summaryrefslogtreecommitdiff
path: root/compiler/GHC/Tc/Solver/Types.hs
blob: 0d34022df78bd7ec914d48c209dec8709cb1f159 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE GADTs #-}

-- | Utility types used within the constraint solver
module GHC.Tc.Solver.Types (
    -- Inert CDictCans
    DictMap, emptyDictMap,
    findDictsByTyConKey, findDictsByClass,
    foldDicts, findDict,
    dictsToBag,

    FunEqMap, emptyFunEqs, findFunEq, insertFunEq,
    findFunEqsByTyCon,

    TcAppMap, emptyTcAppMap, isEmptyTcAppMap,
    insertTcApp, alterTcApp, filterTcAppMap,
    tcAppMapToBag, foldTcAppMap, delTcApp,

    EqualCtList, filterEqualCtList, addToEqualCtList

  ) where

import GHC.Prelude

import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType

import GHC.Types.Unique
import GHC.Types.Unique.DFM

import GHC.Core.Class
import GHC.Core.Map.Type
import GHC.Core.Predicate
import GHC.Core.TyCon
import GHC.Core.TyCon.Env

import GHC.Data.Bag
import GHC.Data.Maybe
import GHC.Data.TrieMap
import GHC.Utils.Constants
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain

{- *********************************************************************
*                                                                      *
                   TcAppMap
*                                                                      *
************************************************************************

Note [Use loose types in inert set]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Whenever we are looking up an inert dictionary (CDictCan) or function
equality (CEqCan), we use a TcAppMap, which uses the Unique of the
class/type family tycon and then a trie which maps the arguments. This
trie does *not* need to match the kinds of the arguments; this Note
explains why.

Consider the types ty0 = (T ty1 ty2 ty3 ty4) and ty0' = (T ty1' ty2' ty3' ty4'),
where ty4 and ty4' have different kinds. Let's further assume that both types
ty0 and ty0' are well-typed. Because the kind of T is closed, it must be that
one of the ty1..ty3 does not match ty1'..ty3' (and that the kind of the fourth
argument to T is dependent on whichever one changed). Since we are matching
all arguments, during the inert-set lookup, we know that ty1..ty3 do indeed
match ty1'..ty3'. Therefore, the kind of ty4 and ty4' must match, too --
without ever looking at it.

Accordingly, we use LooseTypeMap, which skips the kind check when looking
up a type. I (Richard E) believe this is just an optimization, and that
looking at kinds would be harmless.

-}

type TcAppMap a = DTyConEnv (ListMap LooseTypeMap a)
    -- Indexed by tycon then the arg types, using "loose" matching, where
    -- we don't require kind equality. This allows, for example, (a |> co)
    -- to match (a).
    -- See Note [Use loose types in inert set]
    -- Used for types and classes; hence UniqDFM
    -- See Note [foldTM determinism] in GHC.Data.TrieMap for why we use DTyConEnv here

isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap m = isEmptyDTyConEnv m

emptyTcAppMap :: TcAppMap a
emptyTcAppMap = emptyDTyConEnv

findTcApp :: TcAppMap a -> TyCon -> [Type] -> Maybe a
findTcApp m tc tys = do { tys_map <- lookupDTyConEnv m tc
                        ; lookupTM tys tys_map }

delTcApp :: TcAppMap a -> TyCon -> [Type] -> TcAppMap a
delTcApp m tc tys = adjustDTyConEnv (deleteTM tys) m tc

insertTcApp :: TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp m tc tys ct = alterDTyConEnv alter_tm m tc
  where
    alter_tm mb_tm = Just (insertTM tys ct (mb_tm `orElse` emptyTM))

alterTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp m tc tys upd = alterDTyConEnv alter_tm m tc
  where
    alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
    alter_tm m_elt = Just (alterTM tys upd (m_elt `orElse` emptyTM))

filterTcAppMap :: forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap f m = mapMaybeDTyConEnv one_tycon m
  where
    one_tycon :: ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
    one_tycon tm
      | isEmptyTM filtered_tm = Nothing
      | otherwise             = Just filtered_tm
      where
        filtered_tm = filterTM f tm

tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag m = foldTcAppMap consBag m emptyBag

foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap k m z = foldDTyConEnv (foldTM k) z m

{- *********************************************************************
*                                                                      *
                   DictMap
*                                                                      *
********************************************************************* -}

type DictMap a = TcAppMap a

emptyDictMap :: DictMap a
emptyDictMap = emptyTcAppMap

findDict :: DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict m loc cls tys
  | hasIPSuperClasses cls tys -- See Note [Tuples hiding implicit parameters]
  = Nothing

  | Just {} <- isCallStackPred cls tys
  , isPushCallStackOrigin (ctLocOrigin loc)
  = Nothing             -- See Note [Solving CallStack constraints]

  | otherwise
  = findTcApp m (classTyCon cls) tys

findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass m cls = findDictsByTyConKey m (getUnique $ classTyCon cls)

findDictsByTyConKey :: DictMap a -> Unique -> Bag a
findDictsByTyConKey m tc
  | Just tm <- lookupUDFM_Directly m tc = foldTM consBag tm emptyBag
  | otherwise                           = emptyBag

dictsToBag :: DictMap a -> Bag a
dictsToBag = tcAppMapToBag

foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts = foldTcAppMap

{- Note [Tuples hiding implicit parameters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   f,g :: (?x::Int, C a) => a -> a
   f v = let ?x = 4 in g v

The call to 'g' gives rise to a Wanted constraint (?x::Int, C a).
We must /not/ solve this from the Given (?x::Int, C a), because of
the intervening binding for (?x::Int).  #14218.

