1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveFunctor #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Tc.Solver.Rewrite(
rewrite, rewriteKind, rewriteArgsNom,
rewriteType
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Core.TyCo.Ppr ( pprTyVar )
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Utils.TcType
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep -- performs delicate algorithm on types
import GHC.Core.Coercion
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Driver.Session
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Tc.Solver.Monad as TcS
import GHC.Utils.Misc
import GHC.Data.Maybe
import GHC.Exts (oneShot)
import Control.Monad
import GHC.Utils.Monad ( zipWith3M )
import Data.List.NonEmpty ( NonEmpty(..) )
import Control.Arrow ( first )
{-
************************************************************************
* *
* RewriteEnv & RewriteM
* The rewriting environment & monad
* *
************************************************************************
-}
data RewriteEnv
= FE { fe_loc :: !CtLoc -- See Note [Rewriter CtLoc]
, fe_flavour :: !CtFlavour
, fe_eq_rel :: !EqRel -- See Note [Rewriter EqRels]
}
-- | The 'RewriteM' monad is a wrapper around 'TcS' with a 'RewriteEnv'
newtype RewriteM a
= RewriteM { runRewriteM :: RewriteEnv -> TcS a }
deriving (Functor)
-- | Smart constructor for 'RewriteM', as describe in Note [The one-shot state
-- monad trick] in "GHC.Utils.Monad".
mkRewriteM :: (RewriteEnv -> TcS a) -> RewriteM a
mkRewriteM f = RewriteM (oneShot f)
{-# INLINE mkRewriteM #-}
instance Monad RewriteM where
m >>= k = mkRewriteM $ \env ->
do { a <- runRewriteM m env
; runRewriteM (k a) env }
instance Applicative RewriteM where
pure x = mkRewriteM $ \_ -> pure x
(<*>) = ap
instance HasDynFlags RewriteM where
getDynFlags = liftTcS getDynFlags
liftTcS :: TcS a -> RewriteM a
liftTcS thing_inside
= mkRewriteM $ \_ -> thing_inside
-- convenient wrapper when you have a CtEvidence describing
-- the rewriting operation
runRewriteCtEv :: CtEvidence -> RewriteM a -> TcS a
runRewriteCtEv ev
= runRewrite (ctEvLoc ev) (ctEvFlavour ev) (ctEvEqRel ev)
-- Run thing_inside (which does the rewriting)
runRewrite :: CtLoc -> CtFlavour -> EqRel -> RewriteM a -> TcS a
runRewrite loc flav eq_rel thing_inside
= runRewriteM thing_inside fmode
where
fmode = FE { fe_loc = loc
, fe_flavour = flav
, fe_eq_rel = eq_rel }
traceRewriteM :: String -> SDoc -> RewriteM ()
traceRewriteM herald doc = liftTcS $ traceTcS herald doc
{-# INLINE traceRewriteM #-} -- see Note [INLINE conditional tracing utilities]
getRewriteEnvField :: (RewriteEnv -> a) -> RewriteM a
getRewriteEnvField accessor
= mkRewriteM $ \env -> return (accessor env)
getEqRel :: RewriteM EqRel
getEqRel = getRewriteEnvField fe_eq_rel
getRole :: RewriteM Role
getRole = eqRelRole <$> getEqRel
getFlavour :: RewriteM CtFlavour
getFlavour = getRewriteEnvField fe_flavour
getFlavourRole :: RewriteM CtFlavourRole
getFlavourRole
= do { flavour <- getFlavour
; eq_rel <- getEqRel
; return (flavour, eq_rel) }
getLoc :: RewriteM CtLoc
getLoc = getRewriteEnvField fe_loc
checkStackDepth :: Type -> RewriteM ()
checkStackDepth ty
= do { loc <- getLoc
; liftTcS $ checkReductionDepth loc ty }
-- | Change the 'EqRel' in a 'RewriteM'.
setEqRel :: EqRel -> RewriteM a -> RewriteM a
setEqRel new_eq_rel thing_inside
= mkRewriteM $ \env ->
if new_eq_rel == fe_eq_rel env
then runRewriteM thing_inside env
else runRewriteM thing_inside (env { fe_eq_rel = new_eq_rel })
{-# INLINE setEqRel #-}
-- | Make sure that rewriting actually produces a coercion (in other
-- words, make sure our flavour is not Derived)
-- Note [No derived kind equalities]
noBogusCoercions :: RewriteM a -> RewriteM a
noBogusCoercions thing_inside
= mkRewriteM $ \env ->
-- No new thunk is made if the flavour hasn't changed (note the bang).
let !env' = case fe_flavour env of
Derived -> env { fe_flavour = Wanted WDeriv }
_ -> env
in
runRewriteM thing_inside env'
bumpDepth :: RewriteM a -> RewriteM a
bumpDepth (RewriteM thing_inside)
= mkRewriteM $ \env -> do
-- bumpDepth can be called a lot during rewriting so we force the
-- new env to avoid accumulating thunks.
{ let !env' = env { fe_loc = bumpCtLocDepth (fe_loc env) }
; thing_inside env' }
{-
Note [Rewriter EqRels]
~~~~~~~~~~~~~~~~~~~~~~~
When rewriting, we need to know which equality relation -- nominal
or representation -- we should be respecting. The only difference is
that we rewrite variables by representational equalities when fe_eq_rel
is ReprEq, and that we unwrap newtypes when rewriting w.r.t.
representational equality.
