1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DeriveFunctor #-}
module GHC.Tc.Solver.Rewrite(
rewrite, rewriteForErrors, rewriteArgsNom,
rewriteType
) where
import GHC.Prelude
import GHC.Core.TyCo.Ppr ( pprTyVar )
import GHC.Tc.Types ( TcGblEnv(tcg_tc_plugin_rewriters),
TcPluginRewriter, TcPluginRewriteResult(..),
RewriteEnv(..),
runTcPluginM )
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Utils.TcType
import GHC.Core.Type
import GHC.Tc.Types.Evidence
import GHC.Core.TyCon
import GHC.Core.TyCo.Rep -- performs delicate algorithm on types
import GHC.Core.Coercion
import GHC.Core.Reduction
import GHC.Types.Unique.FM
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Driver.Session
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Tc.Solver.Monad as TcS
import GHC.Utils.Misc
import GHC.Data.Maybe
import GHC.Exts (oneShot)
import Control.Monad
import Control.Applicative (liftA3)
import GHC.Builtin.Types (tYPETyCon)
import Data.List ( find )
import GHC.Data.List.Infinite (Infinite)
import qualified GHC.Data.List.Infinite as Inf
{-
************************************************************************
* *
* RewriteEnv & RewriteM
* The rewriting environment & monad
* *
************************************************************************
-}
-- | The 'RewriteM' monad is a wrapper around 'TcS' with a 'RewriteEnv'
newtype RewriteM a
= RewriteM { runRewriteM :: RewriteEnv -> TcS a }
deriving (Functor)
-- | Smart constructor for 'RewriteM', as describe in Note [The one-shot state
-- monad trick] in "GHC.Utils.Monad".
mkRewriteM :: (RewriteEnv -> TcS a) -> RewriteM a
mkRewriteM f = RewriteM (oneShot f)
{-# INLINE mkRewriteM #-}
instance Monad RewriteM where
m >>= k = mkRewriteM $ \env ->
do { a <- runRewriteM m env
; runRewriteM (k a) env }
instance Applicative RewriteM where
pure x = mkRewriteM $ \_ -> pure x
(<*>) = ap
instance HasDynFlags RewriteM where
getDynFlags = liftTcS getDynFlags
liftTcS :: TcS a -> RewriteM a
liftTcS thing_inside
= mkRewriteM $ \_ -> thing_inside
-- convenient wrapper when you have a CtEvidence describing
-- the rewriting operation
runRewriteCtEv :: CtEvidence -> RewriteM a -> TcS (a, RewriterSet)
runRewriteCtEv ev
= runRewrite (ctEvLoc ev) (ctEvFlavour ev) (ctEvEqRel ev)
-- Run thing_inside (which does the rewriting)
-- Also returns the set of Wanteds which rewrote a Wanted;
-- See Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint
runRewrite :: CtLoc -> CtFlavour -> EqRel -> RewriteM a -> TcS (a, RewriterSet)
runRewrite loc flav eq_rel thing_inside
= do { rewriters_ref <- newTcRef emptyRewriterSet
; let fmode = RE { re_loc = loc
, re_flavour = flav
, re_eq_rel = eq_rel
, re_rewriters = rewriters_ref }
; res <- runRewriteM thing_inside fmode
; rewriters <- readTcRef rewriters_ref
; return (res, rewriters) }
traceRewriteM :: String -> SDoc -> RewriteM ()
traceRewriteM herald doc = liftTcS $ traceTcS herald doc
{-# INLINE traceRewriteM #-} -- see Note [INLINE conditional tracing utilities]
getRewriteEnv :: RewriteM RewriteEnv
getRewriteEnv
= mkRewriteM $ \env -> return env
getRewriteEnvField :: (RewriteEnv -> a) -> RewriteM a
getRewriteEnvField accessor
= mkRewriteM $ \env -> return (accessor env)
getEqRel :: RewriteM EqRel
getEqRel = getRewriteEnvField re_eq_rel
getRole :: RewriteM Role
getRole = eqRelRole <$> getEqRel
getFlavour :: RewriteM CtFlavour
getFlavour = getRewriteEnvField re_flavour
getFlavourRole :: RewriteM CtFlavourRole
getFlavourRole
= do { flavour <- getFlavour
; eq_rel <- getEqRel
; return (flavour, eq_rel) }
getLoc :: RewriteM CtLoc
getLoc = getRewriteEnvField re_loc
checkStackDepth :: Type -> RewriteM ()
checkStackDepth ty
= do { loc <- getLoc
; liftTcS $ checkReductionDepth loc ty }
-- | Change the 'EqRel' in a 'RewriteM'.
setEqRel :: EqRel -> RewriteM a -> RewriteM a
setEqRel new_eq_rel thing_inside
= mkRewriteM $ \env ->
if new_eq_rel == re_eq_rel env
then runRewriteM thing_inside env
else runRewriteM thing_inside (env { re_eq_rel = new_eq_rel })
{-# INLINE setEqRel #-}
bumpDepth :: RewriteM a -> RewriteM a
bumpDepth (RewriteM thing_inside)
= mkRewriteM $ \env -> do
-- bumpDepth can be called a lot during rewriting so we force the
-- new env to avoid accumulating thunks.
