1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Tc.TyCl.Build (
buildDataCon,
buildPatSyn,
TcMethInfo, MethInfo, buildClass,
mkNewTyConRhs,
newImplicitBinder, newTyConRepName
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Iface.Env
import GHC.Core.FamInstEnv( FamInstEnvs, mkNewTypeCoAxiom )
import GHC.Builtin.Types( isCTupleTyConName, unboxedUnitTy )
import GHC.Core.DataCon
import GHC.Core.PatSyn
import GHC.Types.Var
import GHC.Types.Var.Set
import GHC.Types.Basic
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.Id.Make
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Core.Type
import GHC.Types.SourceText
import GHC.Tc.Utils.TcType
import GHC.Core.Multiplicity
import GHC.Types.SrcLoc( SrcSpan, noSrcSpan )
import GHC.Driver.Session
import GHC.Tc.Utils.Monad
import GHC.Types.Unique.Supply
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Utils.Panic
mkNewTyConRhs :: Name -> TyCon -> DataCon -> TcRnIf m n AlgTyConRhs
-- ^ Monadic because it makes a Name for the coercion TyCon
-- We pass the Name of the parent TyCon, as well as the TyCon itself,
-- because the latter is part of a knot, whereas the former is not.
mkNewTyConRhs tycon_name tycon con
= do { co_tycon_name <- newImplicitBinder tycon_name mkNewTyCoOcc
; let nt_ax = mkNewTypeCoAxiom co_tycon_name tycon etad_tvs etad_roles etad_rhs
; traceIf (text "mkNewTyConRhs" <+> ppr nt_ax)
; return (NewTyCon { data_con = con,
nt_rhs = rhs_ty,
nt_etad_rhs = (etad_tvs, etad_rhs),
nt_co = nt_ax,
nt_lev_poly = isKindLevPoly res_kind } ) }
-- Coreview looks through newtypes with a Nothing
-- for nt_co, or uses explicit coercions otherwise
where
tvs = tyConTyVars tycon
roles = tyConRoles tycon
res_kind = tyConResKind tycon
con_arg_ty = case dataConRepArgTys con of
[arg_ty] -> scaledThing arg_ty
tys -> pprPanic "mkNewTyConRhs" (ppr con <+> ppr tys)
rhs_ty = substTyWith (dataConUnivTyVars con)
(mkTyVarTys tvs) con_arg_ty
-- Instantiate the newtype's RHS with the
-- type variables from the tycon
-- NB: a newtype DataCon has a type that must look like
-- forall tvs. <arg-ty> -> T tvs
-- Note that we *can't* use dataConInstOrigArgTys here because
-- the newtype arising from class Foo a => Bar a where {}
-- has a single argument (Foo a) that is a *type class*, so
-- dataConInstOrigArgTys returns [].
-- Eta-reduce the newtype
-- See Note [Newtype eta] in GHC.Core.TyCon
etad_tvs :: [TyVar] -- Matched lazily, so that mkNewTypeCo can
etad_roles :: [Role] -- return a TyCon without pulling on rhs_ty
etad_rhs :: Type -- See Note [Tricky iface loop] in GHC.Iface.Load
(etad_tvs, etad_roles, etad_rhs) = eta_reduce (reverse tvs) (reverse roles) rhs_ty
eta_reduce :: [TyVar] -- Reversed
-> [Role] -- also reversed
-> Type -- Rhs type
-> ([TyVar], [Role], Type) -- Eta-reduced version
-- (tyvars in normal order)
eta_reduce (a:as) (_:rs) ty
| Just (fun, arg) <- splitAppTy_maybe ty
, Just tv <- getTyVar_maybe arg
, tv == a
, not (a `elemVarSet` tyCoVarsOfType fun)
, typeKind fun `eqType` typeKind (mkTyConApp tycon (mkTyVarTys $ reverse as))
-- Why this kind-check? See Note [Newtype eta and homogeneous axioms]
= eta_reduce as rs fun
eta_reduce as rs ty = (reverse as, reverse rs, ty)
{- Note [Newtype eta and homogeneous axioms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When eta-reducing a newtype, we must be careful to make sure the axiom
is homogeneous. (That is, the two types related by the axiom must
have the same kind.) All known proofs of type safety for Core rely on
the homogeneity of axioms, so let's not monkey with that.