Note [Rewriter CtLoc]
~~~~~~~~~~~~~~~~~~~~~~
The rewriter does eager type-family reduction.
Type families might loop, and we
don't want GHC to do so. A natural solution is to have a bounded depth
to these processes. A central difficulty is that such a solution isn't
quite compositional. For example, say it takes F Int 10 steps to get to Bool.
How many steps does it take to get from F Int -> F Int to Bool -> Bool?
10? 20? What about getting from Const Char (F Int) to Char? 11? 1? Hard to
know and hard to track. So, we punt, essentially. We store a CtLoc in
the RewriteEnv and just update the environment when recurring. In the
TyConApp case, where there may be multiple type families to rewrite,
we just copy the current CtLoc into each branch. If any branch hits the
stack limit, then the whole thing fails.
A consequence of this is that setting the stack limits appropriately
will be essentially impossible. So, the official recommendation if a
stack limit is hit is to disable the check entirely. Otherwise, there
will be baffling, unpredictable errors.
Note [Phantoms in the rewriter]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
data Proxy p = Proxy
and we're rewriting (Proxy ty) w.r.t. ReprEq. Then, we know that `ty`
is really irrelevant -- it will be ignored when solving for representational
equality later on. So, we omit rewriting `ty` entirely. This may
violate the expectation of "xi"s for a bit, but the canonicaliser will
soon throw out the phantoms when decomposing a TyConApp. (Or, the
canonicaliser will emit an insoluble, in which case we get
a better error message anyway.)
Note [No derived kind equalities]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A kind-level coercion can appear in types, via mkCastTy. So, whenever
we are generating a coercion in a dependent context (in other words,
in a kind) we need to make sure that our flavour is never Derived
(as Derived constraints have no evidence). The noBogusCoercions function
changes the flavour from Derived just for this purpose.
-}
{- *********************************************************************
* *
* Externally callable rewriting functions *
* *
************************************************************************
-}
-- | See Note [Rewriting].
-- If (xi, co) <- rewrite mode ev ty, then co :: xi ~r ty
-- where r is the role in @ev@.
rewrite :: CtEvidence -> TcType
-> TcS (Xi, TcCoercion)
rewrite ev ty
= do { traceTcS "rewrite {" (ppr ty)
; (ty', co) <- runRewriteCtEv ev (rewrite_one ty)
; traceTcS "rewrite }" (ppr ty')
; return (ty', co) }
-- specialized to rewriting kinds: never Derived, always Nominal
-- See Note [No derived kind equalities]
-- See Note [Rewriting]
rewriteKind :: CtLoc -> CtFlavour -> TcType -> TcS (Xi, TcCoercionN)
rewriteKind loc flav ty
= do { traceTcS "rewriteKind {" (ppr flav <+> ppr ty)
; let flav' = case flav of
Derived -> Wanted WDeriv -- the WDeriv/WOnly choice matters not
_ -> flav
; (ty', co) <- runRewrite loc flav' NomEq (rewrite_one ty)
; traceTcS "rewriteKind }" (ppr ty' $$ ppr co) -- co is never a panic
; return (ty', co) }
-- See Note [Rewriting]
rewriteArgsNom :: CtEvidence -> TyCon -> [TcType] -> TcS ([Xi], [TcCoercion])
-- Externally-callable, hence runRewrite
-- Rewrite a vector of types all at once; in fact they are
-- always the arguments of type family or class, so
-- ctEvFlavour ev = Nominal
-- and we want to rewrite all at nominal role
-- The kind passed in is the kind of the type family or class, call it T
-- The kind of T args must be constant (i.e. not depend on the args)
--
-- For Derived constraints the returned coercion may be undefined
-- because rewriting may use a Derived equality ([D] a ~ ty)
rewriteArgsNom ev tc tys
= do { traceTcS "rewrite_args {" (vcat (map ppr tys))
; (tys', cos, kind_co)
<- runRewriteCtEv ev (rewrite_args_tc tc Nothing tys)
; MASSERT( isReflMCo kind_co )
; traceTcS "rewrite }" (vcat (map ppr tys'))
; return (tys', cos) }
-- | Rewrite a type w.r.t. nominal equality. This is useful to rewrite
-- a type w.r.t. any givens. It does not do type-family reduction. This
-- will never emit new constraints. Call this when the inert set contains
-- only givens.
rewriteType :: CtLoc -> TcType -> TcS TcType
rewriteType loc ty
= do { (xi, _) <- runRewrite loc Given NomEq $
rewrite_one ty
-- use Given flavor so that it is rewritten
-- only w.r.t. Givens, never Wanteds/Deriveds
-- (Shouldn't matter, if only Givens are present
-- anyway)
; return xi }
{- *********************************************************************
* *
* The main rewriting functions
* *
********************************************************************* -}
{- Note [Rewriting]
~~~~~~~~~~~~~~~~~~~~
rewrite ty ==> (xi, co)
where
xi has no reducible type functions
has no skolems that are mapped in the inert set
has no filled-in metavariables
co :: xi ~ ty
Key invariants:
(F0) co :: xi ~ zonk(ty') where zonk(ty') ~ zonk(ty)
(F1) tcTypeKind(xi) succeeds and returns a fully zonked kind
(F2) tcTypeKind(xi) `eqType` zonk(tcTypeKind(ty))
Note that it is rewrite's job to try to reduce *every type function it sees*.
