1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates -Wno-orphans #-}
-- | Monadic definitions for the constraint solver
module GHC.Tc.Solver.Monad (
-- The TcS monad
TcS, runTcS, runTcSEarlyAbort, runTcSWithEvBinds, runTcSInerts,
failTcS, warnTcS, addErrTcS, wrapTcS,
runTcSEqualities,
nestTcS, nestImplicTcS, setEvBindsTcS,
emitImplicationTcS, emitTvImplicationTcS,
selectNextWorkItem,
getWorkList,
updWorkListTcS,
pushLevelNoWorkList,
runTcPluginTcS, addUsedGRE, addUsedGREs, keepAlive,
matchGlobalInst, TcM.ClsInstResult(..),
QCInst(..),
-- Tracing etc
panicTcS, traceTcS,
traceFireTcS, bumpStepCountTcS, csTraceTcS,
wrapErrTcS, wrapWarnTcS,
resetUnificationFlag, setUnificationFlag,
-- Evidence creation and transformation
MaybeNew(..), freshGoals, isFresh, getEvExpr,
newTcEvBinds, newNoTcEvBinds,
newWantedEq, emitNewWantedEq,
newWanted,
newWantedNC, newWantedEvVarNC,
newBoundEvVarId,
unifyTyVar, reportUnifications, touchabilityTest, TouchabilityTestResult(..),
setEvBind, setWantedEq,
setWantedEvTerm, setEvBindIfWanted,
newEvVar, newGivenEvVar, newGivenEvVars,
checkReductionDepth,
getSolvedDicts, setSolvedDicts,
getInstEnvs, getFamInstEnvs, -- Getting the environments
getTopEnv, getGblEnv, getLclEnv, setLclEnv,
getTcEvBindsVar, getTcLevel,
getTcEvTyCoVars, getTcEvBindsMap, setTcEvBindsMap,
tcLookupClass, tcLookupId,
-- Inerts
updInertTcS, updInertCans, updInertDicts, updInertIrreds,
getHasGivenEqs, setInertCans,
getInertEqs, getInertCans, getInertGivens,
getInertInsols, getInnermostGivenEqLevel,
getTcSInerts, setTcSInerts,
getUnsolvedInerts,
removeInertCts, getPendingGivenScs,
addInertCan, insertFunEq, addInertForAll,
emitWorkNC, emitWork,
lookupInertDict,
-- The Model
kickOutAfterUnification,
-- Inert Safe Haskell safe-overlap failures
addInertSafehask, insertSafeOverlapFailureTcS, updInertSafehask,
getSafeOverlapFailures,
-- Inert solved dictionaries
addSolvedDict, lookupSolvedDict,
-- Irreds
foldIrreds,
-- The family application cache
lookupFamAppInert, lookupFamAppCache, extendFamAppCache,
pprKicked,
instDFunType, -- Instantiation
-- MetaTyVars
newFlexiTcSTy, instFlexi, instFlexiX,
cloneMetaTyVar,
tcInstSkolTyVarsX,
TcLevel,
isFilledMetaTyVar_maybe, isFilledMetaTyVar,
zonkTyCoVarsAndFV, zonkTcType, zonkTcTypes, zonkTcTyVar, zonkCo,
zonkTyCoVarsAndFVList,
zonkSimples, zonkWC,
zonkTyCoVarKind,
-- References
newTcRef, readTcRef, writeTcRef, updTcRef,
-- Misc
getDefaultInfo, getDynFlags, getGlobalRdrEnvTcS,
matchFam, matchFamTcM,
checkWellStagedDFun,
pprEq, -- Smaller utils, re-exported from TcM
-- TODO (DV): these are only really used in the
-- instance matcher in GHC.Tc.Solver. I am wondering
-- if the whole instance matcher simply belongs
-- here
breakTyVarCycle_maybe, rewriterView
) where
import GHC.Prelude
import GHC.Driver.Env
import qualified GHC.Tc.Utils.Instantiate as TcM
import GHC.Core.InstEnv
import GHC.Tc.Instance.Family as FamInst
import GHC.Core.FamInstEnv
import qualified GHC.Tc.Utils.Monad as TcM
import qualified GHC.Tc.Utils.TcMType as TcM
import qualified GHC.Tc.Instance.Class as TcM( matchGlobalInst, ClsInstResult(..) )
import qualified GHC.Tc.Utils.Env as TcM
( checkWellStaged, tcGetDefaultTys, tcLookupClass, tcLookupId, topIdLvl
, tcInitTidyEnv )
import GHC.Tc.Instance.Class( InstanceWhat(..), safeOverlap, instanceReturnsDictCon )
import GHC.Tc.Utils.TcType
import GHC.Driver.Session
import GHC.Core.Type
import qualified GHC.Core.TyCo.Rep as Rep -- this needs to be used only very locally
import GHC.Core.Coercion
import GHC.Core.Reduction
import GHC.Tc.Solver.Types
import GHC.Tc.Solver.InertSet
import GHC.Tc.Types.Evidence
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Tc.Errors.Types
import GHC.Types.Error ( mkPlainError, noHints )
import GHC.Types.Name
import GHC.Types.TyThing
import GHC.Unit.Module ( HasModule, getModule )
import GHC.Types.Name.Reader ( GlobalRdrEnv, GlobalRdrElt )
import qualified GHC.Rename.Env as TcM
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Logger
import GHC.Utils.Misc (HasDebugCallStack)
import GHC.Data.Bag as Bag
import GHC.Types.Unique.Supply
import GHC.Tc.Types
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Tc.Utils.Unify
import GHC.Core.Predicate
import GHC.Types.Unique.Set (nonDetEltsUniqSet)
import Control.Monad
import GHC.Utils.Monad
import Data.IORef
import GHC.Exts (oneShot)
import Data.List ( mapAccumL, partition, find )
#if defined(DEBUG)
import GHC.Data.Graph.Directed
#endif
{- *********************************************************************
* *
Inert instances: inert_insts
* *
********************************************************************* -}
addInertForAll :: QCInst -> TcS ()
-- Add a local Given instance, typically arising from a type signature
addInertForAll new_qci
= do { ics <- getInertCans
; ics1 <- add_qci ics
-- Update given equalities. C.f updateGivenEqs
; tclvl <- getTcLevel
; let pred = qci_pred new_qci
not_equality = isClassPred pred && not (isEqPred pred)
-- True <=> definitely not an equality
-- A qci_pred like (f a) might be an equality
ics2 | not_equality = ics1
| otherwise = ics1 { inert_given_eq_lvl = tclvl
, inert_given_eqs = True }
; setInertCans ics2 }
where
add_qci :: InertCans -> TcS InertCans
-- See Note [Do not add duplicate quantified instances]
add_qci ics@(IC { inert_insts = qcis })
| any same_qci qcis
= do { traceTcS "skipping duplicate quantified instance" (ppr new_qci)
; return ics }
| otherwise
= do { traceTcS "adding new inert quantified instance" (ppr new_qci)
; return (ics { inert_insts = new_qci : qcis }) }
same_qci old_qci = tcEqType (ctEvPred (qci_ev old_qci))
(ctEvPred (qci_ev new_qci))
{- Note [Do not add duplicate quantified instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this (#15244):
f :: (C g, D g) => ....
class S g => C g where ...
class S g => D g where ...
class (forall a. Eq a => Eq (g a)) => S g where ...
Then in f's RHS there are two identical quantified constraints
available, one via the superclasses of C and one via the superclasses
of D. The two are identical, and it seems wrong to reject the program
because of that. But without doing duplicate-elimination we will have
two matching QCInsts when we try to solve constraints arising from f's
RHS.
The simplest thing is simply to eliminate duplicates, which we do here.
-}
{- *********************************************************************
* *
Adding an inert
* *
************************************************************************
Note [Adding an equality to the InertCans]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When adding an equality to the inerts:
* Kick out any constraints that can be rewritten by the thing
we are adding. Done by kickOutRewritable.
* Note that unifying a:=ty, is like adding [G] a~ty; just use
kickOutRewritable with Nominal, Given. See kickOutAfterUnification.
Note [Kick out existing binding for implicit parameter]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have (typecheck/should_compile/ImplicitParamFDs)
flub :: (?x :: Int) => (Int, Integer)
flub = (?x, let ?x = 5 in ?x)
When we are checking the last ?x occurrence, we guess its type
to be a fresh unification variable alpha and emit an (IP "x" alpha)
constraint. But the given (?x :: Int) has been translated to an
IP "x" Int constraint, which has a functional dependency from the
name to the type. So fundep interaction tells us that alpha ~ Int,
and we get a type error. This is bad.
Instead, we wish to excise any old given for an IP when adding a
new one. We also must make sure not to float out
any IP constraints outside an implication that binds an IP of
the same name; see GHC.Tc.Solver.floatConstraints.
-}
addInertCan :: Ct -> TcS ()
-- Precondition: item /is/ canonical
-- See Note [Adding an equality to the InertCans]
addInertCan ct =
do { traceTcS "addInertCan {" $
text "Trying to insert new inert item:" <+> ppr ct
; mkTcS (\TcSEnv{tcs_abort_on_insoluble=abort_flag} ->
when (abort_flag && insolubleEqCt ct) TcM.failM)
; ics <- getInertCans
; ics <- maybeKickOut ics ct
; tclvl <- getTcLevel
; setInertCans (addInertItem tclvl ics ct)
; traceTcS "addInertCan }" $ empty }
maybeKickOut :: InertCans -> Ct -> TcS InertCans
-- For a CEqCan, kick out any inert that can be rewritten by the CEqCan
maybeKickOut ics ct
| CEqCan { cc_lhs = lhs, cc_ev = ev, cc_eq_rel = eq_rel } <- ct
= do { (_, ics') <- kickOutRewritable (ctEvFlavour ev, eq_rel) lhs ics
; return ics' }
-- See [Kick out existing binding for implicit parameter]
| isGivenCt ct
, CDictCan { cc_class = cls, cc_tyargs = [ip_name_strty, _ip_ty] } <- ct
, isIPClass cls
, Just ip_name <- isStrLitTy ip_name_strty
-- Would this be more efficient if we used findDictsByClass and then delDict?