{ let !env' = env { re_loc = bumpCtLocDepth (re_loc env) }
; thing_inside env' }
-- See Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint
-- Precondition: the CtEvidence is a CtWanted of an equality
recordRewriter :: CtEvidence -> RewriteM ()
recordRewriter (CtWanted { ctev_dest = HoleDest hole })
= RewriteM $ \env -> updTcRef (re_rewriters env) (`addRewriterSet` hole)
recordRewriter other = pprPanic "recordRewriter" (ppr other)
{-
Note [Rewriter EqRels]
~~~~~~~~~~~~~~~~~~~~~~~
When rewriting, we need to know which equality relation -- nominal
or representation -- we should be respecting. The only difference is
that we rewrite variables by representational equalities when re_eq_rel
is ReprEq, and that we unwrap newtypes when rewriting w.r.t.
representational equality.
Note [Rewriter CtLoc]
~~~~~~~~~~~~~~~~~~~~~~
The rewriter does eager type-family reduction.
Type families might loop, and we
don't want GHC to do so. A natural solution is to have a bounded depth
to these processes. A central difficulty is that such a solution isn't
quite compositional. For example, say it takes F Int 10 steps to get to Bool.
How many steps does it take to get from F Int -> F Int to Bool -> Bool?
10? 20? What about getting from Const Char (F Int) to Char? 11? 1? Hard to
know and hard to track. So, we punt, essentially. We store a CtLoc in
the RewriteEnv and just update the environment when recurring. In the
TyConApp case, where there may be multiple type families to rewrite,
we just copy the current CtLoc into each branch. If any branch hits the
stack limit, then the whole thing fails.
A consequence of this is that setting the stack limits appropriately
will be essentially impossible. So, the official recommendation if a
stack limit is hit is to disable the check entirely. Otherwise, there
will be baffling, unpredictable errors.
Note [Phantoms in the rewriter]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have
data Proxy p = Proxy
and we're rewriting (Proxy ty) w.r.t. ReprEq. Then, we know that `ty`
is really irrelevant -- it will be ignored when solving for representational
equality later on. So, we omit rewriting `ty` entirely. This may
violate the expectation of "xi"s for a bit, but the canonicaliser will
soon throw out the phantoms when decomposing a TyConApp. (Or, the
canonicaliser will emit an insoluble, in which case we get
a better error message anyway.)
-}
{- *********************************************************************
* *
* Externally callable rewriting functions *
* *
************************************************************************
-}
-- | See Note [Rewriting].
-- If (xi, co, rewriters) <- rewrite mode ev ty, then co :: xi ~r ty
-- where r is the role in @ev@.
-- rewriters is the set of coercion holes that have been used to rewrite
-- See Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint
rewrite :: CtEvidence -> TcType
-> TcS (Reduction, RewriterSet)
rewrite ev ty
= do { traceTcS "rewrite {" (ppr ty)
; result@(redn, _) <- runRewriteCtEv ev (rewrite_one ty)
; traceTcS "rewrite }" (ppr $ reductionReducedType redn)
; return result }
-- | See Note [Rewriting]
-- `rewriteForErrors` is a variant of 'rewrite' that rewrites
-- w.r.t. nominal equality only, as this is better than full rewriting
-- for error messages. (This was important when we flirted with rewriting
-- newtypes but perhaps less so now.)
rewriteForErrors :: CtEvidence -> TcType
-> TcS (Reduction, RewriterSet)
rewriteForErrors ev ty
= do { traceTcS "rewriteForErrors {" (ppr ty)
; result@(redn, rewriters) <-
runRewrite (ctEvLoc ev) (ctEvFlavour ev) NomEq (rewrite_one ty)
; traceTcS "rewriteForErrors }" (ppr $ reductionReducedType redn)
; return $ case ctEvEqRel ev of
NomEq -> result
ReprEq -> (mkSubRedn redn, rewriters) }
-- See Note [Rewriting]
rewriteArgsNom :: CtEvidence -> TyCon -> [TcType]
-> TcS (Reductions, RewriterSet)
-- Externally-callable, hence runRewrite
-- Rewrite a vector of types all at once; in fact they are
-- always the arguments of type family or class, so
-- ctEvFlavour ev = Nominal
-- and we want to rewrite all at nominal role
-- The kind passed in is the kind of the type family or class, call it T
-- The kind of T args must be constant (i.e. not depend on the args)
--
-- Final return value returned which Wanteds rewrote another Wanted
-- See Note [Wanteds rewrite Wanteds] in GHC.Tc.Types.Constraint
rewriteArgsNom ev tc tys
= do { traceTcS "rewrite_args {" (vcat (map ppr tys))
; (ArgsReductions redns@(Reductions _ tys') kind_co, rewriters)
<- runRewriteCtEv ev (rewrite_args_tc tc Nothing tys)
; massert (isReflMCo kind_co)
; traceTcS "rewrite }" (vcat (map ppr tys'))
; return (redns, rewriters) }
-- | Rewrite a type w.r.t. nominal equality. This is useful to rewrite
-- a type w.r.t. any givens. It does not do type-family reduction. This
-- will never emit new constraints. Call this when the inert set contains
-- only givens.
rewriteType :: CtLoc -> TcType -> TcS TcType
rewriteType loc ty
= do { (redn, _) <- runRewrite loc Given NomEq $
rewrite_one ty
-- use Given flavor so that it is rewritten
-- only w.r.t. Givens, never Wanteds
-- (Shouldn't matter, if only Givens are present
-- anyway)
; return $ reductionReducedType redn }
{- *********************************************************************
* *
* The main rewriting functions
* *
********************************************************************* -}
{- Note [Rewriting]
~~~~~~~~~~~~~~~~~~~~
rewrite ty ==> Reduction co xi
where
xi has no reducible type functions
has no skolems that are mapped in the inert set
has no filled-in metavariables
co :: ty ~ xi (coercions in reductions are always left-to-right)
Key invariants:
(F0) co :: zonk(ty') ~ xi where zonk(ty') ~ zonk(ty)
(F1) typeKind(xi) succeeds and returns a fully zonked kind
(F2) typeKind(xi) `eqType` zonk(typeKind(ty))
Note that it is rewrite's job to try to reduce *every type function it sees*.