Rewriting also:
* zonks, removing any metavariables, and
* applies the substitution embodied in the inert set
Because rewriting zonks and the returned coercion ("co" above) is also
zonked, it's possible that (co :: xi ~ ty) isn't quite true. So, instead,
we can rely on this fact:
(F0) co :: xi ~ zonk(ty'), where zonk(ty') ~ zonk(ty)
Note that the left-hand type of co is *always* precisely xi. The right-hand
type may or may not be ty, however: if ty has unzonked filled-in metavariables,
then the right-hand type of co will be the zonk-equal to ty.
It is for this reason that we
occasionally have to explicitly zonk, when (co :: xi ~ ty) is important
even before we zonk the whole program. For example, see the RTRNotFollowed
case in rewriteTyVar.
Why have these invariants on rewriting? Because we sometimes use tcTypeKind
during canonicalisation, and we want this kind to be zonked (e.g., see
GHC.Tc.Solver.Canonical.canEqCanLHS).
Rewriting is always homogeneous. That is, the kind of the result of rewriting is
always the same as the kind of the input, modulo zonking. More formally:
(F2) tcTypeKind(xi) `eqType` zonk(tcTypeKind(ty))
This invariant means that the kind of a rewritten type might not itself be rewritten.
Note that we prefer to leave type synonyms unexpanded when possible,
so when the rewriter encounters one, it first asks whether its
transitive expansion contains any type function applications or is
forgetful -- that is, omits one or more type variables in its RHS. If so,
it expands the synonym and proceeds; if not, it simply returns the
unexpanded synonym. See also Note [Rewriting synonyms].
Where do we actually perform rewriting within a type? See Note [Rewritable] in
GHC.Tc.Solver.Monad.
Note [rewrite_args performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In programs with lots of type-level evaluation, rewrite_args becomes
part of a tight loop. For example, see test perf/compiler/T9872a, which
calls rewrite_args a whopping 7,106,808 times. It is thus important
that rewrite_args be efficient.
Performance testing showed that the current implementation is indeed
efficient. It's critically important that zipWithAndUnzipM be
specialized to TcS, and it's also quite helpful to actually `inline`
it. On test T9872a, here are the allocation stats (Dec 16, 2014):
* Unspecialized, uninlined: 8,472,613,440 bytes allocated in the heap
* Specialized, uninlined: 6,639,253,488 bytes allocated in the heap
* Specialized, inlined: 6,281,539,792 bytes allocated in the heap
To improve performance even further, rewrite_args_nom is split off
from rewrite_args, as nominal equality is the common case. This would
be natural to write using mapAndUnzipM, but even inlined, that function
is not as performant as a hand-written loop.
* mapAndUnzipM, inlined: 7,463,047,432 bytes allocated in the heap
* hand-written recursion: 5,848,602,848 bytes allocated in the heap
If you make any change here, pay close attention to the T9872{a,b,c} tests
and T5321Fun.
If we need to make this yet more performant, a possible way forward is to
duplicate the rewriter code for the nominal case, and make that case
faster. This doesn't seem quite worth it, yet.
Note [rewrite_exact_fam_app performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once we've got a rewritten rhs, we extend the famapp-cache to record
the result. Doing so can save lots of work when the same redex shows up more
than once. Note that we record the link from the redex all the way to its
*final* value, not just the single step reduction.
If we can reduce the family application right away (the first call
to try_to_reduce), we do *not* add to the cache. There are two possibilities
here: 1) we just read the result from the cache, or 2) we used one type
family instance. In either case, recording the result in the cache doesn't
save much effort the next time around. And adding to the cache here is
actually disastrous: it more than doubles the allocations for T9872a. So
we skip adding to the cache here.
-}
{-# INLINE rewrite_args_tc #-}
rewrite_args_tc
:: TyCon -- T
-> Maybe [Role] -- Nothing: ambient role is Nominal; all args are Nominal
-- Otherwise: no assumptions; use roles provided
-> [Type] -- Arg types [t1,..,tn]
-> RewriteM ( [Xi] -- List of rewritten args [x1,..,xn]
-- 1-1 corresp with [t1,..,tn]
, [Coercion] -- List of arg coercions [co1,..,con]
-- 1-1 corresp with [t1,..,tn]
-- coi :: xi ~r ti
, MCoercionN) -- Result coercion, rco
-- rco : (T t1..tn) ~N (T (x1 |> co1) .. (xn |> con))
rewrite_args_tc tc = rewrite_args all_bndrs any_named_bndrs inner_ki emptyVarSet
-- NB: TyCon kinds are always closed
where
(bndrs, named)
= ty_con_binders_ty_binders' (tyConBinders tc)
-- it's possible that the result kind has arrows (for, e.g., a type family)
-- so we must split it
(inner_bndrs, inner_ki, inner_named) = split_pi_tys' (tyConResKind tc)
!all_bndrs = bndrs `chkAppend` inner_bndrs
!any_named_bndrs = named || inner_named
-- NB: Those bangs there drop allocations in T9872{a,c,d} by 8%.
{-# INLINE rewrite_args #-}
rewrite_args :: [TyCoBinder] -> Bool -- Binders, and True iff any of them are
-- named.