= let dict_map = inert_dicts ics
dict_map' = filterDicts doesn't_match_ip_name dict_map
doesn't_match_ip_name :: Ct -> Bool
doesn't_match_ip_name ct
| Just (inert_ip_name, _inert_ip_ty) <- isIPPred_maybe (ctPred ct)
= inert_ip_name /= ip_name
| otherwise
= True
in
return (ics { inert_dicts = dict_map' })
| otherwise
= return ics
-----------------------------------------
kickOutRewritable :: CtFlavourRole -- Flavour/role of the equality that
-- is being added to the inert set
-> CanEqLHS -- The new equality is lhs ~ ty
-> InertCans
-> TcS (Int, InertCans)
kickOutRewritable new_fr new_lhs ics
= do { let (kicked_out, ics') = kickOutRewritableLHS new_fr new_lhs ics
n_kicked = workListSize kicked_out
; unless (n_kicked == 0) $
do { updWorkListTcS (appendWorkList kicked_out)
-- The famapp-cache contains Given evidence from the inert set.
-- If we're kicking out Givens, we need to remove this evidence
-- from the cache, too.
; let kicked_given_ev_vars =
[ ev_var | ct <- wl_eqs kicked_out
, CtGiven { ctev_evar = ev_var } <- [ctEvidence ct] ]
; when (new_fr `eqCanRewriteFR` (Given, NomEq) &&
-- if this isn't true, no use looking through the constraints
not (null kicked_given_ev_vars)) $
do { traceTcS "Given(s) have been kicked out; drop from famapp-cache"
(ppr kicked_given_ev_vars)
; dropFromFamAppCache (mkVarSet kicked_given_ev_vars) }
; csTraceTcS $
hang (text "Kick out, lhs =" <+> ppr new_lhs)
2 (vcat [ text "n-kicked =" <+> int n_kicked
, text "kicked_out =" <+> ppr kicked_out
, text "Residual inerts =" <+> ppr ics' ]) }
; return (n_kicked, ics') }
kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification new_tv
= do { ics <- getInertCans
; (n_kicked, ics2) <- kickOutRewritable (Given,NomEq)
(TyVarLHS new_tv) ics
-- Given because the tv := xi is given; NomEq because
-- only nominal equalities are solved by unification
; setInertCans ics2
; return n_kicked }
-- See Wrinkle (2) in Note [Equalities with incompatible kinds] in GHC.Tc.Solver.Canonical
-- It's possible that this could just go ahead and unify, but could there be occurs-check
-- problems? Seems simpler just to kick out.
kickOutAfterFillingCoercionHole :: CoercionHole -> TcS ()
kickOutAfterFillingCoercionHole hole
= do { ics <- getInertCans
; let (kicked_out, ics') = kick_out ics
n_kicked = workListSize kicked_out
; unless (n_kicked == 0) $
do { updWorkListTcS (appendWorkList kicked_out)
; csTraceTcS $
hang (text "Kick out, hole =" <+> ppr hole)
2 (vcat [ text "n-kicked =" <+> int n_kicked
, text "kicked_out =" <+> ppr kicked_out
, text "Residual inerts =" <+> ppr ics' ]) }
; setInertCans ics' }
where
kick_out :: InertCans -> (WorkList, InertCans)
kick_out ics@(IC { inert_eqs = eqs, inert_funeqs = funeqs })
= (kicked_out, ics { inert_eqs = eqs_to_keep, inert_funeqs = funeqs_to_keep })
where
(eqs_to_kick, eqs_to_keep) = partitionInertEqs kick_ct eqs
(funeqs_to_kick, funeqs_to_keep) = partitionFunEqs kick_ct funeqs
kicked_out = extendWorkListCts (eqs_to_kick ++ funeqs_to_kick) emptyWorkList
kick_ct :: Ct -> Bool
-- True: kick out; False: keep.
kick_ct (CEqCan { cc_rhs = rhs, cc_ev = ctev })
= isWanted ctev && -- optimisation: givens don't have coercion holes anyway
rhs `hasThisCoercionHoleTy` hole
kick_ct other = pprPanic "kick_ct (coercion hole)" (ppr other)
--------------
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask ics item@(CDictCan { cc_class = cls, cc_tyargs = tys })
= ics { inert_safehask = addDict (inert_dicts ics) cls tys item }
addInertSafehask _ item
= pprPanic "addInertSafehask: can't happen! Inserting " $ ppr item
insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
-- See Note [Safe Haskell Overlapping Instances Implementation] in GHC.Tc.Solver
insertSafeOverlapFailureTcS what item
| safeOverlap what = return ()
| otherwise = updInertCans (\ics -> addInertSafehask ics item)
getSafeOverlapFailures :: TcS Cts
-- See Note [Safe Haskell Overlapping Instances Implementation] in GHC.Tc.Solver
getSafeOverlapFailures
= do { IC { inert_safehask = safehask } <- getInertCans
; return $ foldDicts consCts safehask emptyCts }
--------------
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [Type] -> TcS ()
-- Conditionally add a new item in the solved set of the monad
-- See Note [Solved dictionaries] in GHC.Tc.Solver.InertSet
addSolvedDict what item cls tys
| isWanted item
, instanceReturnsDictCon what
= do { traceTcS "updSolvedSetTcs:" $ ppr item
; updInertTcS $ \ ics ->
ics { inert_solved_dicts = addDict (inert_solved_dicts ics) cls tys item } }
| otherwise
= return ()
getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts = do { ics <- getTcSInerts; return (inert_solved_dicts ics) }
setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts solved_dicts
= updInertTcS $ \ ics ->
ics { inert_solved_dicts = solved_dicts }
{- *********************************************************************
* *
Other inert-set operations
* *
********************************************************************* -}
updInertTcS :: (InertSet -> InertSet) -> TcS ()
-- Modify the inert set with the supplied function
updInertTcS upd_fn
= do { is_var <- getTcSInertsRef
; wrapTcS (do { curr_inert <- TcM.readTcRef is_var
; TcM.writeTcRef is_var (upd_fn curr_inert) }) }
getInertCans :: TcS InertCans
getInertCans = do { inerts <- getTcSInerts; return (inert_cans inerts) }
setInertCans :: InertCans -> TcS ()
setInertCans ics = updInertTcS $ \ inerts -> inerts { inert_cans = ics }
updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
-- Modify the inert set with the supplied function
updRetInertCans upd_fn
= do { is_var <- getTcSInertsRef
; wrapTcS (do { inerts <- TcM.readTcRef is_var
; let (res, cans') = upd_fn (inert_cans inerts)
; TcM.writeTcRef is_var (inerts { inert_cans = cans' })
; return res }) }
updInertCans :: (InertCans -> InertCans) -> TcS ()
-- Modify the inert set with the supplied function
updInertCans upd_fn
= updInertTcS $ \ inerts -> inerts { inert_cans = upd_fn (inert_cans inerts) }
updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertDicts upd_fn
= updInertCans $ \ ics -> ics { inert_dicts = upd_fn (inert_dicts ics) }
updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
-- Modify the inert set with the supplied function
updInertSafehask upd_fn
= updInertCans $ \ ics -> ics { inert_safehask = upd_fn (inert_safehask ics) }
updInertIrreds :: (Cts -> Cts) -> TcS ()
-- Modify the inert set with the supplied function
updInertIrreds upd_fn
= updInertCans $ \ ics -> ics { inert_irreds = upd_fn (inert_irreds ics) }
getInertEqs :: TcS InertEqs
getInertEqs = do { inert <- getInertCans; return (inert_eqs inert) }
getInnermostGivenEqLevel :: TcS TcLevel
getInnermostGivenEqLevel = do { inert <- getInertCans
; return (inert_given_eq_lvl inert) }
getInertInsols :: TcS Cts
-- Returns insoluble equality constraints and TypeError constraints,
-- specifically including Givens.
--
-- Note that this function only inspects irreducible constraints;
-- a DictCan constraint such as 'Eq (TypeError msg)' is not
-- considered to be an insoluble constraint by this function.