It is easy to mistakenly make an inhomogeneous axiom (#19739):
type T :: forall (a :: Type) -> Type
newtype T a = MkT (Proxy a)
Can we eta-reduce, thus?
axT :: T ~ Proxy
No! Because
T :: forall a -> Type
Proxy :: Type -> Type
This is inhomogeneous. Hence, we have an extra kind-check in eta_reduce,
to make sure the reducts have the same kind. This is simple, although
perhaps quadratic in complexity, if we eta-reduce many arguments (which
seems vanishingly unlikely in practice). But NB that the free-variable
check, which immediately precedes the kind check, is also potentially
quadratic.
There are other ways we could do the check (discussion on #19739):
* We could look at the sequence of binders on the newtype and on the
head of the representation type, and make sure the visibilities on
the binders match up. This is quite a bit more code, and the reasoning
is subtler.
* We could, say, do the kind-check at the end and then backtrack until the
kinds match up. Hard to know whether that's more performant or not.
-}
------------------------------------------------------
buildDataCon :: FamInstEnvs
-> Name
-> Bool -- Declared infix
-> TyConRepName
-> [HsSrcBang]
-> Maybe [HsImplBang]
-- See Note [Bangs on imported data constructors] in GHC.Types.Id.Make
-> [FieldLabel] -- Field labels
-> [TyVar] -- Universals
-> [TyCoVar] -- Existentials
-> [InvisTVBinder] -- User-written 'TyVarBinder's
-> [EqSpec] -- Equality spec
-> KnotTied ThetaType -- Does not include the "stupid theta"
-- or the GADT equalities
-> [KnotTied (Scaled Type)] -- Arguments
-> KnotTied Type -- Result types
-> KnotTied TyCon -- Rep tycon
-> NameEnv ConTag -- Maps the Name of each DataCon to its
-- ConTag
-> TcRnIf m n DataCon
-- A wrapper for DataCon.mkDataCon that
-- a) makes the worker Id
-- b) makes the wrapper Id if necessary, including
-- allocating its unique (hence monadic)
buildDataCon fam_envs src_name declared_infix prom_info src_bangs impl_bangs
field_lbls univ_tvs ex_tvs user_tvbs eq_spec ctxt arg_tys res_ty
rep_tycon tag_map
= do { wrap_name <- newImplicitBinder src_name mkDataConWrapperOcc
; work_name <- newImplicitBinder src_name mkDataConWorkerOcc
-- This last one takes the name of the data constructor in the source
-- code, which (for Haskell source anyway) will be in the DataName name
-- space, and puts it into the VarName name space
; traceIf (text "buildDataCon 1" <+> ppr src_name)
; us <- newUniqueSupply
; dflags <- getDynFlags
; let stupid_ctxt = mkDataConStupidTheta rep_tycon (map scaledThing arg_tys) univ_tvs
tag = lookupNameEnv_NF tag_map src_name
-- See Note [Constructor tag allocation], fixes #14657
data_con = mkDataCon src_name declared_infix prom_info
src_bangs field_lbls
univ_tvs ex_tvs user_tvbs eq_spec ctxt
arg_tys res_ty NoRRI rep_tycon tag
stupid_ctxt dc_wrk dc_rep
dc_wrk = mkDataConWorkId work_name data_con
dc_rep = initUs_ us (mkDataConRep dflags fam_envs wrap_name
impl_bangs data_con)
; traceIf (text "buildDataCon 2" <+> ppr src_name)
; return data_con }
-- The stupid context for a data constructor should be limited to
-- the type variables mentioned in the arg_tys
-- ToDo: Or functionally dependent on?