-> Kind -> TcTyCoVarSet -- function kind; kind's free vars
-> Maybe [Role] -> [Type] -- these are in 1-to-1 correspondence
-- Nothing: use all Nominal
-> RewriteM ([Xi], [Coercion], MCoercionN)
-- Coercions :: Xi ~ Type, at roles given
-- Third coercion :: tcTypeKind(fun xis) ~N tcTypeKind(fun tys)
-- That is, the third coercion relates the kind of some function (whose kind is
-- passed as the first parameter) instantiated at xis to the kind of that
-- function instantiated at the tys. This is useful in keeping rewriting
-- homoegeneous. The list of roles must be at least as long as the list of
-- types.
rewrite_args orig_binders
any_named_bndrs
orig_inner_ki
orig_fvs
orig_m_roles
orig_tys
= case (orig_m_roles, any_named_bndrs) of
(Nothing, False) -> rewrite_args_fast orig_tys
_ -> rewrite_args_slow orig_binders orig_inner_ki orig_fvs orig_roles orig_tys
where orig_roles = fromMaybe (repeat Nominal) orig_m_roles
{-# INLINE rewrite_args_fast #-}
-- | fast path rewrite_args, in which none of the binders are named and
-- therefore we can avoid tracking a lifting context.
-- There are many bang patterns in here. It's been observed that they
-- greatly improve performance of an optimized build.
-- The T9872 test cases are good witnesses of this fact.
rewrite_args_fast :: [Type]
-> RewriteM ([Xi], [Coercion], MCoercionN)
rewrite_args_fast orig_tys
= fmap finish (iterate orig_tys)
where
iterate :: [Type]
-> RewriteM ([Xi], [Coercion])
iterate (ty:tys) = do
(xi, co) <- rewrite_one ty
(xis, cos) <- iterate tys
pure (xi : xis, co : cos)
iterate [] = pure ([], [])
{-# INLINE finish #-}
finish :: ([Xi], [Coercion]) -> ([Xi], [Coercion], MCoercionN)
finish (xis, cos) = (xis, cos, MRefl)
{-# INLINE rewrite_args_slow #-}
-- | Slow path, compared to rewrite_args_fast, because this one must track
-- a lifting context.
rewrite_args_slow :: [TyCoBinder] -> Kind -> TcTyCoVarSet
-> [Role] -> [Type]
-> RewriteM ([Xi], [Coercion], MCoercionN)
rewrite_args_slow binders inner_ki fvs roles tys
-- Arguments used dependently must be rewritten with proper coercions, but
-- we're not guaranteed to get a proper coercion when rewriting with the
-- "Derived" flavour. So we must call noBogusCoercions when rewriting arguments
-- corresponding to binders that are dependent. However, we might legitimately
-- have *more* arguments than binders, in the case that the inner_ki is a variable
-- that gets instantiated with a Π-type. We conservatively choose not to produce
-- bogus coercions for these, too. Note that this might miss an opportunity for
-- a Derived rewriting a Derived. The solution would be to generate evidence for
-- Deriveds, thus avoiding this whole noBogusCoercions idea. See also
-- Note [No derived kind equalities]
= do { rewritten_args <- zipWith3M fl (map isNamedBinder binders ++ repeat True)
roles tys
; return (simplifyArgsWorker binders inner_ki fvs roles rewritten_args) }
where
{-# INLINE fl #-}
fl :: Bool -- must we ensure to produce a real coercion here?
-- see comment at top of function
-> Role -> Type -> RewriteM (Xi, Coercion)
fl True r ty = noBogusCoercions $ fl1 r ty
fl False r ty = fl1 r ty
{-# INLINE fl1 #-}
fl1 :: Role -> Type -> RewriteM (Xi, Coercion)
fl1 Nominal ty
= setEqRel NomEq $
rewrite_one ty
fl1 Representational ty
= setEqRel ReprEq $
rewrite_one ty
fl1 Phantom ty
-- See Note [Phantoms in the rewriter]
= do { ty <- liftTcS $ zonkTcType ty
; return (ty, mkReflCo Phantom ty) }
------------------
rewrite_one :: TcType -> RewriteM (Xi, Coercion)
-- Rewrite a type to get rid of type function applications, returning
-- the new type-function-free type, and a collection of new equality
-- constraints. See Note [Rewriting] for more detail.
--
-- Postcondition: Coercion :: Xi ~ TcType
-- The role on the result coercion matches the EqRel in the RewriteEnv
rewrite_one ty
| Just ty' <- rewriterView ty -- See Note [Rewriting synonyms]
= rewrite_one ty'
rewrite_one xi@(LitTy {})
= do { role <- getRole
; return (xi, mkReflCo role xi) }
rewrite_one (TyVarTy tv)
= rewriteTyVar tv
rewrite_one (AppTy ty1 ty2)
= rewrite_app_tys ty1 [ty2]
rewrite_one (TyConApp tc tys)
-- If it's a type family application, try to reduce it
| isTypeFamilyTyCon tc
= rewrite_fam_app tc tys
-- For * a normal data type application
-- * data family application
-- we just recursively rewrite the arguments.
| otherwise
= rewrite_ty_con_app tc tys
rewrite_one ty@(FunTy { ft_mult = mult, ft_arg = ty1, ft_res = ty2 })
= do { (xi1,co1) <- rewrite_one ty1
; (xi2,co2) <- rewrite_one ty2
; (xi3,co3) <- setEqRel NomEq $ rewrite_one mult
; role <- getRole
; return (ty { ft_mult = xi3, ft_arg = xi1, ft_res = xi2 }
, mkFunCo role co3 co1 co2) }
rewrite_one ty@(ForAllTy {})
-- TODO (RAE): This is inadequate, as it doesn't rewrite the kind of
-- the bound tyvar. Doing so will require carrying around a substitution
-- and the usual substTyVarBndr-like silliness. Argh.
