cycles :: [[EvBind]]
cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVerticesUniq edges]
coercion_cycles = [c | c <- cycles, any is_co_bind c]
is_co_bind (EvBind { eb_lhs = b }) = isEqPrimPred (varType b)
edges :: [ Node EvVar EvBind ]
edges = [ DigraphNode bind bndr (nonDetEltsUniqSet (evVarsOfTerm rhs))
| bind@(EvBind { eb_lhs = bndr, eb_rhs = rhs}) <- bagToList ev_binds ]
-- It's OK to use nonDetEltsUFM here as
-- stronglyConnCompFromEdgedVertices is still deterministic even
-- if the edges are in nondeterministic order as explained in
-- Note [Deterministic SCC] in GHC.Data.Graph.Directed.
#endif
----------------------------
setEvBindsTcS :: EvBindsVar -> TcS a -> TcS a
setEvBindsTcS ref (TcS thing_inside)
= TcS $ \ env -> thing_inside (env { tcs_ev_binds = ref })
nestImplicTcS :: EvBindsVar
-> TcLevel -> TcS a
-> TcS a
nestImplicTcS ref inner_tclvl (TcS thing_inside)
= TcS $ \ TcSEnv { tcs_unified = unified_var
, tcs_inerts = old_inert_var
, tcs_count = count
} ->
do { inerts <- TcM.readTcRef old_inert_var
; let nest_inert = emptyInert
{ inert_cans = inert_cans inerts
, inert_solved_dicts = inert_solved_dicts inerts }
-- See Note [Do not inherit the flat cache]
; new_inert_var <- TcM.newTcRef nest_inert
; new_wl_var <- TcM.newTcRef emptyWorkList
; let nest_env = TcSEnv { tcs_ev_binds = ref
, tcs_unified = unified_var
, tcs_count = count
, tcs_inerts = new_inert_var
, tcs_worklist = new_wl_var }
; res <- TcM.setTcLevel inner_tclvl $
thing_inside nest_env
; unflattenGivens new_inert_var
#if defined(DEBUG)
-- Perform a check that the thing_inside did not cause cycles
; ev_binds <- TcM.getTcEvBindsMap ref
; checkForCyclicBinds ev_binds
#endif
; return res }
{- Note [Do not inherit the flat cache]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We do not want to inherit the flat cache when processing nested
implications. Consider
a ~ F b, forall c. b~Int => blah
If we have F b ~ fsk in the flat-cache, and we push that into the
nested implication, we might miss that F b can be rewritten to F Int,
and hence perhaps solve it. Moreover, the fsk from outside is
flattened out after solving the outer level, but and we don't
do that flattening recursively.
-}
nestTcS :: TcS a -> TcS a
-- Use the current untouchables, augmenting the current
-- evidence bindings, and solved dictionaries
-- But have no effect on the InertCans, or on the inert_flat_cache
-- (we want to inherit the latter from processing the Givens)
nestTcS (TcS thing_inside)
= TcS $ \ env@(TcSEnv { tcs_inerts = inerts_var }) ->
do { inerts <- TcM.readTcRef inerts_var
; new_inert_var <- TcM.newTcRef inerts
; new_wl_var <- TcM.newTcRef emptyWorkList
; let nest_env = env { tcs_inerts = new_inert_var
, tcs_worklist = new_wl_var }
; res <- thing_inside nest_env
; new_inerts <- TcM.readTcRef new_inert_var
-- we want to propagate the safe haskell failures
; let old_ic = inert_cans inerts
new_ic = inert_cans new_inerts
nxt_ic = old_ic { inert_safehask = inert_safehask new_ic }
; TcM.writeTcRef inerts_var -- See Note [Propagate the solved dictionaries]
(inerts { inert_solved_dicts = inert_solved_dicts new_inerts
, inert_cans = nxt_ic })
; return res }
emitImplicationTcS :: TcLevel -> SkolemInfo
-> [TcTyVar] -- Skolems
-> [EvVar] -- Givens
-> Cts -- Wanteds
-> TcS TcEvBinds
-- Add an implication to the TcS monad work-list
emitImplicationTcS new_tclvl skol_info skol_tvs givens wanteds
= do { let wc = emptyWC { wc_simple = wanteds }
; imp <- wrapTcS $
do { ev_binds_var <- TcM.newTcEvBinds
; imp <- TcM.newImplication
; return (imp { ic_tclvl = new_tclvl
, ic_skols = skol_tvs
, ic_given = givens
, ic_wanted = wc
, ic_binds = ev_binds_var
, ic_info = skol_info }) }
; emitImplication imp