Rewriting also:
* zonks, removing any metavariables, and
* applies the substitution embodied in the inert set
Because rewriting zonks and the returned coercion ("co" above) is also
zonked, it's possible that (co :: ty ~ xi) isn't quite true. So, instead,
we can rely on this fact:
(F0) co :: zonk(ty') ~ xi, where zonk(ty') ~ zonk(ty)
Note that the right-hand type of co is *always* precisely xi. The left-hand
type may or may not be ty, however: if ty has unzonked filled-in metavariables,
then the left-hand type of co will be the zonk-equal to ty.
It is for this reason that we occasionally have to explicitly zonk,
when (co :: ty ~ xi) is important even before we zonk the whole program.
For example, see the RTRNotFollowed case in rewriteTyVar.
Why have these invariants on rewriting? Because we sometimes use typeKind
during canonicalisation, and we want this kind to be zonked (e.g., see
GHC.Tc.Solver.Canonical.canEqCanLHS).
Rewriting is always homogeneous. That is, the kind of the result of rewriting is
always the same as the kind of the input, modulo zonking. More formally:
(F2) zonk(typeKind(ty)) `eqType` typeKind(xi)
This invariant means that the kind of a rewritten type might not itself be rewritten.
Note that we prefer to leave type synonyms unexpanded when possible,
so when the rewriter encounters one, it first asks whether its
transitive expansion contains any type function applications or is
forgetful -- that is, omits one or more type variables in its RHS. If so,
it expands the synonym and proceeds; if not, it simply returns the
unexpanded synonym. See also Note [Rewriting synonyms].
Where do we actually perform rewriting within a type? See Note [Rewritable] in
GHC.Tc.Solver.InertSet.
Note [rewrite_args performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In programs with lots of type-level evaluation, rewrite_args becomes
part of a tight loop. For example, see test perf/compiler/T9872a, which
calls rewrite_args a whopping 7,106,808 times. It is thus important
that rewrite_args be efficient.
Performance testing showed that the current implementation is indeed
efficient. It's critically important that zipWithAndUnzipM be
specialized to TcS, and it's also quite helpful to actually `inline`
it. On test T9872a, here are the allocation stats (Dec 16, 2014):
* Unspecialized, uninlined: 8,472,613,440 bytes allocated in the heap
* Specialized, uninlined: 6,639,253,488 bytes allocated in the heap
* Specialized, inlined: 6,281,539,792 bytes allocated in the heap
To improve performance even further, rewrite_args_nom is split off
from rewrite_args, as nominal equality is the common case. This would
be natural to write using mapAndUnzipM, but even inlined, that function
is not as performant as a hand-written loop.
* mapAndUnzipM, inlined: 7,463,047,432 bytes allocated in the heap
* hand-written recursion: 5,848,602,848 bytes allocated in the heap
If you make any change here, pay close attention to the T9872{a,b,c} tests
and T5321Fun.
If we need to make this yet more performant, a possible way forward is to
duplicate the rewriter code for the nominal case, and make that case
faster. This doesn't seem quite worth it, yet.
Note [rewrite_exact_fam_app performance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Once we've got a rewritten rhs, we extend the famapp-cache to record
the result. Doing so can save lots of work when the same redex shows up more
than once. Note that we record the link from the redex all the way to its
*final* value, not just the single step reduction.
If we can reduce the family application right away (the first call
to try_to_reduce), we do *not* add to the cache. There are two possibilities
here: 1) we just read the result from the cache, or 2) we used one type
family instance. In either case, recording the result in the cache doesn't
save much effort the next time around. And adding to the cache here is
actually disastrous: it more than doubles the allocations for T9872a. So
we skip adding to the cache here.
-}
{-# INLINE rewrite_args_tc #-}
rewrite_args_tc
:: TyCon -- T
-> Maybe (Infinite Role) -- Nothing: ambient role is Nominal; all args are Nominal
-- Otherwise: no assumptions; use roles provided
-> [Type]
-> RewriteM ArgsReductions -- See the commentary on rewrite_args
rewrite_args_tc tc = rewrite_args all_bndrs any_named_bndrs inner_ki emptyVarSet
-- NB: TyCon kinds are always closed
where
-- There are many bang patterns in here. It's been observed that they
-- greatly improve performance of an optimized build.
-- The T9872 test cases are good witnesses of this fact.
(bndrs, named)
= ty_con_binders_ty_binders' (tyConBinders tc)
-- it's possible that the result kind has arrows (for, e.g., a type family)
-- so we must split it
(inner_bndrs, inner_ki, inner_named) = split_pi_tys' (tyConResKind tc)
!all_bndrs = bndrs `chkAppend` inner_bndrs
!any_named_bndrs = named || inner_named
-- NB: Those bangs there drop allocations in T9872{a,c,d} by 8%.
{-# INLINE rewrite_args #-}
rewrite_args :: [PiTyBinder] -> Bool -- Binders, and True iff any of them are
-- named.