-- We allow for-alls when, but only when, no type function
-- applications inside the forall involve the bound type variables.
= do { let (bndrs, rho) = tcSplitForAllTyVarBinders ty
tvs = binderVars bndrs
; (rho', co) <- rewrite_one rho
; return (mkForAllTys bndrs rho', mkHomoForAllCos tvs co) }
rewrite_one (CastTy ty g)
= do { (xi, co) <- rewrite_one ty
; (g', _) <- rewrite_co g
; role <- getRole
; return (mkCastTy xi g', castCoercionKind1 co role xi ty g') }
-- It makes a /big/ difference to call castCoercionKind1 not
-- the more general castCoercionKind2.
-- See Note [castCoercionKind1] in GHC.Core.Coercion
rewrite_one (CoercionTy co) = first mkCoercionTy <$> rewrite_co co
-- | "Rewrite" a coercion. Really, just zonk it so we can uphold
-- (F1) of Note [Rewriting]
rewrite_co :: Coercion -> RewriteM (Coercion, Coercion)
rewrite_co co
= do { co <- liftTcS $ zonkCo co
; env_role <- getRole
; let co' = mkTcReflCo env_role (mkCoercionTy co)
; return (co, co') }
-- rewrite (nested) AppTys
rewrite_app_tys :: Type -> [Type] -> RewriteM (Xi, Coercion)
-- commoning up nested applications allows us to look up the function's kind
-- only once. Without commoning up like this, we would spend a quadratic amount
-- of time looking up functions' types
rewrite_app_tys (AppTy ty1 ty2) tys = rewrite_app_tys ty1 (ty2:tys)
rewrite_app_tys fun_ty arg_tys
= do { (fun_xi, fun_co) <- rewrite_one fun_ty
; rewrite_app_ty_args fun_xi fun_co arg_tys }
-- Given a rewritten function (with the coercion produced by rewriting) and
-- a bunch of unrewritten arguments, rewrite the arguments and apply.
-- The coercion argument's role matches the role stored in the RewriteM monad.
--
-- The bang patterns used here were observed to improve performance. If you
-- wish to remove them, be sure to check for regeressions in allocations.
rewrite_app_ty_args :: Xi -> Coercion -> [Type] -> RewriteM (Xi, Coercion)
rewrite_app_ty_args fun_xi fun_co []
-- this will be a common case when called from rewrite_fam_app, so shortcut
= return (fun_xi, fun_co)
rewrite_app_ty_args fun_xi fun_co arg_tys
= do { (xi, co, kind_co) <- case tcSplitTyConApp_maybe fun_xi of
Just (tc, xis) ->
do { let tc_roles = tyConRolesRepresentational tc
arg_roles = dropList xis tc_roles
; (arg_xis, arg_cos, kind_co)
<- rewrite_vector (tcTypeKind fun_xi) arg_roles arg_tys
-- Here, we have fun_co :: T xi1 xi2 ~ ty
-- and we need to apply fun_co to the arg_cos. The problem is
-- that using mkAppCo is wrong because that function expects
-- its second coercion to be Nominal, and the arg_cos might
-- not be. The solution is to use transitivity:
-- T <xi1> <xi2> arg_cos ;; fun_co <arg_tys>
; eq_rel <- getEqRel
; let app_xi = mkTyConApp tc (xis ++ arg_xis)
app_co = case eq_rel of
NomEq -> mkAppCos fun_co arg_cos
ReprEq -> mkTcTyConAppCo Representational tc
(zipWith mkReflCo tc_roles xis ++ arg_cos)
`mkTcTransCo`
mkAppCos fun_co (map mkNomReflCo arg_tys)
; return (app_xi, app_co, kind_co) }
Nothing ->
do { (arg_xis, arg_cos, kind_co)
<- rewrite_vector (tcTypeKind fun_xi) (repeat Nominal) arg_tys
; let arg_xi = mkAppTys fun_xi arg_xis
arg_co = mkAppCos fun_co arg_cos
; return (arg_xi, arg_co, kind_co) }
; role <- getRole
; return (homogenise_result xi co role kind_co) }
rewrite_ty_con_app :: TyCon -> [TcType] -> RewriteM (Xi, Coercion)
rewrite_ty_con_app tc tys
= do { role <- getRole
; let m_roles | Nominal <- role = Nothing
| otherwise = Just $ tyConRolesX role tc
; (xis, cos, kind_co) <- rewrite_args_tc tc m_roles tys
; let tyconapp_xi = mkTyConApp tc xis
tyconapp_co = mkTyConAppCo role tc cos
; return (homogenise_result tyconapp_xi tyconapp_co role kind_co) }
-- Make the result of rewriting homogeneous (Note [Rewriting] (F2))
homogenise_result :: Xi -- a rewritten type
-> Coercion -- :: xi ~r original ty
-> Role -- r
-> MCoercionN -- kind_co :: tcTypeKind(xi) ~N tcTypeKind(ty)
-> (Xi, Coercion) -- (xi |> kind_co, (xi |> kind_co)
-- ~r original ty)
homogenise_result xi co _ MRefl = (xi, co)
homogenise_result xi co r mco@(MCo kind_co)
= (xi `mkCastTy` kind_co, (mkSymCo $ GRefl r xi mco) `mkTransCo` co)
{-# INLINE homogenise_result #-}
-- Rewrite a vector (list of arguments).
rewrite_vector :: Kind -- of the function being applied to these arguments
-> [Role] -- If we're rewrite w.r.t. ReprEq, what roles do the
-- args have?