--
-- See Note [Pattern match warnings with insoluble Givens] in GHC.Tc.Solver.
getInertInsols = do { inert <- getInertCans
; return $ filterBag insolubleCt (inert_irreds inert) }
getInertGivens :: TcS [Ct]
-- Returns the Given constraints in the inert set
getInertGivens
= do { inerts <- getInertCans
; let all_cts = foldDicts (:) (inert_dicts inerts)
$ foldFunEqs (++) (inert_funeqs inerts)
$ foldDVarEnv (++) [] (inert_eqs inerts)
; return (filter isGivenCt all_cts) }
getPendingGivenScs :: TcS [Ct]
-- Find all inert Given dictionaries, or quantified constraints,
-- whose cc_pend_sc flag is True
-- and that belong to the current level
-- Set their cc_pend_sc flag to False in the inert set, and return that Ct
getPendingGivenScs = do { lvl <- getTcLevel
; updRetInertCans (get_sc_pending lvl) }
get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending this_lvl ic@(IC { inert_dicts = dicts, inert_insts = insts })
= assertPpr (all isGivenCt sc_pending) (ppr sc_pending)
-- When getPendingScDics is called,
-- there are never any Wanteds in the inert set
(sc_pending, ic { inert_dicts = dicts', inert_insts = insts' })
where
sc_pending = sc_pend_insts ++ sc_pend_dicts
sc_pend_dicts = foldDicts get_pending dicts []
dicts' = foldr add dicts sc_pend_dicts
(sc_pend_insts, insts') = mapAccumL get_pending_inst [] insts
get_pending :: Ct -> [Ct] -> [Ct] -- Get dicts with cc_pend_sc = True
-- but flipping the flag
get_pending dict dicts
| Just dict' <- isPendingScDict dict
, belongs_to_this_level (ctEvidence dict)
= dict' : dicts
| otherwise
= dicts
add :: Ct -> DictMap Ct -> DictMap Ct
add ct@(CDictCan { cc_class = cls, cc_tyargs = tys }) dicts
= addDict dicts cls tys ct
add ct _ = pprPanic "getPendingScDicts" (ppr ct)
get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst cts qci@(QCI { qci_ev = ev })
| Just qci' <- isPendingScInst qci
, belongs_to_this_level ev
= (CQuantCan qci' : cts, qci')
| otherwise
= (cts, qci)
belongs_to_this_level ev = ctLocLevel (ctEvLoc ev) == this_lvl
-- We only want Givens from this level; see (3a) in
-- Note [The superclass story] in GHC.Tc.Solver.Canonical
getUnsolvedInerts :: TcS ( Bag Implication
, Cts ) -- All simple constraints
-- Return all the unsolved [Wanted] constraints
--
-- Post-condition: the returned simple constraints are all fully zonked
-- (because they come from the inert set)
-- the unsolved implics may not be
getUnsolvedInerts
= do { IC { inert_eqs = tv_eqs
, inert_funeqs = fun_eqs
, inert_irreds = irreds
, inert_dicts = idicts
} <- getInertCans
; let unsolved_tv_eqs = foldTyEqs add_if_unsolved tv_eqs emptyCts
unsolved_fun_eqs = foldFunEqs add_if_unsolveds fun_eqs emptyCts
unsolved_irreds = Bag.filterBag isWantedCt irreds
unsolved_dicts = foldDicts add_if_unsolved idicts emptyCts
unsolved_others = unionManyBags [ unsolved_irreds
, unsolved_dicts ]
; implics <- getWorkListImplics
; traceTcS "getUnsolvedInerts" $
vcat [ text " tv eqs =" <+> ppr unsolved_tv_eqs
, text "fun eqs =" <+> ppr unsolved_fun_eqs
, text "others =" <+> ppr unsolved_others
, text "implics =" <+> ppr implics ]
; return ( implics, unsolved_tv_eqs `unionBags`
unsolved_fun_eqs `unionBags`
unsolved_others) }
where
add_if_unsolved :: Ct -> Cts -> Cts
add_if_unsolved ct cts | isWantedCt ct = ct `consCts` cts
| otherwise = cts
add_if_unsolveds :: EqualCtList -> Cts -> Cts
add_if_unsolveds new_cts old_cts = foldr add_if_unsolved old_cts new_cts
getHasGivenEqs :: TcLevel -- TcLevel of this implication
-> TcS ( HasGivenEqs -- are there Given equalities?
, Cts ) -- Insoluble equalities arising from givens
-- See Note [Tracking Given equalities] in GHC.Tc.Solver.InertSet
getHasGivenEqs tclvl
= do { inerts@(IC { inert_irreds = irreds
, inert_given_eqs = given_eqs
, inert_given_eq_lvl = ge_lvl })
<- getInertCans
; let given_insols = filterBag insoluble_given_equality irreds
-- Specifically includes ones that originated in some
-- outer context but were refined to an insoluble by
-- a local equality; so no level-check needed
-- See Note [HasGivenEqs] in GHC.Tc.Types.Constraint, and
-- Note [Tracking Given equalities] in GHC.Tc.Solver.InertSet
has_ge | ge_lvl == tclvl = MaybeGivenEqs
| given_eqs = LocalGivenEqs
| otherwise = NoGivenEqs
; traceTcS "getHasGivenEqs" $
vcat [ text "given_eqs:" <+> ppr given_eqs
, text "ge_lvl:" <+> ppr ge_lvl
, text "ambient level:" <+> ppr tclvl
, text "Inerts:" <+> ppr inerts
, text "Insols:" <+> ppr given_insols]
; return (has_ge, given_insols) }
where
insoluble_given_equality ct
= insolubleEqCt ct && isGivenCt ct
removeInertCts :: [Ct] -> InertCans -> InertCans
-- ^ Remove inert constraints from the 'InertCans', for use when a
-- typechecker plugin wishes to discard a given.
removeInertCts cts icans = foldl' removeInertCt icans cts
removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt is ct =
case ct of
CDictCan { cc_class = cl, cc_tyargs = tys } ->
is { inert_dicts = delDict (inert_dicts is) cl tys }
CEqCan { cc_lhs = lhs, cc_rhs = rhs } -> delEq is lhs rhs
CQuantCan {} -> panic "removeInertCt: CQuantCan"
CIrredCan {} -> panic "removeInertCt: CIrredEvCan"
CNonCanonical {} -> panic "removeInertCt: CNonCanonical"
CSpecialCan { cc_special_pred = special_pred } ->
pprPanic "removeInertCt" (ppr "CSpecialCan" <+> parens (ppr special_pred))
-- | Looks up a family application in the inerts.
lookupFamAppInert :: (CtFlavourRole -> Bool) -- can it rewrite the target?
-> TyCon -> [Type] -> TcS (Maybe (Reduction, CtFlavourRole))
lookupFamAppInert rewrite_pred fam_tc tys
= do { IS { inert_cans = IC { inert_funeqs = inert_funeqs } } <- getTcSInerts
; return (lookup_inerts inert_funeqs) }
where
lookup_inerts inert_funeqs
| Just ecl <- findFunEq inert_funeqs fam_tc tys
, Just (CEqCan { cc_ev = ctev, cc_rhs = rhs })
<- find (rewrite_pred . ctFlavourRole) ecl
= Just (mkReduction (ctEvCoercion ctev) rhs, ctEvFlavourRole ctev)
| otherwise = Nothing
lookupInInerts :: CtLoc -> TcPredType -> TcS (Maybe CtEvidence)
-- Is this exact predicate type cached in the solved or canonicals of the InertSet?
lookupInInerts loc pty
| ClassPred cls tys <- classifyPredType pty
= do { inerts <- getTcSInerts
; return (lookupSolvedDict inerts loc cls tys `mplus`
fmap ctEvidence (lookupInertDict (inert_cans inerts) loc cls tys)) }
| otherwise -- NB: No caching for equalities, IPs, holes, or errors
= return Nothing
-- | Look up a dictionary inert.
lookupInertDict :: InertCans -> CtLoc -> Class -> [Type] -> Maybe Ct
lookupInertDict (IC { inert_dicts = dicts }) loc cls tys
= case findDict dicts loc cls tys of
Just ct -> Just ct
_ -> Nothing
-- | Look up a solved inert.
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
-- Returns just if exactly this predicate type exists in the solved.
lookupSolvedDict (IS { inert_solved_dicts = solved }) loc cls tys
= case findDict solved loc cls tys of
Just ev -> Just ev
_ -> Nothing
---------------------------
lookupFamAppCache :: TyCon -> [Type] -> TcS (Maybe Reduction)
lookupFamAppCache fam_tc tys
= do { IS { inert_famapp_cache = famapp_cache } <- getTcSInerts
; case findFunEq famapp_cache fam_tc tys of
result@(Just redn) ->
do { traceTcS "famapp_cache hit" (vcat [ ppr (mkTyConApp fam_tc tys)
, ppr redn ])
; return result }
Nothing -> return Nothing }
extendFamAppCache :: TyCon -> [Type] -> Reduction -> TcS ()
-- NB: co :: rhs ~ F tys, to match expectations of rewriter
extendFamAppCache tc xi_args stuff@(Reduction _ ty)
= do { dflags <- getDynFlags
; when (gopt Opt_FamAppCache dflags) $
do { traceTcS "extendFamAppCache" (vcat [ ppr tc <+> ppr xi_args
, ppr ty ])
; updInertTcS $ \ is@(IS { inert_famapp_cache = fc }) ->
is { inert_famapp_cache = insertFunEq fc tc xi_args stuff } } }
-- Remove entries from the cache whose evidence mentions variables in the
-- supplied set
dropFromFamAppCache :: VarSet -> TcS ()
dropFromFamAppCache varset
= do { inerts@(IS { inert_famapp_cache = famapp_cache }) <- getTcSInerts
; let filtered = filterTcAppMap check famapp_cache
; setTcSInerts $ inerts { inert_famapp_cache = filtered } }
where
check :: Reduction -> Bool
check redn
= not (anyFreeVarsOfCo (`elemVarSet` varset) $ reductionCoercion redn)
{- *********************************************************************
* *
Irreds
* *
********************************************************************* -}
foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds k irreds z = foldr k z irreds
{-
************************************************************************
* *
* The TcS solver monad *
* *
************************************************************************
Note [The TcS monad]
~~~~~~~~~~~~~~~~~~~~
The TcS monad is a weak form of the main Tc monad
All you can do is
* fail
* allocate new variables
* fill in evidence variables
Filling in a dictionary evidence variable means to create a binding
for it, so TcS carries a mutable location where the binding can be
added. This is initialised from the innermost implication constraint.