; return (TcEvBinds (ic_binds imp)) }
emitTvImplicationTcS :: TcLevel -> SkolemInfo
-> [TcTyVar] -- Skolems
-> Cts -- Wanteds
-> TcS ()
-- Just like emitImplicationTcS but no givens and no bindings
emitTvImplicationTcS new_tclvl skol_info skol_tvs wanteds
= do { let wc = emptyWC { wc_simple = wanteds }
; imp <- wrapTcS $
do { ev_binds_var <- TcM.newNoTcEvBinds
; imp <- TcM.newImplication
; return (imp { ic_tclvl = new_tclvl
, ic_skols = skol_tvs
, ic_wanted = wc
, ic_binds = ev_binds_var
, ic_info = skol_info }) }
; emitImplication imp }
{- Note [Propagate the solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's really quite important that nestTcS does not discard the solved
dictionaries from the thing_inside.
Consider
Eq [a]
forall b. empty => Eq [a]
We solve the simple (Eq [a]), under nestTcS, and then turn our attention to
the implications. It's definitely fine to use the solved dictionaries on
the inner implications, and it can make a significant performance difference
if you do so.
-}
-- Getters and setters of GHC.Tc.Utils.Env fields
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)
getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef = TcS (return . tcs_worklist)
getTcSInerts :: TcS InertSet
getTcSInerts = getTcSInertsRef >>= readTcRef
setTcSInerts :: InertSet -> TcS ()
setTcSInerts ics = do { r <- getTcSInertsRef; writeTcRef r ics }
getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics
= do { wl_var <- getTcSWorkListRef
; wl_curr <- readTcRef wl_var
; return (wl_implics wl_curr) }
pushLevelNoWorkList :: SDoc -> TcS a -> TcS (TcLevel, a)
-- Push the level and run thing_inside
-- However, thing_inside should not generate any work items
#if defined(DEBUG)
pushLevelNoWorkList err_doc (TcS thing_inside)
= TcS (\env -> TcM.pushTcLevelM $
thing_inside (env { tcs_worklist = wl_panic })
)
where
wl_panic = pprPanic "GHC.Tc.Solver.Monad.buildImplication" err_doc
-- This panic checks that the thing-inside
-- does not emit any work-list constraints
#else
pushLevelNoWorkList _ (TcS thing_inside)
= TcS (\env -> TcM.pushTcLevelM (thing_inside env)) -- Don't check
#endif
updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS f
= do { wl_var <- getTcSWorkListRef
; updTcRef wl_var f }
emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC evs
| null evs
= return ()
| otherwise
= emitWork (map mkNonCanonical evs)
emitWork :: [Ct] -> TcS ()
emitWork [] = return () -- avoid printing, among other work
emitWork cts
= do { traceTcS "Emitting fresh work" (vcat (map ppr cts))
; updWorkListTcS (extendWorkListCts cts) }
emitImplication :: Implication -> TcS ()
emitImplication implic
= updWorkListTcS (extendWorkListImplic implic)
newTcRef :: a -> TcS (TcRef a)
newTcRef x = wrapTcS (TcM.newTcRef x)
readTcRef :: TcRef a -> TcS a
readTcRef ref = wrapTcS (TcM.readTcRef ref)
writeTcRef :: TcRef a -> a -> TcS ()
writeTcRef ref val = wrapTcS (TcM.writeTcRef ref val)
updTcRef :: TcRef a -> (a->a) -> TcS ()
updTcRef ref upd_fn = wrapTcS (TcM.updTcRef ref upd_fn)
getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar = TcS (return . tcs_ev_binds)
getTcLevel :: TcS TcLevel
getTcLevel = wrapTcS TcM.getTcLevel
getTcEvTyCoVars :: EvBindsVar -> TcS TyCoVarSet
getTcEvTyCoVars ev_binds_var
= wrapTcS $ TcM.getTcEvTyCoVars ev_binds_var
getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap ev_binds_var
= wrapTcS $ TcM.getTcEvBindsMap ev_binds_var
setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap ev_binds_var binds
= wrapTcS $ TcM.setTcEvBindsMap ev_binds_var binds
unifyTyVar :: TcTyVar -> TcType -> TcS ()
-- Unify a meta-tyvar with a type
-- We keep track of how many unifications have happened in tcs_unified,
--
-- We should never unify the same variable twice!