-> Kind -> TcTyCoVarSet -- function kind; kind's free vars
-> Maybe (Infinite Role) -> [Type] -- these are in 1-to-1 correspondence
-- Nothing: use all Nominal
-> RewriteM ArgsReductions
-- This function returns ArgsReductions (Reductions cos xis) res_co
-- coercions: co_i :: ty_i ~ xi_i, at roles given
-- types: xi_i
-- coercion: res_co :: typeKind(fun tys) ~N typeKind(fun xis)
-- That is, the result coercion relates the kind of some function (whose kind is
-- passed as the first parameter) instantiated at tys to the kind of that
-- function instantiated at the xis. This is useful in keeping rewriting
-- homogeneous. The list of roles must be at least as long as the list of
-- types.
rewrite_args orig_binders
any_named_bndrs
orig_inner_ki
orig_fvs
orig_m_roles
orig_tys
= case (orig_m_roles, any_named_bndrs) of
(Nothing, False) -> rewrite_args_fast orig_tys
_ -> rewrite_args_slow orig_binders orig_inner_ki orig_fvs orig_roles orig_tys
where orig_roles = fromMaybe (Inf.repeat Nominal) orig_m_roles
{-# INLINE rewrite_args_fast #-}
-- | fast path rewrite_args, in which none of the binders are named and
-- therefore we can avoid tracking a lifting context.
rewrite_args_fast :: [Type] -> RewriteM ArgsReductions
rewrite_args_fast orig_tys
= fmap finish (iterate orig_tys)
where
iterate :: [Type] -> RewriteM Reductions
iterate (ty : tys) = do
Reduction co xi <- rewrite_one ty
Reductions cos xis <- iterate tys
pure $ Reductions (co : cos) (xi : xis)
iterate [] = pure $ Reductions [] []
{-# INLINE finish #-}
finish :: Reductions -> ArgsReductions
finish redns = ArgsReductions redns MRefl
{-# INLINE rewrite_args_slow #-}
-- | Slow path, compared to rewrite_args_fast, because this one must track
-- a lifting context.
rewrite_args_slow :: [PiTyBinder] -> Kind -> TcTyCoVarSet
-> Infinite Role -> [Type]
-> RewriteM ArgsReductions
rewrite_args_slow binders inner_ki fvs roles tys
= do { rewritten_args <- zipWithM rw (Inf.toList roles) tys
; return (simplifyArgsWorker binders inner_ki fvs roles rewritten_args) }
where
{-# INLINE rw #-}
rw :: Role -> Type -> RewriteM Reduction
rw Nominal ty
= setEqRel NomEq $
rewrite_one ty
rw Representational ty
= setEqRel ReprEq $
rewrite_one ty
rw Phantom ty
-- See Note [Phantoms in the rewriter]
= do { ty <- liftTcS $ zonkTcType ty
; return $ mkReflRedn Phantom ty }
------------------
rewrite_one :: TcType -> RewriteM Reduction
-- Rewrite a type to get rid of type function applications, returning
-- the new type-function-free type, and a collection of new equality
-- constraints. See Note [Rewriting] for more detail.
--
-- Postcondition:
-- the role on the result coercion matches the EqRel in the RewriteEnv
rewrite_one ty
| Just ty' <- rewriterView ty -- See Note [Rewriting synonyms]
= rewrite_one ty'
rewrite_one xi@(LitTy {})
= do { role <- getRole
; return $ mkReflRedn role xi }
rewrite_one (TyVarTy tv)
= rewriteTyVar tv
rewrite_one (AppTy ty1 ty2)
= rewrite_app_tys ty1 [ty2]
rewrite_one (TyConApp tc tys)
-- If it's a type family application, try to reduce it
| isTypeFamilyTyCon tc
= rewrite_fam_app tc tys
| otherwise -- We just recursively rewrite the arguments.
-- See Note [Do not rewrite newtypes]
= rewrite_ty_con_app tc tys
rewrite_one (FunTy { ft_af = vis, ft_mult = mult, ft_arg = ty1, ft_res = ty2 })
= do { arg_redn <- rewrite_one ty1
; res_redn <- rewrite_one ty2
-- Important: look at the *reduced* type, so that any unzonked variables
-- in kinds are gone and the getRuntimeRep succeeds.
-- cf. Note [Decomposing FunTy] in GHC.Tc.Solver.Canonical.
; let arg_rep = getRuntimeRep (reductionReducedType arg_redn)
res_rep = getRuntimeRep (reductionReducedType res_redn)
; (w_redn, arg_rep_redn, res_rep_redn) <- setEqRel NomEq $
liftA3 (,,) (rewrite_one mult)
(rewrite_one arg_rep)
(rewrite_one res_rep)
; role <- getRole
; let arg_rep_co = reductionCoercion arg_rep_redn
-- :: arg_rep ~ arg_rep_xi
arg_ki_co = mkTyConAppCo Nominal tYPETyCon [arg_rep_co]
-- :: TYPE arg_rep ~ TYPE arg_rep_xi
casted_arg_redn = mkCoherenceRightRedn role arg_redn arg_ki_co
-- :: ty1 ~> arg_xi |> arg_ki_co
res_rep_co = reductionCoercion res_rep_redn
res_ki_co = mkTyConAppCo Nominal tYPETyCon [res_rep_co]
casted_res_redn = mkCoherenceRightRedn role res_redn res_ki_co
-- We must rewrite the representations, because that's what would
-- be done if we used TyConApp instead of FunTy. These rewritten
-- representations are seen only in casts of the arg and res, below.
-- Forgetting this caused #19677.
; return $ mkFunRedn role vis w_redn casted_arg_redn casted_res_redn }
rewrite_one ty@(ForAllTy {})
-- TODO (RAE): This is inadequate, as it doesn't rewrite the kind of
-- the bound tyvar. Doing so will require carrying around a substitution
-- and the usual substTyVarBndr-like silliness. Argh.
-- We allow for-alls when, but only when, no type function
-- applications inside the forall involve the bound type variables.