-}
data TcSEnv
= TcSEnv {
tcs_ev_binds :: EvBindsVar,
tcs_unified :: IORef Int,
-- The number of unification variables we have filled
-- The important thing is whether it is non-zero
tcs_unif_lvl :: IORef (Maybe TcLevel),
-- The Unification Level Flag
-- Outermost level at which we have unified a meta tyvar
-- Starts at Nothing, then (Just i), then (Just j) where j<i
-- See Note [The Unification Level Flag]
tcs_count :: IORef Int, -- Global step count
tcs_inerts :: IORef InertSet, -- Current inert set
-- Whether to throw an exception if we come across an insoluble constraint.
-- Used to fail-fast when checking for hole-fits. See Note [Speeding up
-- valid hole-fits].
tcs_abort_on_insoluble :: Bool,
-- See Note [WorkList priorities] in GHC.Tc.Solver.InertSet
tcs_worklist :: IORef WorkList -- Current worklist
}
---------------
newtype TcS a = TcS { unTcS :: TcSEnv -> TcM a } deriving (Functor)
-- | Smart constructor for 'TcS', as describe in Note [The one-shot state
-- monad trick] in "GHC.Utils.Monad".
mkTcS :: (TcSEnv -> TcM a) -> TcS a
mkTcS f = TcS (oneShot f)
instance Applicative TcS where
pure x = mkTcS $ \_ -> return x
(<*>) = ap
instance Monad TcS where
m >>= k = mkTcS $ \ebs -> do
unTcS m ebs >>= (\r -> unTcS (k r) ebs)
instance MonadIO TcS where
liftIO act = TcS $ \_env -> liftIO act
instance MonadFail TcS where
fail err = mkTcS $ \_ -> fail err
instance MonadUnique TcS where
getUniqueSupplyM = wrapTcS getUniqueSupplyM
instance HasModule TcS where
getModule = wrapTcS getModule
instance MonadThings TcS where
lookupThing n = wrapTcS (lookupThing n)
-- Basic functionality
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
wrapTcS :: TcM a -> TcS a
-- Do not export wrapTcS, because it promotes an arbitrary TcM to TcS,
-- and TcS is supposed to have limited functionality
wrapTcS action = mkTcS $ \_env -> action -- a TcM action will not use the TcEvBinds
wrap2TcS :: (TcM a -> TcM a) -> TcS a -> TcS a
wrap2TcS fn (TcS thing) = mkTcS $ \env -> fn (thing env)
wrapErrTcS :: TcM a -> TcS a
-- The thing wrapped should just fail
-- There's no static check; it's up to the user
-- Having a variant for each error message is too painful
wrapErrTcS = wrapTcS
wrapWarnTcS :: TcM a -> TcS a
-- The thing wrapped should just add a warning, or no-op
-- There's no static check; it's up to the user
wrapWarnTcS = wrapTcS
panicTcS :: SDoc -> TcS a
failTcS :: TcRnMessage -> TcS a
warnTcS, addErrTcS :: TcRnMessage -> TcS ()
failTcS = wrapTcS . TcM.failWith
warnTcS msg = wrapTcS (TcM.addDiagnostic msg)
addErrTcS = wrapTcS . TcM.addErr
panicTcS doc = pprPanic "GHC.Tc.Solver.Canonical" doc
traceTcS :: String -> SDoc -> TcS ()
traceTcS herald doc = wrapTcS (TcM.traceTc herald doc)
{-# INLINE traceTcS #-} -- see Note [INLINE conditional tracing utilities]
runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS = wrapTcS . runTcPluginM
instance HasDynFlags TcS where
getDynFlags = wrapTcS getDynFlags
getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS = wrapTcS TcM.getGlobalRdrEnv
bumpStepCountTcS :: TcS ()
bumpStepCountTcS = mkTcS $ \env ->
do { let ref = tcs_count env
; n <- TcM.readTcRef ref
; TcM.writeTcRef ref (n+1) }
csTraceTcS :: SDoc -> TcS ()
csTraceTcS doc
= wrapTcS $ csTraceTcM (return doc)
{-# INLINE csTraceTcS #-} -- see Note [INLINE conditional tracing utilities]
traceFireTcS :: CtEvidence -> SDoc -> TcS ()
-- Dump a rule-firing trace
traceFireTcS ev doc
= mkTcS $ \env -> csTraceTcM $
do { n <- TcM.readTcRef (tcs_count env)
; tclvl <- TcM.getTcLevel
; return (hang (text "Step" <+> int n
<> brackets (text "l:" <> ppr tclvl <> comma <>
text "d:" <> ppr (ctLocDepth (ctEvLoc ev)))
<+> doc <> colon)
4 (ppr ev)) }
{-# INLINE traceFireTcS #-} -- see Note [INLINE conditional tracing utilities]
csTraceTcM :: TcM SDoc -> TcM ()
-- Constraint-solver tracing, -ddump-cs-trace
csTraceTcM mk_doc
= do { logger <- getLogger
; when ( logHasDumpFlag logger Opt_D_dump_cs_trace
|| logHasDumpFlag logger Opt_D_dump_tc_trace)
( do { msg <- mk_doc
; TcM.dumpTcRn False
Opt_D_dump_cs_trace
"" FormatText
msg }) }
{-# INLINE csTraceTcM #-} -- see Note [INLINE conditional tracing utilities]
runTcS :: TcS a -- What to run
-> TcM (a, EvBindMap)
runTcS tcs
= do { ev_binds_var <- TcM.newTcEvBinds
; res <- runTcSWithEvBinds ev_binds_var tcs
; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
; return (res, ev_binds) }
-- | This variant of 'runTcS' will immediatley fail upon encountering an
-- insoluble ct. See Note [Speeding up valid hole-fits]. Its one usage
-- site does not need the ev_binds, so we do not return them.
runTcSEarlyAbort :: TcS a -> TcM a
runTcSEarlyAbort tcs
= do { ev_binds_var <- TcM.newTcEvBinds
; runTcSWithEvBinds' True True ev_binds_var tcs }
-- | This can deal only with equality constraints.
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities thing_inside
= do { ev_binds_var <- TcM.newNoTcEvBinds
; runTcSWithEvBinds ev_binds_var thing_inside }
-- | A variant of 'runTcS' that takes and returns an 'InertSet' for
-- later resumption of the 'TcS' session.
runTcSInerts :: InertSet -> TcS a -> TcM (a, InertSet)
runTcSInerts inerts tcs = do
ev_binds_var <- TcM.newTcEvBinds
runTcSWithEvBinds' False False ev_binds_var $ do
setTcSInerts inerts
a <- tcs
new_inerts <- getTcSInerts
return (a, new_inerts)
runTcSWithEvBinds :: EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds = runTcSWithEvBinds' True False
runTcSWithEvBinds' :: Bool -- ^ Restore type variable cycles afterwards?
-- Don't if you want to reuse the InertSet.
-- See also Note [Type variable cycles]
-- in GHC.Tc.Solver.Canonical
-> Bool
-> EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds' restore_cycles abort_on_insoluble ev_binds_var tcs
= do { unified_var <- TcM.newTcRef 0
; step_count <- TcM.newTcRef 0
; inert_var <- TcM.newTcRef emptyInert
; wl_var <- TcM.newTcRef emptyWorkList
; unif_lvl_var <- TcM.newTcRef Nothing
; let env = TcSEnv { tcs_ev_binds = ev_binds_var
, tcs_unified = unified_var
, tcs_unif_lvl = unif_lvl_var
, tcs_count = step_count
, tcs_inerts = inert_var
, tcs_abort_on_insoluble = abort_on_insoluble
, tcs_worklist = wl_var }
-- Run the computation
; res <- unTcS tcs env
; count <- TcM.readTcRef step_count
; when (count > 0) $
csTraceTcM $ return (text "Constraint solver steps =" <+> int count)
; when restore_cycles $
do { inert_set <- TcM.readTcRef inert_var
; restoreTyVarCycles inert_set }
#if defined(DEBUG)
; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
; checkForCyclicBinds ev_binds
#endif
; return res }
----------------------------
#if defined(DEBUG)
checkForCyclicBinds :: EvBindMap -> TcM ()
checkForCyclicBinds ev_binds_map
| null cycles
= return ()
| null coercion_cycles
= TcM.traceTc "Cycle in evidence binds" $ ppr cycles
| otherwise
= pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
where
ev_binds = evBindMapBinds ev_binds_map
cycles :: [[EvBind]]
cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVerticesUniq edges]
coercion_cycles = [c | c <- cycles, any is_co_bind c]
is_co_bind (EvBind { eb_lhs = b }) = isEqPrimPred (varType b)
edges :: [ Node EvVar EvBind ]
edges = [ DigraphNode bind bndr (nonDetEltsUniqSet (evVarsOfTerm rhs))
| bind@(EvBind { eb_lhs = bndr, eb_rhs = rhs}) <- bagToList ev_binds ]
-- It's OK to use nonDetEltsUFM here as
-- stronglyConnCompFromEdgedVertices is still deterministic even
-- if the edges are in nondeterministic order as explained in
-- Note [Deterministic SCC] in GHC.Data.Graph.Directed.