-> [Type] -- the args to rewrite
-> RewriteM ([Xi], [Coercion], MCoercionN)
rewrite_vector ki roles tys
= do { eq_rel <- getEqRel
; case eq_rel of
NomEq -> rewrite_args bndrs
any_named_bndrs
inner_ki
fvs
Nothing
tys
ReprEq -> rewrite_args bndrs
any_named_bndrs
inner_ki
fvs
(Just roles)
tys
}
where
(bndrs, inner_ki, any_named_bndrs) = split_pi_tys' ki
fvs = tyCoVarsOfType ki
{-# INLINE rewrite_vector #-}
{-
Note [Rewriting synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Not expanding synonyms aggressively improves error messages, and
keeps types smaller. But we need to take care.
Suppose
type Syn a = Int
type instance F Bool = Syn (F Bool)
[G] F Bool ~ Syn (F Bool)
If we don't expand the synonym, we'll get a spurious occurs-check
failure. This is normally what occCheckExpand takes care of, but
the LHS is a type family application, and occCheckExpand (already
complex enough as it is) does not know how to expand to avoid
a type family application.
In addition, expanding the forgetful synonym like this
will generally yield a *smaller* type. To wit, if we spot
S ( ... F tys ... ), where S is forgetful, we don't want to bother
doing hard work simplifying (F tys). We thus expand forgetful
synonyms, but not others.
isForgetfulSynTyCon returns True more often than it needs to, so
we err on the side of more expansion.
We also, of course, must expand type synonyms that mention type families,
so those families can get reduced.
************************************************************************
* *
Rewriting a type-family application
* *
************************************************************************
Note [How to normalise a family application]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given an exactly saturated family application, how should we normalise it?
This Note spells out the algorithm and its reasoning.
STEP 1. Try the famapp-cache. If we get a cache hit, jump to FINISH.
STEP 2. Try top-level instances. Note that we haven't simplified the arguments
yet. Example:
type instance F (Maybe a) = Int
target: F (Maybe (G Bool))
Instead of first trying to simplify (G Bool), we use the instance first. This
avoids the work of simplifying G Bool.
If an instance is found, jump to FINISH.
STEP 3. Rewrite all arguments. This might expose more information so that we
can use a top-level instance.
Continue to the next step.
STEP 4. Try the inerts. Note that we try the inerts *after* rewriting the
arguments, because the inerts will have rewritten LHSs.
If an inert is found, jump to FINISH.
STEP 5. Try the famapp-cache again. Now that we've revealed more information
in the arguments, the cache might be helpful.
If we get a cache hit, jump to FINISH.
STEP 6. Try top-level instances, which might trigger now that we know more
about the argumnents.
If an instance is found, jump to FINISH.
STEP 7. No progress to be made. Return what we have. (Do not do FINISH.)
FINISH 1. We've made a reduction, but the new type may still have more
work to do. So rewrite the new type.
FINISH 2. Add the result to the famapp-cache, connecting the type we started
with to the one we ended with.
Because STEP 1/2 and STEP 5/6 happen the same way, they are abstracted into
try_to_reduce.
FINISH is naturally implemented in `finish`. But, Note [rewrite_exact_fam_app performance]
tells us that we should not add to the famapp-cache after STEP 1/2. So `finish`
is inlined in that case, and only FINISH 1 is performed.
-}
rewrite_fam_app :: TyCon -> [TcType] -> RewriteM (Xi, Coercion)
-- rewrite_fam_app can be over-saturated
-- rewrite_exact_fam_app lifts out the application to top level
-- Postcondition: Coercion :: Xi ~ F tys
rewrite_fam_app tc tys -- Can be over-saturated
= ASSERT2( tys `lengthAtLeast` tyConArity tc
, ppr tc $$ ppr (tyConArity tc) $$ ppr tys)
-- Type functions are saturated
-- The type function might be *over* saturated
-- in which case the remaining arguments should
-- be dealt with by AppTys
do { let (tys1, tys_rest) = splitAt (tyConArity tc) tys
; (xi1, co1) <- rewrite_exact_fam_app tc tys1
-- co1 :: xi1 ~ F tys1
; rewrite_app_ty_args xi1 co1 tys_rest }
-- the [TcType] exactly saturate the TyCon
-- See Note [How to normalise a family application]
rewrite_exact_fam_app :: TyCon -> [TcType] -> RewriteM (Xi, Coercion)
rewrite_exact_fam_app tc tys
= do { checkStackDepth (mkTyConApp tc tys)
-- STEP 1/2. Try to reduce without reducing arguments first.