= do { let (bndrs, rho) = tcSplitForAllTyVarBinders ty
; redn <- rewrite_one rho
; return $ mkHomoForAllRedn bndrs redn }
rewrite_one (CastTy ty g)
= do { redn <- rewrite_one ty
; g' <- rewrite_co g
; role <- getRole
; return $ mkCastRedn1 role ty g' redn }
-- This calls castCoercionKind1.
-- It makes a /big/ difference to call castCoercionKind1 not
-- the more general castCoercionKind2.
-- See Note [castCoercionKind1] in GHC.Core.Coercion
rewrite_one (CoercionTy co)
= do { co' <- rewrite_co co
; role <- getRole
; return $ mkReflCoRedn role co' }
-- | "Rewrite" a coercion. Really, just zonk it so we can uphold
-- (F1) of Note [Rewriting]
rewrite_co :: Coercion -> RewriteM Coercion
rewrite_co co = liftTcS $ zonkCo co
-- | Rewrite a reduction, composing the resulting coercions.
rewrite_reduction :: Reduction -> RewriteM Reduction
rewrite_reduction (Reduction co xi)
= do { redn <- bumpDepth $ rewrite_one xi
; return $ co `mkTransRedn` redn }
-- rewrite (nested) AppTys
rewrite_app_tys :: Type -> [Type] -> RewriteM Reduction
-- commoning up nested applications allows us to look up the function's kind
-- only once. Without commoning up like this, we would spend a quadratic amount
-- of time looking up functions' types
rewrite_app_tys (AppTy ty1 ty2) tys = rewrite_app_tys ty1 (ty2:tys)
rewrite_app_tys fun_ty arg_tys
= do { redn <- rewrite_one fun_ty
; rewrite_app_ty_args redn arg_tys }
-- Given a rewritten function (with the coercion produced by rewriting) and
-- a bunch of unrewritten arguments, rewrite the arguments and apply.
-- The coercion argument's role matches the role stored in the RewriteM monad.
--
-- The bang patterns used here were observed to improve performance. If you
-- wish to remove them, be sure to check for regressions in allocations.
rewrite_app_ty_args :: Reduction -> [Type] -> RewriteM Reduction
rewrite_app_ty_args redn []
-- this will be a common case when called from rewrite_fam_app, so shortcut
= return redn
rewrite_app_ty_args fun_redn@(Reduction fun_co fun_xi) arg_tys
= do { het_redn <- case tcSplitTyConApp_maybe fun_xi of
Just (tc, xis) ->
do { let tc_roles = tyConRolesRepresentational tc
arg_roles = Inf.dropList xis tc_roles
; ArgsReductions (Reductions arg_cos arg_xis) kind_co
<- rewrite_vector (typeKind fun_xi) arg_roles arg_tys
-- We start with a reduction of the form
-- fun_co :: ty ~ T xi_1 ... xi_n
-- and further arguments a_1, ..., a_m.
-- We rewrite these arguments, and obtain coercions:
-- arg_co_i :: a_i ~ zeta_i
-- Now, we need to apply fun_co to the arg_cos. The problem is
-- that using mkAppCo is wrong because that function expects
-- its second coercion to be Nominal, and the arg_cos might
-- not be. The solution is to use transitivity:
-- fun_co <a_1> ... <a_m> ;; T <xi_1> .. <xi_n> arg_co_1 ... arg_co_m
; eq_rel <- getEqRel
; let app_xi = mkTyConApp tc (xis ++ arg_xis)
app_co = case eq_rel of
NomEq -> mkAppCos fun_co arg_cos
ReprEq -> mkAppCos fun_co (map mkNomReflCo arg_tys)
`mkTransCo`
mkTyConAppCo Representational tc
(zipWith mkReflCo (Inf.toList tc_roles) xis ++ arg_cos)
; return $
mkHetReduction
(mkReduction app_co app_xi )
kind_co }
Nothing ->
do { ArgsReductions redns kind_co
<- rewrite_vector (typeKind fun_xi) (Inf.repeat Nominal) arg_tys
; return $ mkHetReduction (mkAppRedns fun_redn redns) kind_co }
; role <- getRole
; return (homogeniseHetRedn role het_redn) }
rewrite_ty_con_app :: TyCon -> [TcType] -> RewriteM Reduction
rewrite_ty_con_app tc tys
= do { role <- getRole
; let m_roles | Nominal <- role = Nothing
| otherwise = Just $ tyConRolesX role tc
; ArgsReductions redns kind_co <- rewrite_args_tc tc m_roles tys
; let tyconapp_redn
= mkHetReduction
(mkTyConAppRedn role tc redns)
kind_co
; return $ homogeniseHetRedn role tyconapp_redn }
-- Rewrite a vector (list of arguments).
rewrite_vector :: Kind -- of the function being applied to these arguments
-> Infinite Role -- If we're rewriting w.r.t. ReprEq, what roles do the
-- args have?
-> [Type] -- the args to rewrite
-> RewriteM ArgsReductions
rewrite_vector ki roles tys
= do { eq_rel <- getEqRel
; let mb_roles = case eq_rel of { NomEq -> Nothing; ReprEq -> Just roles }
; rewrite_args bndrs any_named_bndrs inner_ki fvs mb_roles tys
}
where
(bndrs, inner_ki, any_named_bndrs) = split_pi_tys' ki
fvs = tyCoVarsOfType ki
{-# INLINE rewrite_vector #-}
{- Note [Do not rewrite newtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We flirted with unwrapping newtypes in the rewriter -- see GHC.Tc.Solver.Canonical
Note [Unwrap newtypes first]. But that turned out to be a bad idea because
of recursive newtypes, as that Note says. So be careful if you re-add it!