#endif
----------------------------
setEvBindsTcS :: EvBindsVar -> TcS a -> TcS a
setEvBindsTcS ref (TcS thing_inside)
= TcS $ \ env -> thing_inside (env { tcs_ev_binds = ref })
nestImplicTcS :: EvBindsVar
-> TcLevel -> TcS a
-> TcS a
nestImplicTcS ref inner_tclvl (TcS thing_inside)
= TcS $ \ TcSEnv { tcs_unified = unified_var
, tcs_inerts = old_inert_var
, tcs_count = count
, tcs_unif_lvl = unif_lvl
, tcs_abort_on_insoluble = abort_on_insoluble
} ->
do { inerts <- TcM.readTcRef old_inert_var
; let nest_inert = inerts { inert_cycle_breakers = pushCycleBreakerVarStack
(inert_cycle_breakers inerts)
, inert_cans = (inert_cans inerts)
{ inert_given_eqs = False } }
-- All other InertSet fields are inherited
; new_inert_var <- TcM.newTcRef nest_inert
; new_wl_var <- TcM.newTcRef emptyWorkList
; let nest_env = TcSEnv { tcs_count = count -- Inherited
, tcs_unif_lvl = unif_lvl -- Inherited
, tcs_ev_binds = ref
, tcs_unified = unified_var
, tcs_inerts = new_inert_var
, tcs_abort_on_insoluble = abort_on_insoluble
, tcs_worklist = new_wl_var }
; res <- TcM.setTcLevel inner_tclvl $
thing_inside nest_env
; out_inert_set <- TcM.readTcRef new_inert_var
; restoreTyVarCycles out_inert_set
#if defined(DEBUG)
-- Perform a check that the thing_inside did not cause cycles
; ev_binds <- TcM.getTcEvBindsMap ref
; checkForCyclicBinds ev_binds
#endif
; return res }
nestTcS :: TcS a -> TcS a
-- Use the current untouchables, augmenting the current
-- evidence bindings, and solved dictionaries
-- But have no effect on the InertCans, or on the inert_famapp_cache
-- (we want to inherit the latter from processing the Givens)
nestTcS (TcS thing_inside)
= TcS $ \ env@(TcSEnv { tcs_inerts = inerts_var }) ->
do { inerts <- TcM.readTcRef inerts_var
; new_inert_var <- TcM.newTcRef inerts
; new_wl_var <- TcM.newTcRef emptyWorkList
; let nest_env = env { tcs_inerts = new_inert_var
, tcs_worklist = new_wl_var }
; res <- thing_inside nest_env
; new_inerts <- TcM.readTcRef new_inert_var
-- we want to propagate the safe haskell failures
; let old_ic = inert_cans inerts
new_ic = inert_cans new_inerts
nxt_ic = old_ic { inert_safehask = inert_safehask new_ic }
; TcM.writeTcRef inerts_var -- See Note [Propagate the solved dictionaries]
(inerts { inert_solved_dicts = inert_solved_dicts new_inerts
, inert_cans = nxt_ic })
; return res }
emitImplicationTcS :: TcLevel -> SkolemInfoAnon
-> [TcTyVar] -- Skolems
-> [EvVar] -- Givens
-> Cts -- Wanteds
-> TcS TcEvBinds
-- Add an implication to the TcS monad work-list
emitImplicationTcS new_tclvl skol_info skol_tvs givens wanteds
= do { let wc = emptyWC { wc_simple = wanteds }
; imp <- wrapTcS $
do { ev_binds_var <- TcM.newTcEvBinds
; imp <- TcM.newImplication
; return (imp { ic_tclvl = new_tclvl
, ic_skols = skol_tvs
, ic_given = givens
, ic_wanted = wc
, ic_binds = ev_binds_var
, ic_info = skol_info }) }
; emitImplication imp
; return (TcEvBinds (ic_binds imp)) }
emitTvImplicationTcS :: TcLevel -> SkolemInfoAnon
-> [TcTyVar] -- Skolems
-> Cts -- Wanteds
-> TcS ()
-- Just like emitImplicationTcS but no givens and no bindings
emitTvImplicationTcS new_tclvl skol_info skol_tvs wanteds
= do { let wc = emptyWC { wc_simple = wanteds }
; imp <- wrapTcS $
do { ev_binds_var <- TcM.newNoTcEvBinds
; imp <- TcM.newImplication
; return (imp { ic_tclvl = new_tclvl
, ic_skols = skol_tvs
, ic_wanted = wc
, ic_binds = ev_binds_var
, ic_info = skol_info }) }
; emitImplication imp }
{- Note [Propagate the solved dictionaries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's really quite important that nestTcS does not discard the solved
dictionaries from the thing_inside.
Consider
Eq [a]
forall b. empty => Eq [a]
We solve the simple (Eq [a]), under nestTcS, and then turn our attention to
the implications. It's definitely fine to use the solved dictionaries on
the inner implications, and it can make a significant performance difference
if you do so.
-}
-- Getters and setters of GHC.Tc.Utils.Env fields
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Getter of inerts and worklist
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = TcS (return . tcs_inerts)
getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef = TcS (return . tcs_worklist)
getTcSInerts :: TcS InertSet
getTcSInerts = getTcSInertsRef >>= readTcRef
setTcSInerts :: InertSet -> TcS ()
setTcSInerts ics = do { r <- getTcSInertsRef; writeTcRef r ics }
getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics
= do { wl_var <- getTcSWorkListRef
; wl_curr <- readTcRef wl_var
; return (wl_implics wl_curr) }
pushLevelNoWorkList :: SDoc -> TcS a -> TcS (TcLevel, a)
-- Push the level and run thing_inside
-- However, thing_inside should not generate any work items
#if defined(DEBUG)
pushLevelNoWorkList err_doc (TcS thing_inside)
= TcS (\env -> TcM.pushTcLevelM $
thing_inside (env { tcs_worklist = wl_panic })
)
where
wl_panic = pprPanic "GHC.Tc.Solver.Monad.buildImplication" err_doc
-- This panic checks that the thing-inside
-- does not emit any work-list constraints
#else
pushLevelNoWorkList _ (TcS thing_inside)
= TcS (\env -> TcM.pushTcLevelM (thing_inside env)) -- Don't check
#endif
updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS f
= do { wl_var <- getTcSWorkListRef
; updTcRef wl_var f }
emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC evs
| null evs
= return ()
| otherwise
= emitWork (map mkNonCanonical evs)
emitWork :: [Ct] -> TcS ()
emitWork [] = return () -- avoid printing, among other work
emitWork cts
= do { traceTcS "Emitting fresh work" (vcat (map ppr cts))
; updWorkListTcS (extendWorkListCts cts) }
emitImplication :: Implication -> TcS ()
emitImplication implic
= updWorkListTcS (extendWorkListImplic implic)
newTcRef :: a -> TcS (TcRef a)
newTcRef x = wrapTcS (TcM.newTcRef x)
readTcRef :: TcRef a -> TcS a
readTcRef ref = wrapTcS (TcM.readTcRef ref)
writeTcRef :: TcRef a -> a -> TcS ()
writeTcRef ref val = wrapTcS (TcM.writeTcRef ref val)
updTcRef :: TcRef a -> (a->a) -> TcS ()
updTcRef ref upd_fn = wrapTcS (TcM.updTcRef ref upd_fn)
getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar = TcS (return . tcs_ev_binds)
getTcLevel :: TcS TcLevel
getTcLevel = wrapTcS TcM.getTcLevel
getTcEvTyCoVars :: EvBindsVar -> TcS TyCoVarSet
getTcEvTyCoVars ev_binds_var
= wrapTcS $ TcM.getTcEvTyCoVars ev_binds_var
getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap ev_binds_var
= wrapTcS $ TcM.getTcEvBindsMap ev_binds_var
setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap ev_binds_var binds
= wrapTcS $ TcM.setTcEvBindsMap ev_binds_var binds
unifyTyVar :: TcTyVar -> TcType -> TcS ()
-- Unify a meta-tyvar with a type
-- We keep track of how many unifications have happened in tcs_unified,
--
-- We should never unify the same variable twice!
unifyTyVar tv ty
= assertPpr (isMetaTyVar tv) (ppr tv) $
TcS $ \ env ->
do { TcM.traceTc "unifyTyVar" (ppr tv <+> text ":=" <+> ppr ty)
; TcM.writeMetaTyVar tv ty
; TcM.updTcRef (tcs_unified env) (+1) }
reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications (TcS thing_inside)
= TcS $ \ env ->
do { inner_unified <- TcM.newTcRef 0
; res <- thing_inside (env { tcs_unified = inner_unified })
; n_unifs <- TcM.readTcRef inner_unified
; TcM.updTcRef (tcs_unified env) (+ n_unifs)
; return (n_unifs, res) }
data TouchabilityTestResult
-- See Note [Solve by unification] in GHC.Tc.Solver.Interact
-- which points out that having TouchableSameLevel is just an optimisation;
-- we could manage with TouchableOuterLevel alone (suitably renamed)
= TouchableSameLevel
| TouchableOuterLevel [TcTyVar] -- Promote these
TcLevel -- ..to this level
| Untouchable
instance Outputable TouchabilityTestResult where
ppr TouchableSameLevel = text "TouchableSameLevel"
ppr (TouchableOuterLevel tvs lvl) = text "TouchableOuterLevel" <> parens (ppr lvl <+> ppr tvs)
ppr Untouchable = text "Untouchable"
touchabilityTest :: CtFlavour -> TcTyVar -> TcType -> TcS TouchabilityTestResult
-- This is the key test for untouchability:
-- See Note [Unification preconditions] in GHC.Tc.Utils.Unify
-- and Note [Solve by unification] in GHC.Tc.Solver.Interact
touchabilityTest flav tv1 rhs
| flav /= Given -- See Note [Do not unify Givens]
, MetaTv { mtv_tclvl = tv_lvl, mtv_info = info } <- tcTyVarDetails tv1
, canSolveByUnification info rhs
= do { ambient_lvl <- getTcLevel
; given_eq_lvl <- getInnermostGivenEqLevel
; if | tv_lvl `sameDepthAs` ambient_lvl
-> return TouchableSameLevel
| tv_lvl `deeperThanOrSame` given_eq_lvl -- No intervening given equalities
, all (does_not_escape tv_lvl) free_skols -- No skolem escapes
-> return (TouchableOuterLevel free_metas tv_lvl)
| otherwise
-> return Untouchable }
| otherwise
= return Untouchable
where
(free_metas, free_skols) = partition isPromotableMetaTyVar $
nonDetEltsUniqSet $
tyCoVarsOfType rhs
does_not_escape tv_lvl fv
| isTyVar fv = tv_lvl `deeperThanOrSame` tcTyVarLevel fv
| otherwise = True
-- Coercion variables are not an escape risk
-- If an implication binds a coercion variable, it'll have equalities,
-- so the "intervening given equalities" test above will catch it
-- Coercion holes get filled with coercions, so again no problem.