-- This whole stupid theta thing is, well, stupid.
mkDataConStupidTheta :: TyCon -> [Type] -> [TyVar] -> [PredType]
mkDataConStupidTheta tycon arg_tys univ_tvs
| null stupid_theta = [] -- The common case
| otherwise = filter in_arg_tys stupid_theta
where
tc_subst = zipTvSubst (tyConTyVars tycon)
(mkTyVarTys univ_tvs)
stupid_theta = substTheta tc_subst (tyConStupidTheta tycon)
-- Start by instantiating the master copy of the
-- stupid theta, taken from the TyCon
arg_tyvars = tyCoVarsOfTypes arg_tys
in_arg_tys pred = tyCoVarsOfType pred `intersectsVarSet` arg_tyvars
------------------------------------------------------
buildPatSyn :: Name -> Bool
-> PatSynMatcher -> PatSynBuilder
-> ([InvisTVBinder], ThetaType) -- ^ Univ and req
-> ([InvisTVBinder], ThetaType) -- ^ Ex and prov
-> [Type] -- ^ Argument types
-> Type -- ^ Result type
-> [FieldLabel] -- ^ Field labels for
-- a record pattern synonym
-> PatSyn
buildPatSyn src_name declared_infix matcher@(_, matcher_ty,_) builder
(univ_tvs, req_theta) (ex_tvs, prov_theta) arg_tys
pat_ty field_labels
= -- The assertion checks that the matcher is
-- compatible with the pattern synonym
ASSERT2((and [ univ_tvs `equalLength` univ_tvs1
, ex_tvs `equalLength` ex_tvs1
, pat_ty `eqType` substTy subst (scaledThing pat_ty1)
, prov_theta `eqTypes` substTys subst prov_theta1
, req_theta `eqTypes` substTys subst req_theta1
, compareArgTys arg_tys (substTys subst (map scaledThing arg_tys1))
])
, (vcat [ ppr univ_tvs <+> twiddle <+> ppr univ_tvs1
, ppr ex_tvs <+> twiddle <+> ppr ex_tvs1
, ppr pat_ty <+> twiddle <+> ppr pat_ty1
, ppr prov_theta <+> twiddle <+> ppr prov_theta1
, ppr req_theta <+> twiddle <+> ppr req_theta1
, ppr arg_tys <+> twiddle <+> ppr arg_tys1]))
mkPatSyn src_name declared_infix
(univ_tvs, req_theta) (ex_tvs, prov_theta)
arg_tys pat_ty
matcher builder field_labels
where
((_:_:univ_tvs1), req_theta1, tau) = tcSplitSigmaTy $ matcher_ty
([pat_ty1, cont_sigma, _], _) = tcSplitFunTys tau
(ex_tvs1, prov_theta1, cont_tau) = tcSplitSigmaTy (scaledThing cont_sigma)
(arg_tys1, _) = (tcSplitFunTys cont_tau)
twiddle = char '~'
subst = zipTvSubst (univ_tvs1 ++ ex_tvs1)
(mkTyVarTys (binderVars (univ_tvs ++ ex_tvs)))
-- For a nullary pattern synonym we add a single (# #) argument to the
-- matcher to preserve laziness in the case of unlifted types.
-- See #12746
compareArgTys :: [Type] -> [Type] -> Bool
compareArgTys [] [x] = x `eqType` unboxedUnitTy
compareArgTys arg_tys matcher_arg_tys = arg_tys `eqTypes` matcher_arg_tys
------------------------------------------------------
type TcMethInfo = MethInfo -- this variant needs zonking
type MethInfo -- A temporary intermediate, to communicate
-- between tcClassSigs and buildClass.