unifyTyVar tv ty
= ASSERT2( isMetaTyVar tv, ppr tv )
TcS $ \ env ->
do { TcM.traceTc "unifyTyVar" (ppr tv <+> text ":=" <+> ppr ty)
; TcM.writeMetaTyVar tv ty
; TcM.updTcRef (tcs_unified env) (+1) }
reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications (TcS thing_inside)
= TcS $ \ env ->
do { inner_unified <- TcM.newTcRef 0
; res <- thing_inside (env { tcs_unified = inner_unified })
; n_unifs <- TcM.readTcRef inner_unified
; TcM.updTcRef (tcs_unified env) (+ n_unifs)
; return (n_unifs, res) }
getDefaultInfo :: TcS ([Type], (Bool, Bool))
getDefaultInfo = wrapTcS TcM.tcGetDefaultTys
-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getInstEnvs :: TcS InstEnvs
getInstEnvs = wrapTcS $ TcM.tcGetInstEnvs
getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs
getTopEnv :: TcS HscEnv
getTopEnv = wrapTcS $ TcM.getTopEnv
getGblEnv :: TcS TcGblEnv
getGblEnv = wrapTcS $ TcM.getGblEnv
getLclEnv :: TcS TcLclEnv
getLclEnv = wrapTcS $ TcM.getLclEnv
tcLookupClass :: Name -> TcS Class
tcLookupClass c = wrapTcS $ TcM.tcLookupClass c
tcLookupId :: Name -> TcS Id
tcLookupId n = wrapTcS $ TcM.tcLookupId n
-- Setting names as used (used in the deriving of Coercible evidence)
-- Too hackish to expose it to TcS? In that case somehow extract the used
-- constructors from the result of solveInteract
addUsedGREs :: [GlobalRdrElt] -> TcS ()
addUsedGREs gres = wrapTcS $ TcM.addUsedGREs gres
addUsedGRE :: Bool -> GlobalRdrElt -> TcS ()
addUsedGRE warn_if_deprec gre = wrapTcS $ TcM.addUsedGRE warn_if_deprec gre
keepAlive :: Name -> TcS ()
keepAlive = wrapTcS . TcM.keepAlive
-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
checkWellStagedDFun :: CtLoc -> InstanceWhat -> PredType -> TcS ()
-- Check that we do not try to use an instance before it is available. E.g.
-- instance Eq T where ...