{- Note [Do not unify Givens]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this GADT match
data T a where
T1 :: T Int
...
f x = case x of
T1 -> True
...
So we get f :: T alpha[1] -> beta[1]
x :: T alpha[1]
and from the T1 branch we get the implication
forall[2] (alpha[1] ~ Int) => beta[1] ~ Bool
Now, clearly we don't want to unify alpha:=Int! Yet at the moment we
process [G] alpha[1] ~ Int, we don't have any given-equalities in the
inert set, and hence there are no given equalities to make alpha untouchable.
NB: if it were alpha[2] ~ Int, this argument wouldn't hold. But that
never happens: invariant (GivenInv) in Note [TcLevel invariants]
in GHC.Tc.Utils.TcType.
Simple solution: never unify in Givens!
-}
getDefaultInfo :: TcS ([Type], (Bool, Bool))
getDefaultInfo = wrapTcS TcM.tcGetDefaultTys
getWorkList :: TcS WorkList
getWorkList = do { wl_var <- getTcSWorkListRef
; wrapTcS (TcM.readTcRef wl_var) }
selectNextWorkItem :: TcS (Maybe Ct)
-- Pick which work item to do next
-- See Note [Prioritise equalities]
selectNextWorkItem
= do { wl_var <- getTcSWorkListRef
; wl <- readTcRef wl_var
; case selectWorkItem wl of {
Nothing -> return Nothing ;
Just (ct, new_wl) ->
do { -- checkReductionDepth (ctLoc ct) (ctPred ct)
-- This is done by GHC.Tc.Solver.Interact.chooseInstance
; writeTcRef wl_var new_wl
; return (Just ct) } } }
-- Just get some environments needed for instance looking up and matching
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getInstEnvs :: TcS InstEnvs
getInstEnvs = wrapTcS $ TcM.tcGetInstEnvs
getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs = wrapTcS $ FamInst.tcGetFamInstEnvs
getTopEnv :: TcS HscEnv
getTopEnv = wrapTcS $ TcM.getTopEnv
getGblEnv :: TcS TcGblEnv
getGblEnv = wrapTcS $ TcM.getGblEnv
getLclEnv :: TcS TcLclEnv
getLclEnv = wrapTcS $ TcM.getLclEnv
setLclEnv :: TcLclEnv -> TcS a -> TcS a
setLclEnv env = wrap2TcS (TcM.setLclEnv env)
tcLookupClass :: Name -> TcS Class
tcLookupClass c = wrapTcS $ TcM.tcLookupClass c
tcLookupId :: Name -> TcS Id
tcLookupId n = wrapTcS $ TcM.tcLookupId n
-- Setting names as used (used in the deriving of Coercible evidence)
-- Too hackish to expose it to TcS? In that case somehow extract the used
-- constructors from the result of solveInteract
addUsedGREs :: [GlobalRdrElt] -> TcS ()
addUsedGREs gres = wrapTcS $ TcM.addUsedGREs gres
addUsedGRE :: Bool -> GlobalRdrElt -> TcS ()
addUsedGRE warn_if_deprec gre = wrapTcS $ TcM.addUsedGRE warn_if_deprec gre
keepAlive :: Name -> TcS ()
keepAlive = wrapTcS . TcM.keepAlive
-- Various smaller utilities [TODO, maybe will be absorbed in the instance matcher]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
checkWellStagedDFun :: CtLoc -> InstanceWhat -> PredType -> TcS ()
-- Check that we do not try to use an instance before it is available. E.g.
-- instance Eq T where ...
-- f x = $( ... (\(p::T) -> p == p)... )
-- Here we can't use the equality function from the instance in the splice
checkWellStagedDFun loc what pred
| TopLevInstance { iw_dfun_id = dfun_id } <- what
, let bind_lvl = TcM.topIdLvl dfun_id
, bind_lvl > impLevel
= wrapTcS $ TcM.setCtLocM loc $
do { use_stage <- TcM.getStage
; TcM.checkWellStaged pp_thing bind_lvl (thLevel use_stage) }
| otherwise
= return () -- Fast path for common case
where
pp_thing = text "instance for" <+> quotes (ppr pred)
pprEq :: TcType -> TcType -> SDoc
pprEq ty1 ty2 = pprParendType ty1 <+> char '~' <+> pprParendType ty2
isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe tv = wrapTcS (TcM.isFilledMetaTyVar_maybe tv)
isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar tv = wrapTcS (TcM.isFilledMetaTyVar tv)
zonkTyCoVarsAndFV :: TcTyCoVarSet -> TcS TcTyCoVarSet
zonkTyCoVarsAndFV tvs = wrapTcS (TcM.zonkTyCoVarsAndFV tvs)
zonkTyCoVarsAndFVList :: [TcTyCoVar] -> TcS [TcTyCoVar]
zonkTyCoVarsAndFVList tvs = wrapTcS (TcM.zonkTyCoVarsAndFVList tvs)
zonkCo :: Coercion -> TcS Coercion
zonkCo = wrapTcS . TcM.zonkCo
zonkTcType :: TcType -> TcS TcType
zonkTcType ty = wrapTcS (TcM.zonkTcType ty)
zonkTcTypes :: [TcType] -> TcS [TcType]
zonkTcTypes tys = wrapTcS (TcM.zonkTcTypes tys)
zonkTcTyVar :: TcTyVar -> TcS TcType
zonkTcTyVar tv = wrapTcS (TcM.zonkTcTyVar tv)
zonkSimples :: Cts -> TcS Cts
zonkSimples cts = wrapTcS (TcM.zonkSimples cts)
zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC wc = wrapTcS (TcM.zonkWC wc)
zonkTyCoVarKind :: TcTyCoVar -> TcS TcTyCoVar
zonkTyCoVarKind tv = wrapTcS (TcM.zonkTyCoVarKind tv)
----------------------------
pprKicked :: Int -> SDoc
pprKicked 0 = empty
pprKicked n = parens (int n <+> text "kicked out")
{- *********************************************************************
* *
* The Unification Level Flag *
* *
********************************************************************* -}
{- Note [The Unification Level Flag]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a deep tree of implication constraints
forall[1] a. -- Outer-implic
C alpha[1] -- Simple
forall[2] c. ....(C alpha[1]).... -- Implic-1
forall[2] b. ....(alpha[1] ~ Int).... -- Implic-2
The (C alpha) is insoluble until we know alpha. We solve alpha
by unifying alpha:=Int somewhere deep inside Implic-2. But then we
must try to solve the Outer-implic all over again. This time we can
solve (C alpha) both in Outer-implic, and nested inside Implic-1.
When should we iterate solving a level-n implication?
Answer: if any unification of a tyvar at level n takes place
in the ic_implics of that implication.
* What if a unification takes place at level n-1? Then don't iterate
level n, because we'll iterate level n-1, and that will in turn iterate
level n.
* What if a unification takes place at level n, in the ic_simples of
level n? No need to track this, because the kick-out mechanism deals
with it. (We can't drop kick-out in favour of iteration, because kick-out
works for skolem-equalities, not just unifications.)
So the monad-global Unification Level Flag, kept in tcs_unif_lvl keeps
track of
- Whether any unifications at all have taken place (Nothing => no unifications)
- If so, what is the outermost level that has seen a unification (Just lvl)
The iteration done in the simplify_loop/maybe_simplify_again loop in GHC.Tc.Solver.
It helpful not to iterate unless there is a chance of progress. #8474 is
an example:
* There's a deeply-nested chain of implication constraints.
?x:alpha => ?y1:beta1 => ... ?yn:betan => [W] ?x:Int
* From the innermost one we get a [W] alpha[1] ~ Int,
so we can unify.
* It's better not to iterate the inner implications, but go all the
way out to level 1 before iterating -- because iterating level 1
will iterate the inner levels anyway.
(In the olden days when we "floated" thse Derived constraints, this was
much, much more important -- we got exponential behaviour, as each iteration
produced the same Derived constraint.)