= ( Name -- Name of the class op
, Type -- Type of the class op
, Maybe (DefMethSpec (SrcSpan, Type)))
-- Nothing => no default method
--
-- Just VanillaDM => There is an ordinary
-- polymorphic default method
--
-- Just (GenericDM (loc, ty)) => There is a generic default metho
-- Here is its type, and the location
-- of the type signature
-- We need that location /only/ to attach it to the
-- generic default method's Name; and we need /that/
-- only to give the right location of an ambiguity error
-- for the generic default method, spat out by checkValidClass
buildClass :: Name -- Name of the class/tycon (they have the same Name)
-> [TyConBinder] -- Of the tycon
-> [Role]
-> [FunDep TyVar] -- Functional dependencies
-- Super classes, associated types, method info, minimal complete def.
-- This is Nothing if the class is abstract.
-> Maybe (KnotTied ThetaType, [ClassATItem], [KnotTied MethInfo], ClassMinimalDef)
-> TcRnIf m n Class
buildClass tycon_name binders roles fds Nothing
= fixM $ \ rec_clas -> -- Only name generation inside loop
do { traceIf (text "buildClass")
; tc_rep_name <- newTyConRepName tycon_name
; let univ_tvs = binderVars binders
tycon = mkClassTyCon tycon_name binders roles
AbstractTyCon rec_clas tc_rep_name
result = mkAbstractClass tycon_name univ_tvs fds tycon
; traceIf (text "buildClass" <+> ppr tycon)
; return result }
buildClass tycon_name binders roles fds
(Just (sc_theta, at_items, sig_stuff, mindef))
= fixM $ \ rec_clas -> -- Only name generation inside loop
do { traceIf (text "buildClass")
; datacon_name <- newImplicitBinder tycon_name mkClassDataConOcc
; tc_rep_name <- newTyConRepName tycon_name
; op_items <- mapM (mk_op_item rec_clas) sig_stuff
-- Build the selector id and default method id
-- Make selectors for the superclasses
; sc_sel_names <- mapM (newImplicitBinder tycon_name . mkSuperDictSelOcc)
(takeList sc_theta [fIRST_TAG..])
; let sc_sel_ids = [ mkDictSelId sc_name rec_clas
| sc_name <- sc_sel_names]
-- We number off the Dict superclass selectors, 1, 2, 3 etc so that we
-- can construct names for the selectors. Thus
-- class (C a, C b) => D a b where ...
-- gives superclass selectors
-- D_sc1, D_sc2
-- (We used to call them D_C, but now we can have two different
-- superclasses both called C!)
; let use_newtype = isSingleton arg_tys
-- Use a newtype if the data constructor
-- (a) has exactly one value field
-- i.e. exactly one operation or superclass taken together
-- (b) that value is of lifted type (which they always are, because
-- we box equality superclasses)
-- See note [Class newtypes and equality predicates]
-- We treat the dictionary superclasses as ordinary arguments.
-- That means that in the case of
-- class C a => D a
-- we don't get a newtype with no arguments!
args = sc_sel_names ++ op_names
op_tys = [ty | (_,ty,_) <- sig_stuff]
op_names = [op | (op,_,_) <- sig_stuff]
arg_tys = sc_theta ++ op_tys
rec_tycon = classTyCon rec_clas
univ_bndrs = tyConInvisTVBinders binders
univ_tvs = binderVars univ_bndrs
; rep_nm <- newTyConRepName datacon_name
; dict_con <- buildDataCon (panic "buildClass: FamInstEnvs")
datacon_name
False -- Not declared infix
rep_nm
(map (const no_bang) args)
(Just (map (const HsLazy) args))
[{- No fields -}]
univ_tvs
[{- no existentials -}]
univ_bndrs
[{- No GADT equalities -}]
[{- No theta -}]
(map unrestricted arg_tys) -- type classes are unrestricted
(mkTyConApp rec_tycon (mkTyVarTys univ_tvs))
rec_tycon
(mkTyConTagMap rec_tycon)
; rhs <- case () of
_ | use_newtype
-> mkNewTyConRhs tycon_name rec_tycon dict_con
| isCTupleTyConName tycon_name
-> return (TupleTyCon { data_con = dict_con
, tup_sort = ConstraintTuple })
| otherwise
-> return (mkDataTyConRhs [dict_con])
; let { tycon = mkClassTyCon tycon_name binders roles
rhs rec_clas tc_rep_name
-- A class can be recursive, and in the case of newtypes
-- this matters. For example
-- class C a where { op :: C b => a -> b -> Int }
-- Because C has only one operation, it is represented by
-- a newtype, and it should be a *recursive* newtype.