-- f x = $( ... (\(p::T) -> p == p)... )
-- Here we can't use the equality function from the instance in the splice
checkWellStagedDFun loc what pred
| TopLevInstance { iw_dfun_id = dfun_id } <- what
, let bind_lvl = TcM.topIdLvl dfun_id
, bind_lvl > impLevel
= wrapTcS $ TcM.setCtLocM loc $
do { use_stage <- TcM.getStage
; TcM.checkWellStaged pp_thing bind_lvl (thLevel use_stage) }
| otherwise
= return () -- Fast path for common case
where
pp_thing = text "instance for" <+> quotes (ppr pred)
pprEq :: TcType -> TcType -> SDoc
pprEq ty1 ty2 = pprParendType ty1 <+> char '~' <+> pprParendType ty2
isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe tv = wrapTcS (TcM.isFilledMetaTyVar_maybe tv)
isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar tv = wrapTcS (TcM.isFilledMetaTyVar tv)
zonkTyCoVarsAndFV :: TcTyCoVarSet -> TcS TcTyCoVarSet
zonkTyCoVarsAndFV tvs = wrapTcS (TcM.zonkTyCoVarsAndFV tvs)
zonkTyCoVarsAndFVList :: [TcTyCoVar] -> TcS [TcTyCoVar]
zonkTyCoVarsAndFVList tvs = wrapTcS (TcM.zonkTyCoVarsAndFVList tvs)
zonkCo :: Coercion -> TcS Coercion
zonkCo = wrapTcS . TcM.zonkCo
zonkTcType :: TcType -> TcS TcType
zonkTcType ty = wrapTcS (TcM.zonkTcType ty)
zonkTcTypes :: [TcType] -> TcS [TcType]
zonkTcTypes tys = wrapTcS (TcM.zonkTcTypes tys)
zonkTcTyVar :: TcTyVar -> TcS TcType
zonkTcTyVar tv = wrapTcS (TcM.zonkTcTyVar tv)
zonkSimples :: Cts -> TcS Cts
zonkSimples cts = wrapTcS (TcM.zonkSimples cts)
zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC wc = wrapTcS (TcM.zonkWC wc)
zonkTyCoVarKind :: TcTyCoVar -> TcS TcTyCoVar
zonkTyCoVarKind tv = wrapTcS (TcM.zonkTyCoVarKind tv)
{- *********************************************************************
* *
* Flatten skolems *
* *
********************************************************************* -}
newFlattenSkolem :: CtFlavour -> CtLoc
-> TyCon -> [TcType] -- F xis
-> TcS (CtEvidence, Coercion, TcTyVar) -- [G/WD] x:: F xis ~ fsk
newFlattenSkolem flav loc tc xis
= do { stuff@(ev, co, fsk) <- new_skolem
; let fsk_ty = mkTyVarTy fsk
; extendFlatCache tc xis (co, fsk_ty, ctEvFlavour ev)
; return stuff }
where
fam_ty = mkTyConApp tc xis
new_skolem
| Given <- flav
= do { fsk <- wrapTcS (TcM.newFskTyVar fam_ty)
-- Extend the inert_fsks list, for use by unflattenGivens
; updInertTcS $ \is -> is { inert_fsks = (fsk, fam_ty) : inert_fsks is }
-- Construct the Refl evidence
; let pred = mkPrimEqPred fam_ty (mkTyVarTy fsk)
co = mkNomReflCo fam_ty
; ev <- newGivenEvVar loc (pred, evCoercion co)
; return (ev, co, fsk) }
| otherwise -- Generate a [WD] for both Wanted and Derived
-- See Note [No Derived CFunEqCans]
= do { fmv <- wrapTcS (TcM.newFmvTyVar fam_ty)
-- See (2a) in TcCanonical
-- Note [Equalities with incompatible kinds]
; (ev, hole_co) <- newWantedEq_SI NoBlockSubst WDeriv loc Nominal
fam_ty (mkTyVarTy fmv)
; return (ev, hole_co, fmv) }
----------------------------
unflattenGivens :: IORef InertSet -> TcM ()
-- Unflatten all the fsks created by flattening types in Given
-- constraints. We must be sure to do this, else we end up with
-- flatten-skolems buried in any residual Wanteds
--
-- NB: this is the /only/ way that a fsk (MetaDetails = FlatSkolTv)
-- is filled in. Nothing else does so.
--
-- It's here (rather than in GHC.Tc.Solver.Flatten) because the Right Places
-- to call it are in runTcSWithEvBinds/nestImplicTcS, where it
-- is nicely paired with the creation an empty inert_fsks list.
unflattenGivens inert_var
= do { inerts <- TcM.readTcRef inert_var
; TcM.traceTc "unflattenGivens" (ppr (inert_fsks inerts))
; mapM_ flatten_one (inert_fsks inerts) }
where
flatten_one (fsk, ty) = TcM.writeMetaTyVar fsk ty
----------------------------
extendFlatCache :: TyCon -> [Type] -> (TcCoercion, TcType, CtFlavour) -> TcS ()
extendFlatCache tc xi_args stuff@(_, ty, fl)
| isGivenOrWDeriv fl -- Maintain the invariant that inert_flat_cache
-- only has [G] and [WD] CFunEqCans
= do { dflags <- getDynFlags
; when (gopt Opt_FlatCache dflags) $
do { traceTcS "extendFlatCache" (vcat [ ppr tc <+> ppr xi_args
, ppr fl, ppr ty ])
-- 'co' can be bottom, in the case of derived items
; updInertTcS $ \ is@(IS { inert_flat_cache = fc }) ->
is { inert_flat_cache = insertExactFunEq fc tc xi_args stuff } } }
| otherwise
= return ()
----------------------------
unflattenFmv :: TcTyVar -> TcType -> TcS ()
-- Fill a flatten-meta-var, simply by unifying it.