; result1 <- try_to_reduce tc tys
; case result1 of
-- Don't use the cache;
-- See Note [rewrite_exact_fam_app performance]
{ Just (co, xi) -> finish False (xi, co)
; Nothing ->
-- That didn't work. So reduce the arguments, in STEP 3.
do { eq_rel <- getEqRel
-- checking eq_rel == NomEq saves ~0.5% in T9872a
; (xis, cos, kind_co) <- if eq_rel == NomEq
then rewrite_args_tc tc Nothing tys
else setEqRel NomEq $
rewrite_args_tc tc Nothing tys
-- kind_co :: tcTypeKind(F xis) ~N tcTypeKind(F tys)
; let role = eqRelRole eq_rel
args_co = mkTyConAppCo role tc cos
-- args_co :: F xis ~r F tys
homogenise :: TcType -> TcCoercion -> (TcType, TcCoercion)
-- in (xi', co') = homogenise xi co
-- assume co :: xi ~r F xis, co is homogeneous
-- then xi' :: tcTypeKind(F tys)
-- and co' :: xi' ~r F tys, which is homogeneous
homogenise xi co = homogenise_result xi (co `mkTcTransCo` args_co) role kind_co
-- STEP 4: try the inerts
; result2 <- liftTcS $ lookupFamAppInert tc xis
; flavour <- getFlavour
; case result2 of
{ Just (co, xi, fr@(_, inert_eq_rel))
-- co :: F xis ~ir xi
| fr `eqCanRewriteFR` (flavour, eq_rel) ->
do { traceRewriteM "rewrite family application with inert"
(ppr tc <+> ppr xis $$ ppr xi)
; finish True (homogenise xi downgraded_co) }
-- this will sometimes duplicate an inert in the cache,
-- but avoiding doing so had no impact on performance, and
-- it seems easier not to weed out that special case
where
inert_role = eqRelRole inert_eq_rel
role = eqRelRole eq_rel
downgraded_co = tcDowngradeRole role inert_role (mkTcSymCo co)
-- downgraded_co :: xi ~r F xis
; _ ->
-- inert didn't work. Try to reduce again, in STEP 5/6.
do { result3 <- try_to_reduce tc xis
; case result3 of
Just (co, xi) -> finish True (homogenise xi co)
Nothing -> -- we have made no progress at all: STEP 7.
return (homogenise reduced (mkTcReflCo role reduced))
where
reduced = mkTyConApp tc xis }}}}}
where
-- call this if the above attempts made progress.
-- This recursively rewrites the result and then adds to the cache
finish :: Bool -- add to the cache?
-> (Xi, Coercion) -> RewriteM (Xi, Coercion)
finish use_cache (xi, co)
= do { -- rewrite the result: FINISH 1
(fully, fully_co) <- bumpDepth $ rewrite_one xi
; let final_co = fully_co `mkTcTransCo` co
; eq_rel <- getEqRel
; flavour <- getFlavour
-- extend the cache: FINISH 2
; when (use_cache && eq_rel == NomEq && flavour /= Derived) $
-- the cache only wants Nominal eqs
-- and Wanteds can rewrite Deriveds; the cache
-- has only Givens
liftTcS $ extendFamAppCache tc tys (final_co, fully)
; return (fully, final_co) }
{-# INLINE finish #-}
-- Returned coercion is output ~r input, where r is the role in the RewriteM monad
-- See Note [How to normalise a family application]
try_to_reduce :: TyCon -> [TcType] -> RewriteM (Maybe (TcCoercion, TcType))
try_to_reduce tc tys
= do { result <- liftTcS $ firstJustsM [ lookupFamAppCache tc tys -- STEP 5
, matchFam tc tys ] -- STEP 6
; downgrade result }
where
-- The result above is always Nominal. We might want a Representational
-- coercion; this downgrades (and prints, out of convenience).
downgrade :: Maybe (TcCoercionN, TcType) -> RewriteM (Maybe (TcCoercion, TcType))
downgrade Nothing = return Nothing
downgrade result@(Just (co, xi))
= do { traceRewriteM "Eager T.F. reduction success" $
vcat [ ppr tc, ppr tys, ppr xi
, ppr co <+> dcolon <+> ppr (coercionKind co)
]
; eq_rel <- getEqRel
-- manually doing it this way avoids allocation in the vastly
-- common NomEq case
; case eq_rel of
NomEq -> return result
ReprEq -> return (Just (mkSubCo co, xi)) }
{-
************************************************************************
* *
Rewriting a type variable
* *
********************************************************************* -}
-- | The result of rewriting a tyvar "one step".
data RewriteTvResult
= RTRNotFollowed
-- ^ The inert set doesn't make the tyvar equal to anything else
| RTRFollowed TcType Coercion
-- ^ The tyvar rewrites to a not-necessarily rewritten other type.