Note [Rewriting synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Not expanding synonyms aggressively improves error messages, and
keeps types smaller. But we need to take care.
Suppose
type Syn a = Int
type instance F Bool = Syn (F Bool)
[G] F Bool ~ Syn (F Bool)
If we don't expand the synonym, we'll get a spurious occurs-check
failure. This is normally what occCheckExpand takes care of, but
the LHS is a type family application, and occCheckExpand (already
complex enough as it is) does not know how to expand to avoid
a type family application.
In addition, expanding the forgetful synonym like this
will generally yield a *smaller* type. To wit, if we spot
S ( ... F tys ... ), where S is forgetful, we don't want to bother
doing hard work simplifying (F tys). We thus expand forgetful
synonyms, but not others.
isForgetfulSynTyCon returns True more often than it needs to, so
we err on the side of more expansion.
We also, of course, must expand type synonyms that mention type families,
so those families can get reduced.
************************************************************************
* *
Rewriting a type-family application
* *
************************************************************************
Note [How to normalise a family application]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given an exactly saturated family application, how should we normalise it?
This Note spells out the algorithm and its reasoning.
First, we attempt to directly rewrite the type family application,
without simplifying any of the arguments first, in an attempt to avoid
doing unnecessary work.
STEP 1a. Call the rewriting plugins. If any plugin rewrites the type family
application, jump to FINISH.
STEP 1b. Try the famapp-cache. If we get a cache hit, jump to FINISH.
STEP 1c. Try top-level instances. Remember: we haven't simplified the arguments
yet. Example:
type instance F (Maybe a) = Int
target: F (Maybe (G Bool))
Instead of first trying to simplify (G Bool), we use the instance first. This
avoids the work of simplifying G Bool.
If an instance is found, jump to FINISH.
STEP 2: At this point we rewrite all arguments. This might expose more
information, which might allow plugins to make progress, or allow us to
pick up a top-level instance.
STEP 3. Try the inerts. Note that we try the inerts *after* rewriting the
arguments, because the inerts will have rewritten LHSs.
If an inert is found, jump to FINISH.
Next, we try STEP 1 again, as we might be able to make further progress after
having rewritten the arguments:
STEP 4a. Query the rewriting plugins again.
If any plugin supplies a rewriting, jump to FINISH.
STEP 4b. Try the famapp-cache again.
If we get a cache hit, jump to FINISH.
STEP 4c. Try top-level instances again.
If an instance is found, jump to FINISH.
STEP 5: GIVEUP. No progress to be made. Return what we have. (Do not FINISH.)
FINISH 1. We've made a reduction, but the new type may still have more
work to do. So rewrite the new type.
FINISH 2. Add the result to the famapp-cache, connecting the type we started
with to the one we ended with.
Because STEP 1{a,b,c} and STEP 4{a,b,c} happen the same way, they are abstracted into
try_to_reduce.
FINISH is naturally implemented in `finish`. But, Note [rewrite_exact_fam_app performance]
tells us that we should not add to the famapp-cache after STEP 1. So `finish`
is inlined in that case, and only FINISH 1 is performed.
-}
rewrite_fam_app :: TyCon -> [TcType] -> RewriteM Reduction
-- rewrite_fam_app can be over-saturated
-- rewrite_exact_fam_app lifts out the application to top level
-- Postcondition: Coercion :: Xi ~ F tys
rewrite_fam_app tc tys -- Can be over-saturated
= assertPpr (tys `lengthAtLeast` tyConArity tc)
(ppr tc $$ ppr (tyConArity tc) $$ ppr tys) $
-- Type functions are saturated
-- The type function might be *over* saturated
-- in which case the remaining arguments should
-- be dealt with by AppTys
do { let (tys1, tys_rest) = splitAt (tyConArity tc) tys
; redn <- rewrite_exact_fam_app tc tys1
; rewrite_app_ty_args redn tys_rest }
-- the [TcType] exactly saturate the TyCon
-- See Note [How to normalise a family application]
rewrite_exact_fam_app :: TyCon -> [TcType] -> RewriteM Reduction
rewrite_exact_fam_app tc tys
= do { checkStackDepth (mkTyConApp tc tys)
-- Query the typechecking plugins for all their rewriting functions
-- which apply to a type family application headed by the TyCon 'tc'.
; tc_rewriters <- getTcPluginRewritersForTyCon tc
-- STEP 1. Try to reduce without reducing arguments first.
; result1 <- try_to_reduce tc tys tc_rewriters
; case result1 of
-- Don't use the cache;
-- See Note [rewrite_exact_fam_app performance]
{ Just redn -> finish False redn
; Nothing ->
-- That didn't work. So reduce the arguments, in STEP 2.
do { eq_rel <- getEqRel
-- checking eq_rel == NomEq saves ~0.5% in T9872a
; ArgsReductions (Reductions cos xis) kind_co <-
if eq_rel == NomEq
then rewrite_args_tc tc Nothing tys
else setEqRel NomEq $
rewrite_args_tc tc Nothing tys
-- If we manage to rewrite the type family application after
-- rewriting the arguments, we will need to compose these
-- reductions.