-- This does NOT count as a unification in tcs_unified.
unflattenFmv tv ty
= ASSERT2( isMetaTyVar tv, ppr tv )
TcS $ \ _ ->
do { TcM.traceTc "unflattenFmv" (ppr tv <+> text ":=" <+> ppr ty)
; TcM.writeMetaTyVar tv ty }
----------------------------
demoteUnfilledFmv :: TcTyVar -> TcS ()
-- If a flatten-meta-var is still un-filled,
-- turn it into an ordinary meta-var
demoteUnfilledFmv fmv
= wrapTcS $ do { is_filled <- TcM.isFilledMetaTyVar fmv
; unless is_filled $
do { tv_ty <- TcM.newFlexiTyVarTy (tyVarKind fmv)
; TcM.writeMetaTyVar fmv tv_ty } }
-----------------------------
dischargeFunEq :: CtEvidence -> TcTyVar -> TcCoercion -> TcType -> TcS ()
-- (dischargeFunEq tv co ty)
-- Preconditions
-- - ev :: F tys ~ tv is a CFunEqCan
-- - tv is a FlatMetaTv of FlatSkolTv
-- - co :: F tys ~ xi
-- - fmv/fsk `notElem` xi
-- - fmv not filled (for Wanteds)
-- - xi is flattened (and obeys Note [Almost function-free] in GHC.Tc.Types)
--
-- Then for [W] or [WD], we actually fill in the fmv:
-- set fmv := xi,
-- set ev := co
-- kick out any inert things that are now rewritable
--
-- For [D], we instead emit an equality that must ultimately hold
-- [D] xi ~ fmv
-- Does not evaluate 'co' if 'ev' is Derived
--
-- For [G], emit this equality
-- [G] (sym ev; co) :: fsk ~ xi
-- See GHC.Tc.Solver.Flatten Note [The flattening story],
-- especially "Ownership of fsk/fmv"
dischargeFunEq (CtGiven { ctev_evar = old_evar, ctev_loc = loc }) fsk co xi
= do { new_ev <- newGivenEvVar loc ( new_pred, evCoercion new_co )
; emitWorkNC [new_ev] }
where
new_pred = mkPrimEqPred (mkTyVarTy fsk) xi
new_co = mkTcSymCo (mkTcCoVarCo old_evar) `mkTcTransCo` co
dischargeFunEq ev@(CtWanted { ctev_dest = dest }) fmv co xi
= ASSERT2( not (fmv `elemVarSet` tyCoVarsOfType xi), ppr ev $$ ppr fmv $$ ppr xi )
do { setWantedEvTerm dest (evCoercion co)
; unflattenFmv fmv xi
; n_kicked <- kickOutAfterUnification fmv
; traceTcS "dischargeFmv" (ppr fmv <+> equals <+> ppr xi $$ pprKicked n_kicked) }
dischargeFunEq (CtDerived { ctev_loc = loc }) fmv _co xi
= emitNewDerivedEq loc Nominal xi (mkTyVarTy fmv)
-- FunEqs are always at Nominal role
pprKicked :: Int -> SDoc
pprKicked 0 = empty
pprKicked n = parens (int n <+> text "kicked out")
{- *********************************************************************
* *
* Instantiation etc.