-}
resetUnificationFlag :: TcS Bool
-- We are at ambient level i
-- If the unification flag = Just i, reset it to Nothing and return True
-- Otherwise leave it unchanged and return False
resetUnificationFlag
= TcS $ \env ->
do { let ref = tcs_unif_lvl env
; ambient_lvl <- TcM.getTcLevel
; mb_lvl <- TcM.readTcRef ref
; TcM.traceTc "resetUnificationFlag" $
vcat [ text "ambient:" <+> ppr ambient_lvl
, text "unif_lvl:" <+> ppr mb_lvl ]
; case mb_lvl of
Nothing -> return False
Just unif_lvl | ambient_lvl `strictlyDeeperThan` unif_lvl
-> return False
| otherwise
-> do { TcM.writeTcRef ref Nothing
; return True } }
setUnificationFlag :: TcLevel -> TcS ()
-- (setUnificationFlag i) sets the unification level to (Just i)
-- unless it already is (Just j) where j <= i
setUnificationFlag lvl
= TcS $ \env ->
do { let ref = tcs_unif_lvl env
; mb_lvl <- TcM.readTcRef ref
; case mb_lvl of
Just unif_lvl | lvl `deeperThanOrSame` unif_lvl
-> return ()
_ -> TcM.writeTcRef ref (Just lvl) }
{- *********************************************************************
* *
* Instantiation etc.
* *
********************************************************************* -}
-- Instantiations
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcThetaType)
instDFunType dfun_id inst_tys
= wrapTcS $ TcM.instDFunType dfun_id inst_tys
newFlexiTcSTy :: Kind -> TcS TcType
newFlexiTcSTy knd = wrapTcS (TcM.newFlexiTyVarTy knd)
cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar tv = wrapTcS (TcM.cloneMetaTyVar tv)
instFlexi :: [TKVar] -> TcS TCvSubst
instFlexi = instFlexiX emptyTCvSubst
instFlexiX :: TCvSubst -> [TKVar] -> TcS TCvSubst
instFlexiX subst tvs
= wrapTcS (foldlM instFlexiHelper subst tvs)
instFlexiHelper :: TCvSubst -> TKVar -> TcM TCvSubst
instFlexiHelper subst tv
= do { uniq <- TcM.newUnique
; details <- TcM.newMetaDetails TauTv
; let name = setNameUnique (tyVarName tv) uniq
kind = substTyUnchecked subst (tyVarKind tv)
ty' = mkTyVarTy (mkTcTyVar name kind details)
; TcM.traceTc "instFlexi" (ppr ty')
; return (extendTvSubst subst tv ty') }
matchGlobalInst :: DynFlags
-> Bool -- True <=> caller is the short-cut solver
-- See Note [Shortcut solving: overlap]
-> Class -> [Type] -> TcS TcM.ClsInstResult
matchGlobalInst dflags short_cut cls tys
= wrapTcS (TcM.matchGlobalInst dflags short_cut cls tys)
tcInstSkolTyVarsX :: SkolemInfo -> TCvSubst -> [TyVar] -> TcS (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX skol_info subst tvs = wrapTcS $ TcM.tcInstSkolTyVarsX skol_info subst tvs
-- Creating and setting evidence variables and CtFlavors
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
data MaybeNew = Fresh CtEvidence | Cached EvExpr
isFresh :: MaybeNew -> Bool
isFresh (Fresh {}) = True
isFresh (Cached {}) = False
freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals mns = [ ctev | Fresh ctev <- mns ]
getEvExpr :: MaybeNew -> EvExpr
getEvExpr (Fresh ctev) = ctEvExpr ctev
getEvExpr (Cached evt) = evt
setEvBind :: EvBind -> TcS ()
setEvBind ev_bind
= do { evb <- getTcEvBindsVar
; wrapTcS $ TcM.addTcEvBind evb ev_bind }
-- | Mark variables as used filling a coercion hole
useVars :: CoVarSet -> TcS ()
useVars co_vars
= do { ev_binds_var <- getTcEvBindsVar
; let ref = ebv_tcvs ev_binds_var
; wrapTcS $
do { tcvs <- TcM.readTcRef ref
; let tcvs' = tcvs `unionVarSet` co_vars
; TcM.writeTcRef ref tcvs' } }
-- | Equalities only
setWantedEq :: HasDebugCallStack => TcEvDest -> Coercion -> TcS ()
setWantedEq (HoleDest hole) co
= do { useVars (coVarsOfCo co)
; fillCoercionHole hole co }
setWantedEq (EvVarDest ev) _ = pprPanic "setWantedEq: EvVarDest" (ppr ev)
setWantedEq NoDest _ = panic "setWantedEq: NoDest"
-- | Good for both equalities and non-equalities
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm (HoleDest hole) tm
| Just co <- evTermCoercion_maybe tm
= do { useVars (coVarsOfCo co)
; fillCoercionHole hole co }
| otherwise
= -- See Note [Yukky eq_sel for a HoleDest]
do { let co_var = coHoleCoVar hole
; setEvBind (mkWantedEvBind co_var tm)
; fillCoercionHole hole (mkTcCoVarCo co_var) }
setWantedEvTerm (EvVarDest ev_id) tm
= setEvBind (mkWantedEvBind ev_id tm)
setWantedEvTerm NoDest tm
= pprPanic "setWantedEvTerm: NoDest" (ppr tm)
{- Note [Yukky eq_sel for a HoleDest]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How can it be that a Wanted with HoleDest gets evidence that isn't
just a coercion? i.e. evTermCoercion_maybe returns Nothing.
Consider [G] forall a. blah => a ~ T
[W] S ~# T
Then doTopReactEqPred carefully looks up the (boxed) constraint (S ~
T) in the quantified constraints, and wraps the (boxed) evidence it
gets back in an eq_sel to extract the unboxed (S ~# T). We can't put
that term into a coercion, so we add a value binding
h = eq_sel (...)
and the coercion variable h to fill the coercion hole.
We even re-use the CoHole's Id for this binding!
Yuk!
-}
fillCoercionHole :: CoercionHole -> Coercion -> TcS ()
fillCoercionHole hole co
= do { wrapTcS $ TcM.fillCoercionHole hole co
; kickOutAfterFillingCoercionHole hole }
setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted ev tm
= case ev of
CtWanted { ctev_dest = dest } -> setWantedEvTerm dest tm
_ -> return ()
newTcEvBinds :: TcS EvBindsVar
newTcEvBinds = wrapTcS TcM.newTcEvBinds
newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds = wrapTcS TcM.newNoTcEvBinds
newEvVar :: TcPredType -> TcS EvVar
newEvVar pred = wrapTcS (TcM.newEvVar pred)
newGivenEvVar :: CtLoc -> (TcPredType, EvTerm) -> TcS CtEvidence
-- Make a new variable of the given PredType,
-- immediately bind it to the given term
-- and return its CtEvidence
-- See Note [Bind new Givens immediately] in GHC.Tc.Types.Constraint
newGivenEvVar loc (pred, rhs)
= do { new_ev <- newBoundEvVarId pred rhs
; return (CtGiven { ctev_pred = pred, ctev_evar = new_ev, ctev_loc = loc }) }
-- | Make a new 'Id' of the given type, bound (in the monad's EvBinds) to the
-- given term
newBoundEvVarId :: TcPredType -> EvTerm -> TcS EvVar
newBoundEvVarId pred rhs
= do { new_ev <- newEvVar pred
; setEvBind (mkGivenEvBind new_ev rhs)
; return new_ev }
newGivenEvVars :: CtLoc -> [(TcPredType, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars loc pts = mapM (newGivenEvVar loc) pts
emitNewWantedEq :: CtLoc -> RewriterSet -> Role -> TcType -> TcType -> TcS Coercion
-- | Emit a new Wanted equality into the work-list
emitNewWantedEq loc rewriters role ty1 ty2
= do { (ev, co) <- newWantedEq loc rewriters role ty1 ty2
; updWorkListTcS (extendWorkListEq (mkNonCanonical ev))
; return co }
-- | Create a new Wanted constraint holding a coercion hole
-- for an equality between the two types at the given 'Role'.
newWantedEq :: CtLoc -> RewriterSet -> Role -> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq loc rewriters role ty1 ty2
= do { hole <- wrapTcS $ TcM.newCoercionHole pty
; traceTcS "Emitting new coercion hole" (ppr hole <+> dcolon <+> ppr pty)
; return ( CtWanted { ctev_pred = pty
, ctev_dest = HoleDest hole
, ctev_loc = loc
, ctev_rewriters = rewriters }
, mkHoleCo hole ) }
where
pty = mkPrimEqPredRole role ty1 ty2
-- | Create a new Wanted constraint holding an evidence variable.
--
-- Don't use this for equality constraints: use 'newWantedEq' instead.
newWantedEvVarNC :: CtLoc -> RewriterSet
-> TcPredType -> TcS CtEvidence
-- Don't look up in the solved/inerts; we know it's not there
newWantedEvVarNC loc rewriters pty
= do { new_ev <- newEvVar pty
; traceTcS "Emitting new wanted" (ppr new_ev <+> dcolon <+> ppr pty $$
pprCtLoc loc)
; return (CtWanted { ctev_pred = pty
, ctev_dest = EvVarDest new_ev
, ctev_loc = loc
, ctev_rewriters = rewriters })}
-- | Like 'newWantedEvVarNC', except it might look up in the inert set
-- to see if an inert already exists, and uses that instead of creating
-- a new Wanted constraint.