--
-- We have:
--
-- arg_co_i :: ty_i ~ xi_i
-- fam_co :: F xi_1 ... xi_n ~ zeta
--
-- The full reduction is obtained as a composite:
--
-- full_co :: F ty_1 ... ty_n ~ zeta
-- full_co = F co_1 ... co_n ;; fam_co
; let
role = eqRelRole eq_rel
args_co = mkTyConAppCo role tc cos
; let homogenise :: Reduction -> Reduction
homogenise redn
= homogeniseHetRedn role
$ mkHetReduction
(args_co `mkTransRedn` redn)
kind_co
give_up :: Reduction
give_up = homogenise $ mkReflRedn role reduced
where reduced = mkTyConApp tc xis
-- STEP 3: try the inerts
; flavour <- getFlavour
; result2 <- liftTcS $ lookupFamAppInert (`eqCanRewriteFR` (flavour, eq_rel)) tc xis
; case result2 of
{ Just (redn, (inert_flavour, inert_eq_rel))
-> do { traceRewriteM "rewrite family application with inert"
(ppr tc <+> ppr xis $$ ppr redn)
; finish (inert_flavour == Given) (homogenise downgraded_redn) }
-- this will sometimes duplicate an inert in the cache,
-- but avoiding doing so had no impact on performance, and
-- it seems easier not to weed out that special case
where
inert_role = eqRelRole inert_eq_rel
role = eqRelRole eq_rel
downgraded_redn = downgradeRedn role inert_role redn
; _ ->
-- inerts didn't work. Try to reduce again, in STEP 4.
do { result3 <- try_to_reduce tc xis tc_rewriters
; case result3 of
Just redn -> finish True (homogenise redn)
-- we have made no progress at all: STEP 5 (GIVEUP).
_ -> return give_up }}}}}
where
-- call this if the above attempts made progress.
-- This recursively rewrites the result and then adds to the cache
finish :: Bool -- add to the cache?
-- Precondition: True ==> input coercion has
-- no coercion holes
-> Reduction -> RewriteM Reduction
finish use_cache redn
= do { -- rewrite the result: FINISH 1
final_redn <- rewrite_reduction redn
; eq_rel <- getEqRel
-- extend the cache: FINISH 2
; when (use_cache && eq_rel == NomEq) $
-- the cache only wants Nominal eqs
liftTcS $ extendFamAppCache tc tys final_redn
; return final_redn }
{-# INLINE finish #-}
-- Returned coercion is input ~r output, where r is the role in the RewriteM monad
-- See Note [How to normalise a family application]
try_to_reduce :: TyCon -> [TcType] -> [TcPluginRewriter]
-> RewriteM (Maybe Reduction)
try_to_reduce tc tys tc_rewriters
= do { rewrite_env <- getRewriteEnv
; result <-
liftTcS $ firstJustsM
[ runTcPluginRewriters rewrite_env tc_rewriters tys -- STEP 1a & STEP 4a
, lookupFamAppCache tc tys -- STEP 1b & STEP 4b
, matchFam tc tys ] -- STEP 1c & STEP 4c
; traverse downgrade result }
where
-- The result above is always Nominal. We might want a Representational
-- coercion; this downgrades (and prints, out of convenience).
downgrade :: Reduction -> RewriteM Reduction
downgrade redn
= do { traceRewriteM "Eager T.F. reduction success" $
vcat [ ppr tc
, ppr tys
, ppr redn
]
; eq_rel <- getEqRel
-- manually doing it this way avoids allocation in the vastly
-- common NomEq case
; case eq_rel of
NomEq -> return redn
ReprEq -> return $ mkSubRedn redn }
-- Retrieve all type-checking plugins that can rewrite a (saturated) type-family application
-- headed by the given 'TyCon`.
getTcPluginRewritersForTyCon :: TyCon -> RewriteM [TcPluginRewriter]
getTcPluginRewritersForTyCon tc
= liftTcS $ do { rewriters <- tcg_tc_plugin_rewriters <$> getGblEnv
; return (lookupWithDefaultUFM rewriters [] tc) }
-- Run a collection of rewriting functions obtained from type-checking plugins,
-- querying in sequence if any plugin wants to rewrite the type family
-- applied to the given arguments.
--
-- Note that the 'TcPluginRewriter's provided all pertain to the same type family
-- (the 'TyCon' of which has been obtained ahead of calling this function).
runTcPluginRewriters :: RewriteEnv
-> [TcPluginRewriter]
-> [TcType]
-> TcS (Maybe Reduction)
runTcPluginRewriters rewriteEnv rewriterFunctions tys
| null rewriterFunctions
= return Nothing -- short-circuit for common case
| otherwise
= do { givens <- getInertGivens
; runRewriters givens rewriterFunctions }
where
runRewriters :: [Ct] -> [TcPluginRewriter] -> TcS (Maybe Reduction)
runRewriters _ []
= return Nothing
runRewriters givens (rewriter:rewriters)
= do
rewriteResult <- wrapTcS . runTcPluginM $ rewriter rewriteEnv givens tys
case rewriteResult of
TcPluginRewriteTo
{ tcPluginReduction = redn
, tcRewriterNewWanteds = wanteds
} -> do { emitWork wanteds; return $ Just redn }
TcPluginNoRewrite {} -> runRewriters givens rewriters
{-
************************************************************************
* *
Rewriting a type variable
* *
********************************************************************* -}
-- | The result of rewriting a tyvar "one step".
data RewriteTvResult
= RTRNotFollowed
-- ^ The inert set doesn't make the tyvar equal to anything else
| RTRFollowed !Reduction
-- ^ The tyvar rewrites to a not-necessarily rewritten other type.
-- The role is determined by the RewriteEnv.