* *
********************************************************************* -}
-- Instantiations
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcThetaType)
instDFunType dfun_id inst_tys
= wrapTcS $ TcM.instDFunType dfun_id inst_tys
newFlexiTcSTy :: Kind -> TcS TcType
newFlexiTcSTy knd = wrapTcS (TcM.newFlexiTyVarTy knd)
cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar tv = wrapTcS (TcM.cloneMetaTyVar tv)
instFlexi :: [TKVar] -> TcS TCvSubst
instFlexi = instFlexiX emptyTCvSubst
instFlexiX :: TCvSubst -> [TKVar] -> TcS TCvSubst
instFlexiX subst tvs
= wrapTcS (foldlM instFlexiHelper subst tvs)
instFlexiHelper :: TCvSubst -> TKVar -> TcM TCvSubst
instFlexiHelper subst tv
= do { uniq <- TcM.newUnique
; details <- TcM.newMetaDetails TauTv
; let name = setNameUnique (tyVarName tv) uniq
kind = substTyUnchecked subst (tyVarKind tv)
ty' = mkTyVarTy (mkTcTyVar name kind details)
; TcM.traceTc "instFlexi" (ppr ty')
; return (extendTvSubst subst tv ty') }
matchGlobalInst :: DynFlags
-> Bool -- True <=> caller is the short-cut solver
-- See Note [Shortcut solving: overlap]
-> Class -> [Type] -> TcS TcM.ClsInstResult
matchGlobalInst dflags short_cut cls tys
= wrapTcS (TcM.matchGlobalInst dflags short_cut cls tys)
tcInstSkolTyVarsX :: TCvSubst -> [TyVar] -> TcS (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX subst tvs = wrapTcS $ TcM.tcInstSkolTyVarsX subst tvs
-- Creating and setting evidence variables and CtFlavors
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
data MaybeNew = Fresh CtEvidence | Cached EvExpr
isFresh :: MaybeNew -> Bool
isFresh (Fresh {}) = True
isFresh (Cached {}) = False
freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals mns = [ ctev | Fresh ctev <- mns ]
getEvExpr :: MaybeNew -> EvExpr
getEvExpr (Fresh ctev) = ctEvExpr ctev
getEvExpr (Cached evt) = evt
setEvBind :: EvBind -> TcS ()
setEvBind ev_bind
= do { evb <- getTcEvBindsVar
; wrapTcS $ TcM.addTcEvBind evb ev_bind }
-- | Mark variables as used filling a coercion hole
useVars :: CoVarSet -> TcS ()
useVars co_vars
= do { ev_binds_var <- getTcEvBindsVar
; let ref = ebv_tcvs ev_binds_var
; wrapTcS $
do { tcvs <- TcM.readTcRef ref
; let tcvs' = tcvs `unionVarSet` co_vars
; TcM.writeTcRef ref tcvs' } }
-- | Equalities only
setWantedEq :: TcEvDest -> Coercion -> TcS ()
setWantedEq (HoleDest hole) co
= do { useVars (coVarsOfCo co)
; fillCoercionHole hole co }
setWantedEq (EvVarDest ev) _ = pprPanic "setWantedEq" (ppr ev)
-- | Good for both equalities and non-equalities
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm (HoleDest hole) tm
| Just co <- evTermCoercion_maybe tm
= do { useVars (coVarsOfCo co)
; fillCoercionHole hole co }
| otherwise
= -- See Note [Yukky eq_sel for a HoleDest]
do { let co_var = coHoleCoVar hole
; setEvBind (mkWantedEvBind co_var tm)
; fillCoercionHole hole (mkTcCoVarCo co_var) }
setWantedEvTerm (EvVarDest ev_id) tm
= setEvBind (mkWantedEvBind ev_id tm)
{- Note [Yukky eq_sel for a HoleDest]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How can it be that a Wanted with HoleDest gets evidence that isn't
just a coercion? i.e. evTermCoercion_maybe returns Nothing.
Consider [G] forall a. blah => a ~ T
[W] S ~# T
Then doTopReactEqPred carefully looks up the (boxed) constraint (S ~
T) in the quantified constraints, and wraps the (boxed) evidence it
gets back in an eq_sel to extract the unboxed (S ~# T). We can't put
that term into a coercion, so we add a value binding
h = eq_sel (...)
and the coercion variable h to fill the coercion hole.
We even re-use the CoHole's Id for this binding!
Yuk!