-- co :: new type ~r old type, where the role is determined by
-- the RewriteEnv
--
-- With Quick Look, the returned TcType can be a polytype;
-- that is, in the constraint solver, a unification variable
-- can contain a polytype. See GHC.Tc.Gen.App
-- Note [Instantiation variables are short lived]
rewriteTyVar :: TyVar -> RewriteM (Xi, Coercion)
rewriteTyVar tv
= do { mb_yes <- rewrite_tyvar1 tv
; case mb_yes of
RTRFollowed ty1 co1 -- Recur
-> do { (ty2, co2) <- rewrite_one ty1
-- ; traceRewriteM "rewriteTyVar2" (ppr tv $$ ppr ty2)
; return (ty2, co2 `mkTransCo` co1) }
RTRNotFollowed -- Done, but make sure the kind is zonked
-- Note [Rewriting] invariant (F0) and (F1)
-> do { tv' <- liftTcS $ updateTyVarKindM zonkTcType tv
; role <- getRole
; let ty' = mkTyVarTy tv'
; return (ty', mkTcReflCo role ty') } }
rewrite_tyvar1 :: TcTyVar -> RewriteM RewriteTvResult
-- "Rewriting" a type variable means to apply the substitution to it
-- Specifically, look up the tyvar in
-- * the internal MetaTyVar box
-- * the inerts
-- See also the documentation for RewriteTvResult
rewrite_tyvar1 tv
= do { mb_ty <- liftTcS $ isFilledMetaTyVar_maybe tv
; case mb_ty of
Just ty -> do { traceRewriteM "Following filled tyvar"
(ppr tv <+> equals <+> ppr ty)
; role <- getRole
; return (RTRFollowed ty (mkReflCo role ty)) } ;
Nothing -> do { traceRewriteM "Unfilled tyvar" (pprTyVar tv)
; fr <- getFlavourRole
; rewrite_tyvar2 tv fr } }
rewrite_tyvar2 :: TcTyVar -> CtFlavourRole -> RewriteM RewriteTvResult
-- The tyvar is not a filled-in meta-tyvar
-- Try in the inert equalities
-- See Definition [Applying a generalised substitution] in GHC.Tc.Solver.Monad
-- See Note [Stability of rewriting] in GHC.Tc.Solver.Monad
rewrite_tyvar2 tv fr@(_, eq_rel)
= do { ieqs <- liftTcS $ getInertEqs
; case lookupDVarEnv ieqs tv of
Just (EqualCtList (ct :| _)) -- If the first doesn't work,
-- the subsequent ones won't either
| CEqCan { cc_ev = ctev, cc_lhs = TyVarLHS tv
, cc_rhs = rhs_ty, cc_eq_rel = ct_eq_rel } <- ct
, let ct_fr = (ctEvFlavour ctev, ct_eq_rel)
, ct_fr `eqCanRewriteFR` fr -- This is THE key call of eqCanRewriteFR
-> do { traceRewriteM "Following inert tyvar"
(ppr tv <+>
equals <+>
ppr rhs_ty $$ ppr ctev)
; let rewrite_co1 = mkSymCo (ctEvCoercion ctev)
rewrite_co = case (ct_eq_rel, eq_rel) of
(ReprEq, _rel) -> ASSERT( _rel == ReprEq )
-- if this ASSERT fails, then
-- eqCanRewriteFR answered incorrectly
rewrite_co1
(NomEq, NomEq) -> rewrite_co1
(NomEq, ReprEq) -> mkSubCo rewrite_co1
; return (RTRFollowed rhs_ty rewrite_co) }
-- NB: ct is Derived then fmode must be also, hence
-- we are not going to touch the returned coercion
-- so ctEvCoercion is fine.
_other -> return RTRNotFollowed }
{-
Note [An alternative story for the inert substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This entire note is just background, left here in case we ever want
to return the previous state of affairs)
We used (GHC 7.8) to have this story for the inert substitution inert_eqs
* 'a' is not in fvs(ty)
* They are *inert* in the weaker sense that there is no infinite chain of
(i1 `eqCanRewrite` i2), (i2 `eqCanRewrite` i3), etc
This means that rewriting must be recursive, but it does allow
[G] a ~ [b]
[G] b ~ Maybe c
This avoids "saturating" the Givens, which can save a modest amount of work.
It is easy to implement, in GHC.Tc.Solver.Interact.kick_out, by only kicking out an inert
only if (a) the work item can rewrite the inert AND
(b) the inert cannot rewrite the work item
This is significantly harder to think about. It can save a LOT of work
in occurs-check cases, but we don't care about them much. #5837
is an example, but it causes trouble only with the old (pre-Fall 2020)
rewriting story. It is unclear if there is any gain w.r.t. to
the new story.
-}
--------------------------------------
-- Utilities
-- | Like 'splitPiTys'' but comes with a 'Bool' which is 'True' iff there is at
-- least one named binder.
split_pi_tys' :: Type -> ([TyCoBinder], Type, Bool)
split_pi_tys' ty = split ty ty
where
-- put common cases first
split _ (ForAllTy b res) = let -- This bang is necessary lest we see rather
-- terrible reboxing, as noted in #19102.
!(bs, ty, _) = split res res
in (Named b : bs, ty, True)
split _ (FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res })
= let -- See #19102
!(bs, ty, named) = split res res
in (Anon af (mkScaled w arg) : bs, ty, named)
split orig_ty ty | Just ty' <- coreView ty = split orig_ty ty'
split orig_ty _ = ([], orig_ty, False)
{-# INLINE split_pi_tys' #-}
-- | Like 'tyConBindersTyCoBinders' but you also get a 'Bool' which is true iff
-- there is at least one named binder.
ty_con_binders_ty_binders' :: [TyConBinder] -> ([TyCoBinder], Bool)
ty_con_binders_ty_binders' = foldr go ([], False)
where
go (Bndr tv (NamedTCB vis)) (bndrs, _)
= (Named (Bndr tv vis) : bndrs, True)
go (Bndr tv (AnonTCB af)) (bndrs, n)
= (Anon af (tymult (tyVarKind tv)) : bndrs, n)
{-# INLINE go #-}
{-# INLINE ty_con_binders_ty_binders' #-}
|