We deal with this by arranging that we always fail when looking up a
tuple constraint that hides an implicit parameter. Note that this applies
  * both to the inert_dicts (lookupInertDict)
  * and to the solved_dicts (looukpSolvedDict)
An alternative would be not to extend these sets with such tuple
constraints, but it seemed more direct to deal with the lookup.

Note [Solving CallStack constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [Overview of implicit CallStacks] in GHc.Tc.Types.Evidence.

Suppose f :: HasCallStack => blah.  Then

* Each call to 'f' gives rise to
    [W] s1 :: IP "callStack" CallStack    -- CtOrigin = OccurrenceOf f
  with a CtOrigin that says "OccurrenceOf f".
  Remember that HasCallStack is just shorthand for
    IP "callStack" CallStack
  See Note [Overview of implicit CallStacks] in GHC.Tc.Types.Evidence

* We cannonicalise such constraints, in GHC.Tc.Solver.Dict.canDictNC, by
  pushing the call-site info on the stack, and changing the CtOrigin
  to record that has been done.
   Bind:  s1 = pushCallStack <site-info> s2
   [W] s2 :: IP "callStack" CallStack   -- CtOrigin = IPOccOrigin

* Then, and only then, we can solve the constraint from an enclosing
  Given.

So we must be careful /not/ to solve 's1' from the Givens.  Again,
we ensure this by arranging that findDict always misses when looking
up such constraints.
-}

{- *********************************************************************
*                                                                      *
                   FunEqMap
*                                                                      *
********************************************************************* -}

type FunEqMap a = TcAppMap a  -- A map whose key is a (TyCon, [Type]) pair

emptyFunEqs :: TcAppMap a
emptyFunEqs = emptyTcAppMap

findFunEq :: FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq m tc tys = findTcApp m tc tys

findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
-- Get inert function equation constraints that have the given tycon
-- in their head.  Not that the constraints remain in the inert set.
-- We use this to check for wanted interactions with built-in type-function
-- constructors.
findFunEqsByTyCon m tc
  | Just tm <- lookupDTyConEnv m tc = foldTM (:) tm []
  | otherwise                       = []

insertFunEq :: FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
insertFunEq m tc tys val = insertTcApp m tc tys val


{- *********************************************************************
*                                                                      *
                   EqualCtList
*                                                                      *
********************************************************************* -}

{-
Note [EqualCtList invariants]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    * All are equalities
    * All these equalities have the same LHS
    * No element of the list can rewrite any other

Accordingly, this list is either empty, contains one element, or
contains a Given representational equality and a Wanted nominal one.
-}

type EqualCtList = [EqCt]
  -- See Note [EqualCtList invariants]

addToEqualCtList :: EqCt -> EqualCtList -> EqualCtList
-- See Note [EqualCtList invariants]
addToEqualCtList ct old_eqs
  | debugIsOn
  = case ct of
      EqCt { eq_lhs = TyVarLHS tv } ->
        assert (all (shares_lhs tv) old_eqs) $
        assertPpr (null bad_prs)
                  (vcat [ text "bad_prs" <+> ppr bad_prs
                        , text "ct:old_eqs" <+> ppr (ct : old_eqs) ]) $
        (ct : old_eqs)

      _ -> pprPanic "addToEqualCtList not CEqCan" (ppr ct)

  | otherwise
  = ct : old_eqs
  where
    shares_lhs tv (EqCt { eq_lhs = TyVarLHS old_tv }) = tv == old_tv
    shares_lhs _ _ = False
    bad_prs = filter is_bad_pair (distinctPairs (ct : old_eqs))
    is_bad_pair :: (EqCt, EqCt) -> Bool
    is_bad_pair (ct1,ct2) = eqCtFlavourRole ct1 `eqCanRewriteFR` eqCtFlavourRole ct2

distinctPairs :: [a] -> [(a,a)]
-- distinctPairs [x1,...xn] is the list of all pairs [ ...(xi, xj)...]
--                             where i /= j
-- NB: does not return pairs (xi,xi), which would be stupid in the
--     context of addToEqualCtList (#22645)
distinctPairs []     = []
distinctPairs (x:xs) = concatMap (\y -> [(x,y),(y,x)]) xs ++ distinctPairs xs

-- returns Nothing when the new list is empty, to keep the environments smaller
filterEqualCtList :: (EqCt -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList pred cts
  | null new_list
  = Nothing
  | otherwise
  = Just new_list
  where
    new_list = filter pred cts