-}
fillCoercionHole :: CoercionHole -> Coercion -> TcS ()
fillCoercionHole hole co
= do { wrapTcS $ TcM.fillCoercionHole hole co
; kickOutAfterFillingCoercionHole hole }
setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted ev tm
= case ev of
CtWanted { ctev_dest = dest } -> setWantedEvTerm dest tm
_ -> return ()
newTcEvBinds :: TcS EvBindsVar
newTcEvBinds = wrapTcS TcM.newTcEvBinds
newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds = wrapTcS TcM.newNoTcEvBinds
newEvVar :: TcPredType -> TcS EvVar
newEvVar pred = wrapTcS (TcM.newEvVar pred)
newGivenEvVar :: CtLoc -> (TcPredType, EvTerm) -> TcS CtEvidence
-- Make a new variable of the given PredType,
-- immediately bind it to the given term
-- and return its CtEvidence
-- See Note [Bind new Givens immediately] in GHC.Tc.Types.Constraint
newGivenEvVar loc (pred, rhs)
= do { new_ev <- newBoundEvVarId pred rhs
; return (CtGiven { ctev_pred = pred, ctev_evar = new_ev, ctev_loc = loc }) }
-- | Make a new 'Id' of the given type, bound (in the monad's EvBinds) to the
-- given term
newBoundEvVarId :: TcPredType -> EvTerm -> TcS EvVar
newBoundEvVarId pred rhs
= do { new_ev <- newEvVar pred
; setEvBind (mkGivenEvBind new_ev rhs)
; return new_ev }
newGivenEvVars :: CtLoc -> [(TcPredType, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars loc pts = mapM (newGivenEvVar loc) pts
emitNewWantedEq :: CtLoc -> Role -> TcType -> TcType -> TcS Coercion
-- | Emit a new Wanted equality into the work-list
emitNewWantedEq loc role ty1 ty2
= do { (ev, co) <- newWantedEq loc role ty1 ty2
; updWorkListTcS (extendWorkListEq (mkNonCanonical ev))
; return co }
-- | Make a new equality CtEvidence
newWantedEq :: CtLoc -> Role -> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq = newWantedEq_SI YesBlockSubst WDeriv
newWantedEq_SI :: BlockSubstFlag -> ShadowInfo -> CtLoc -> Role
-> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq_SI blocker si loc role ty1 ty2
= do { hole <- wrapTcS $ TcM.newCoercionHole blocker pty
; traceTcS "Emitting new coercion hole" (ppr hole <+> dcolon <+> ppr pty)
; return ( CtWanted { ctev_pred = pty, ctev_dest = HoleDest hole
, ctev_nosh = si
, ctev_loc = loc}
, mkHoleCo hole ) }
where
pty = mkPrimEqPredRole role ty1 ty2
-- no equalities here. Use newWantedEq instead
newWantedEvVarNC :: CtLoc -> TcPredType -> TcS CtEvidence
newWantedEvVarNC = newWantedEvVarNC_SI WDeriv
newWantedEvVarNC_SI :: ShadowInfo -> CtLoc -> TcPredType -> TcS CtEvidence
-- Don't look up in the solved/inerts; we know it's not there
newWantedEvVarNC_SI si loc pty
= do { new_ev <- newEvVar pty
; traceTcS "Emitting new wanted" (ppr new_ev <+> dcolon <+> ppr pty $$
pprCtLoc loc)
; return (CtWanted { ctev_pred = pty, ctev_dest = EvVarDest new_ev
, ctev_nosh = si
, ctev_loc = loc })}
newWantedEvVar :: CtLoc -> TcPredType -> TcS MaybeNew
newWantedEvVar = newWantedEvVar_SI WDeriv
newWantedEvVar_SI :: ShadowInfo -> CtLoc -> TcPredType -> TcS MaybeNew
-- For anything except ClassPred, this is the same as newWantedEvVarNC
newWantedEvVar_SI si loc pty
= do { mb_ct <- lookupInInerts loc pty
; case mb_ct of
Just ctev
| not (isDerived ctev)
-> do { traceTcS "newWantedEvVar/cache hit" $ ppr ctev
; return $ Cached (ctEvExpr ctev) }
_ -> do { ctev <- newWantedEvVarNC_SI si loc pty
; return (Fresh ctev) } }
newWanted :: CtLoc -> PredType -> TcS MaybeNew
-- Deals with both equalities and non equalities. Tries to look
-- up non-equalities in the cache
newWanted = newWanted_SI WDeriv
newWanted_SI :: ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWanted_SI si loc pty
| Just (role, ty1, ty2) <- getEqPredTys_maybe pty
= Fresh . fst <$> newWantedEq_SI YesBlockSubst si loc role ty1 ty2
| otherwise
= newWantedEvVar_SI si loc pty
-- deals with both equalities and non equalities. Doesn't do any cache lookups.