--
-- Don't use this for equality constraints: this function is only for
-- constraints with 'EvVarDest'.
newWantedEvVar :: CtLoc -> RewriterSet
-> TcPredType -> TcS MaybeNew
-- For anything except ClassPred, this is the same as newWantedEvVarNC
newWantedEvVar loc rewriters pty
= assertPpr (not (isEqPrimPred pty))
(vcat [ text "newWantedEvVar: HoleDestPred"
, text "pty:" <+> ppr pty ]) $
do { mb_ct <- lookupInInerts loc pty
; case mb_ct of
Just ctev
-> do { traceTcS "newWantedEvVar/cache hit" $ ppr ctev
; return $ Cached (ctEvExpr ctev) }
_ -> do { ctev <- newWantedEvVarNC loc rewriters pty
; return (Fresh ctev) } }
-- | Create a new Wanted constraint, potentially looking up
-- non-equality constraints in the cache instead of creating
-- a new one from scratch.
--
-- Deals with both equality and non-equality constraints.
newWanted :: CtLoc -> RewriterSet -> PredType -> TcS MaybeNew
newWanted loc rewriters pty
| Just (role, ty1, ty2) <- getEqPredTys_maybe pty
= Fresh . fst <$> newWantedEq loc rewriters role ty1 ty2
| otherwise
= newWantedEvVar loc rewriters pty
-- | Create a new Wanted constraint.
--
-- Deals with both equality and non-equality constraints.
--
-- Does not attempt to re-use non-equality constraints that already
-- exist in the inert set.
newWantedNC :: CtLoc -> RewriterSet -> PredType -> TcS CtEvidence
newWantedNC loc rewriters pty
| Just (role, ty1, ty2) <- getEqPredTys_maybe pty
= fst <$> newWantedEq loc rewriters role ty1 ty2
| otherwise
= newWantedEvVarNC loc rewriters pty
-- --------- Check done in GHC.Tc.Solver.Interact.selectNewWorkItem???? ---------
-- | Checks if the depth of the given location is too much. Fails if
-- it's too big, with an appropriate error message.
checkReductionDepth :: CtLoc -> TcType -- ^ type being reduced
-> TcS ()
checkReductionDepth loc ty
= do { dflags <- getDynFlags
; when (subGoalDepthExceeded dflags (ctLocDepth loc)) $
wrapErrTcS $ solverDepthError loc ty }
matchFam :: TyCon -> [Type] -> TcS (Maybe ReductionN)
matchFam tycon args = wrapTcS $ matchFamTcM tycon args
matchFamTcM :: TyCon -> [Type] -> TcM (Maybe ReductionN)
-- Given (F tys) return (ty, co), where co :: F tys ~N ty
matchFamTcM tycon args
= do { fam_envs <- FamInst.tcGetFamInstEnvs
; let match_fam_result
= reduceTyFamApp_maybe fam_envs Nominal tycon args
; TcM.traceTc "matchFamTcM" $
vcat [ text "Matching:" <+> ppr (mkTyConApp tycon args)
, ppr_res match_fam_result ]
; return match_fam_result }
where
ppr_res Nothing = text "Match failed"
ppr_res (Just (Reduction co ty))
= hang (text "Match succeeded:")
2 (vcat [ text "Rewrites to:" <+> ppr ty
, text "Coercion:" <+> ppr co ])
solverDepthError :: CtLoc -> TcType -> TcM a
solverDepthError loc ty
= TcM.setCtLocM loc $
do { ty <- TcM.zonkTcType ty
; env0 <- TcM.tcInitTidyEnv
; let tidy_env = tidyFreeTyCoVars env0 (tyCoVarsOfTypeList ty)
tidy_ty = tidyType tidy_env ty
msg = TcRnUnknownMessage $ mkPlainError noHints $
vcat [ text "Reduction stack overflow; size =" <+> ppr depth
, hang (text "When simplifying the following type:")
2 (ppr tidy_ty)
, note ]
; TcM.failWithTcM (tidy_env, msg) }
where
depth = ctLocDepth loc
note = vcat
[ text "Use -freduction-depth=0 to disable this check"
, text "(any upper bound you could choose might fail unpredictably with"
, text " minor updates to GHC, so disabling the check is recommended if"
, text " you're sure that type checking should terminate)" ]
{-
************************************************************************
* *
Breaking type variable cycles
* *
************************************************************************
-}
-- | Conditionally replace all type family applications in the RHS with fresh
-- variables, emitting givens that relate the type family application to the
-- variable. See Note [Type variable cycles] in GHC.Tc.Solver.Canonical.
-- This only works under conditions as described in the Note; otherwise, returns
-- Nothing.
breakTyVarCycle_maybe :: CtEvidence
-> CheckTyEqResult -- result of checkTypeEq
-> CanEqLHS
-> TcType -- RHS
-> TcS (Maybe (TcTyVar, ReductionN))
-- new RHS that doesn't have any type families
-- TcTyVar is the LHS tv; convenient for the caller
breakTyVarCycle_maybe (ctLocOrigin . ctEvLoc -> CycleBreakerOrigin _) _ _ _
-- see Detail (7) of Note
= return Nothing
breakTyVarCycle_maybe ev cte_result (TyVarLHS lhs_tv) rhs
| NomEq <- eq_rel
, cte_result `cterHasOnlyProblem` cteSolubleOccurs
-- only do this if the only problem is a soluble occurs-check
-- See Detail (8) of the Note.
= do { should_break <- final_check
; if should_break then do { redn <- go rhs
; return (Just (lhs_tv, redn)) }
else return Nothing }
where
flavour = ctEvFlavour ev
eq_rel = ctEvEqRel ev
final_check = case flavour of
Given -> return True
Wanted -> do { result <- touchabilityTest Wanted lhs_tv rhs
; return $ case result of
Untouchable -> False
_ -> True }
-- This could be considerably more efficient. See Detail (5) of Note.
go :: TcType -> TcS ReductionN
go ty | Just ty' <- rewriterView ty = go ty'
go (Rep.TyConApp tc tys)
| isTypeFamilyTyCon tc -- worried about whether this type family is not actually
-- causing trouble? See Detail (5) of Note.
= do { let (fun_args, extra_args) = splitAt (tyConArity tc) tys
fun_app = mkTyConApp tc fun_args
fun_app_kind = tcTypeKind fun_app
; fun_redn <- emit_work fun_app_kind fun_app
; arg_redns <- unzipRedns <$> mapM go extra_args
; return $ mkAppRedns fun_redn arg_redns }
-- Worried that this substitution will change kinds?
-- See Detail (3) of Note
| otherwise
= do { arg_redns <- unzipRedns <$> mapM go tys
; return $ mkTyConAppRedn Nominal tc arg_redns }
go (Rep.AppTy ty1 ty2)
= mkAppRedn <$> go ty1 <*> go ty2
go (Rep.FunTy vis w arg res)
= mkFunRedn Nominal vis <$> go w <*> go arg <*> go res
go (Rep.CastTy ty cast_co)
= mkCastRedn1 Nominal ty cast_co <$> go ty
go ty@(Rep.TyVarTy {}) = skip ty
go ty@(Rep.LitTy {}) = skip ty
go ty@(Rep.ForAllTy {}) = skip ty -- See Detail (1) of Note
go ty@(Rep.CoercionTy {}) = skip ty -- See Detail (2) of Note
skip ty = return $ mkReflRedn Nominal ty
emit_work :: TcKind -- of the function application
-> TcType -- original function application
-> TcS ReductionN -- rewritten type (the fresh tyvar)
emit_work fun_app_kind fun_app = case flavour of
Given ->
do { new_tv <- wrapTcS (TcM.newCycleBreakerTyVar fun_app_kind)
; let new_ty = mkTyVarTy new_tv
given_pred = mkHeteroPrimEqPred fun_app_kind fun_app_kind
fun_app new_ty
given_term = evCoercion $ mkNomReflCo new_ty -- See Detail (4) of Note
; new_given <- newGivenEvVar new_loc (given_pred, given_term)
; traceTcS "breakTyVarCycle replacing type family in Given" (ppr new_given)
; emitWorkNC [new_given]
; updInertTcS $ \is ->
is { inert_cycle_breakers = insertCycleBreakerBinding new_tv fun_app
(inert_cycle_breakers is) }
; return $ mkReflRedn Nominal new_ty }
-- Why reflexive? See Detail (4) of the Note
Wanted ->
do { new_tv <- wrapTcS (TcM.newFlexiTyVar fun_app_kind)
; let new_ty = mkTyVarTy new_tv
; co <- emitNewWantedEq new_loc (ctEvRewriters ev) Nominal new_ty fun_app
; return $ mkReduction (mkSymCo co) new_ty }
-- See Detail (7) of the Note
new_loc = updateCtLocOrigin (ctEvLoc ev) CycleBreakerOrigin
-- does not fit scenario from Note
breakTyVarCycle_maybe _ _ _ _ = return Nothing
-- | Fill in CycleBreakerTvs with the variables they stand for.
-- See Note [Type variable cycles] in GHC.Tc.Solver.Canonical.
restoreTyVarCycles :: InertSet -> TcM ()
restoreTyVarCycles is
= forAllCycleBreakerBindings_ (inert_cycle_breakers is) TcM.writeMetaTyVar
{-# SPECIALISE forAllCycleBreakerBindings_ ::
CycleBreakerVarStack -> (TcTyVar -> TcType -> TcM ()) -> TcM () #-}
-- Unwrap a type synonym only when either:
-- The type synonym is forgetful, or
-- the type synonym mentions a type family in its expansion
-- See Note [Rewriting synonyms] in GHC.Tc.Solver.Rewrite.
rewriterView :: TcType -> Maybe TcType
rewriterView ty@(Rep.TyConApp tc _)
| isForgetfulSynTyCon tc || (isTypeSynonymTyCon tc && not (isFamFreeTyCon tc))
= tcView ty
rewriterView _other = Nothing
|