--
-- With Quick Look, the returned TcType can be a polytype;
-- that is, in the constraint solver, a unification variable
-- can contain a polytype. See GHC.Tc.Gen.App
-- Note [Instantiation variables are short lived]
rewriteTyVar :: TyVar -> RewriteM Reduction
rewriteTyVar tv
= do { mb_yes <- rewrite_tyvar1 tv
; case mb_yes of
RTRFollowed redn -> rewrite_reduction redn
RTRNotFollowed -- Done, but make sure the kind is zonked
-- Note [Rewriting] invariant (F0) and (F1)
-> do { tv' <- liftTcS $ updateTyVarKindM zonkTcType tv
; role <- getRole
; let ty' = mkTyVarTy tv'
; return $ mkReflRedn role ty' } }
rewrite_tyvar1 :: TcTyVar -> RewriteM RewriteTvResult
-- "Rewriting" a type variable means to apply the substitution to it
-- Specifically, look up the tyvar in
-- * the internal MetaTyVar box
-- * the inerts
-- See also the documentation for RewriteTvResult
rewrite_tyvar1 tv
= do { mb_ty <- liftTcS $ isFilledMetaTyVar_maybe tv
; case mb_ty of
Just ty -> do { traceRewriteM "Following filled tyvar"
(ppr tv <+> equals <+> ppr ty)
; role <- getRole
; return $ RTRFollowed $
mkReflRedn role ty }
Nothing -> do { traceRewriteM "Unfilled tyvar" (pprTyVar tv)
; fr <- getFlavourRole
; rewrite_tyvar2 tv fr } }
rewrite_tyvar2 :: TcTyVar -> CtFlavourRole -> RewriteM RewriteTvResult
-- The tyvar is not a filled-in meta-tyvar
-- Try in the inert equalities
-- See Definition [Applying a generalised substitution] in GHC.Tc.Solver.Monad
-- See Note [Stability of rewriting] in GHC.Tc.Solver.Monad
rewrite_tyvar2 tv fr@(_, eq_rel)
= do { ieqs <- liftTcS $ getInertEqs
; case lookupDVarEnv ieqs tv of
Just equal_ct_list
| Just ct <- find can_rewrite equal_ct_list
, CEqCan { cc_ev = ctev, cc_lhs = TyVarLHS tv
, cc_rhs = rhs_ty, cc_eq_rel = ct_eq_rel } <- ct
-> do { let wrw = isWantedCt ct
; traceRewriteM "Following inert tyvar" $
vcat [ ppr tv <+> equals <+> ppr rhs_ty
, ppr ctev
, text "wanted_rewrite_wanted:" <+> ppr wrw ]
; when wrw $ recordRewriter ctev
; let rewriting_co1 = ctEvCoercion ctev
rewriting_co = case (ct_eq_rel, eq_rel) of
(ReprEq, _rel) -> assert (_rel == ReprEq)
-- if this assert fails, then
-- eqCanRewriteFR answered incorrectly
rewriting_co1
(NomEq, NomEq) -> rewriting_co1
(NomEq, ReprEq) -> mkSubCo rewriting_co1
; return $ RTRFollowed $ mkReduction rewriting_co rhs_ty }
_other -> return RTRNotFollowed }
where
can_rewrite :: Ct -> Bool
can_rewrite ct = ctFlavourRole ct `eqCanRewriteFR` fr
-- This is THE key call of eqCanRewriteFR
{-
Note [An alternative story for the inert substitution]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(This entire note is just background, left here in case we ever want
to return the previous state of affairs)
We used (GHC 7.8) to have this story for the inert substitution inert_eqs
* 'a' is not in fvs(ty)
* They are *inert* in the weaker sense that there is no infinite chain of
(i1 `eqCanRewrite` i2), (i2 `eqCanRewrite` i3), etc
This means that rewriting must be recursive, but it does allow
[G] a ~ [b]
[G] b ~ Maybe c
This avoids "saturating" the Givens, which can save a modest amount of work.
It is easy to implement, in GHC.Tc.Solver.Interact.kick_out, by only kicking out an inert
only if (a) the work item can rewrite the inert AND
(b) the inert cannot rewrite the work item
This is significantly harder to think about. It can save a LOT of work
in occurs-check cases, but we don't care about them much. #5837
is an example, but it causes trouble only with the old (pre-Fall 2020)
rewriting story. It is unclear if there is any gain w.r.t. to
the new story.
-}
--------------------------------------
-- Utilities
-- | Like 'splitPiTys'' but comes with a 'Bool' which is 'True' iff there is at
-- least one named binder.
split_pi_tys' :: Type -> ([PiTyBinder], Type, Bool)
split_pi_tys' ty = split ty ty
where
-- put common cases first
split _ (ForAllTy b res) = let -- This bang is necessary lest we see rather
-- terrible reboxing, as noted in #19102.
!(bs, ty, _) = split res res
in (Named b : bs, ty, True)
split _ (FunTy { ft_af = af, ft_mult = w, ft_arg = arg, ft_res = res })
= let -- See #19102
!(bs, ty, named) = split res res
in (Anon (mkScaled w arg) af : bs, ty, named)
split orig_ty ty | Just ty' <- coreView ty = split orig_ty ty'
split orig_ty _ = ([], orig_ty, False)
{-# INLINE split_pi_tys' #-}
-- | Like 'tyConBindersPiTyBinders' but you also get a 'Bool' which is true iff
-- there is at least one named binder.
ty_con_binders_ty_binders' :: [TyConBinder] -> ([PiTyBinder], Bool)
ty_con_binders_ty_binders' = foldr go ([], False)
where
go (Bndr tv (NamedTCB vis)) (bndrs, _)
= (Named (Bndr tv vis) : bndrs, True)
go (Bndr tv AnonTCB) (bndrs, n)
= (Anon (tymult (tyVarKind tv)) FTF_T_T : bndrs, n)
{-# INLINE go #-}
{-# INLINE ty_con_binders_ty_binders' #-}
|