newWantedNC :: CtLoc -> PredType -> TcS CtEvidence
newWantedNC loc pty
| Just (role, ty1, ty2) <- getEqPredTys_maybe pty
= fst <$> newWantedEq loc role ty1 ty2
| otherwise
= newWantedEvVarNC loc pty
emitNewDeriveds :: CtLoc -> [TcPredType] -> TcS ()
emitNewDeriveds loc preds
| null preds
= return ()
| otherwise
= do { evs <- mapM (newDerivedNC loc) preds
; traceTcS "Emitting new deriveds" (ppr evs)
; updWorkListTcS (extendWorkListDeriveds evs) }
emitNewDerivedEq :: CtLoc -> Role -> TcType -> TcType -> TcS ()
-- Create new equality Derived and put it in the work list
-- There's no caching, no lookupInInerts
emitNewDerivedEq loc role ty1 ty2
= do { ev <- newDerivedNC loc (mkPrimEqPredRole role ty1 ty2)
; traceTcS "Emitting new derived equality" (ppr ev $$ pprCtLoc loc)
; updWorkListTcS (extendWorkListEq (mkNonCanonical ev)) }
-- Very important: put in the wl_eqs
-- See Note [Prioritise equalities] (Avoiding fundep iteration)
newDerivedNC :: CtLoc -> TcPredType -> TcS CtEvidence
newDerivedNC loc pred
= do { -- checkReductionDepth loc pred
; return (CtDerived { ctev_pred = pred, ctev_loc = loc }) }
-- --------- Check done in GHC.Tc.Solver.Interact.selectNewWorkItem???? ---------
-- | Checks if the depth of the given location is too much. Fails if
-- it's too big, with an appropriate error message.
checkReductionDepth :: CtLoc -> TcType -- ^ type being reduced
-> TcS ()
checkReductionDepth loc ty
= do { dflags <- getDynFlags
; when (subGoalDepthExceeded dflags (ctLocDepth loc)) $
wrapErrTcS $
solverDepthErrorTcS loc ty }
matchFam :: TyCon -> [Type] -> TcS (Maybe (CoercionN, TcType))
-- Given (F tys) return (ty, co), where co :: F tys ~N ty
matchFam tycon args = wrapTcS $ matchFamTcM tycon args
matchFamTcM :: TyCon -> [Type] -> TcM (Maybe (CoercionN, TcType))
-- Given (F tys) return (ty, co), where co :: F tys ~N ty
matchFamTcM tycon args
= do { fam_envs <- FamInst.tcGetFamInstEnvs
; let match_fam_result
= reduceTyFamApp_maybe fam_envs Nominal tycon args
; TcM.traceTc "matchFamTcM" $
vcat [ text "Matching:" <+> ppr (mkTyConApp tycon args)
, ppr_res match_fam_result ]
; return match_fam_result }
where
ppr_res Nothing = text "Match failed"
ppr_res (Just (co,ty)) = hang (text "Match succeeded:")
2 (vcat [ text "Rewrites to:" <+> ppr ty
, text "Coercion:" <+> ppr co ])
{-
Note [Residual implications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The wl_implics in the WorkList are the residual implication
constraints that are generated while solving or canonicalising the
current worklist. Specifically, when canonicalising
(forall a. t1 ~ forall a. t2)
from which we get the implication
(forall a. t1 ~ t2)
See GHC.Tc.Solver.Monad.deferTcSForAllEq
-}
|