-- [If we don't make it a recursive newtype, we'll expand the
-- newtype like a synonym, but that will lead to an infinite
-- type]
; result = mkClass tycon_name univ_tvs fds
sc_theta sc_sel_ids at_items
op_items mindef tycon
}
; traceIf (text "buildClass" <+> ppr tycon)
; return result }
where
no_bang = HsSrcBang NoSourceText NoSrcUnpack NoSrcStrict
mk_op_item :: Class -> TcMethInfo -> TcRnIf n m ClassOpItem
mk_op_item rec_clas (op_name, _, dm_spec)
= do { dm_info <- mk_dm_info op_name dm_spec
; return (mkDictSelId op_name rec_clas, dm_info) }
mk_dm_info :: Name -> Maybe (DefMethSpec (SrcSpan, Type))
-> TcRnIf n m (Maybe (Name, DefMethSpec Type))
mk_dm_info _ Nothing
= return Nothing
mk_dm_info op_name (Just VanillaDM)
= do { dm_name <- newImplicitBinder op_name mkDefaultMethodOcc
; return (Just (dm_name, VanillaDM)) }
mk_dm_info op_name (Just (GenericDM (loc, dm_ty)))
= do { dm_name <- newImplicitBinderLoc op_name mkDefaultMethodOcc loc
; return (Just (dm_name, GenericDM dm_ty)) }
{-
Note [Class newtypes and equality predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
class (a ~ F b) => C a b where
op :: a -> b
We cannot represent this by a newtype, even though it's not
existential, because there are two value fields (the equality
predicate and op. See #2238
Moreover,
class (a ~ F b) => C a b where {}
Here we can't use a newtype either, even though there is only
one field, because equality predicates are unboxed, and classes
are boxed.
-}
newImplicitBinder :: Name -- Base name
-> (OccName -> OccName) -- Occurrence name modifier
-> TcRnIf m n Name -- Implicit name
-- Called in GHC.Tc.TyCl.Build to allocate the implicit binders of type/class decls
-- For source type/class decls, this is the first occurrence
-- For iface ones, GHC.Iface.Load has already allocated a suitable name in the cache
newImplicitBinder base_name mk_sys_occ
= newImplicitBinderLoc base_name mk_sys_occ (nameSrcSpan base_name)
newImplicitBinderLoc :: Name -- Base name
-> (OccName -> OccName) -- Occurrence name modifier
-> SrcSpan
-> TcRnIf m n Name -- Implicit name
-- Just the same, but lets you specify the SrcSpan
newImplicitBinderLoc base_name mk_sys_occ loc
| Just mod <- nameModule_maybe base_name
= newGlobalBinder mod occ loc
| otherwise -- When typechecking a [d| decl bracket |],
-- TH generates types, classes etc with Internal names,
-- so we follow suit for the implicit binders
= do { uniq <- newUnique
; return (mkInternalName uniq occ loc) }
where
occ = mk_sys_occ (nameOccName base_name)
-- | Make the 'TyConRepName' for this 'TyCon'
newTyConRepName :: Name -> TcRnIf gbl lcl TyConRepName
newTyConRepName tc_name
| Just mod <- nameModule_maybe tc_name
, (mod, occ) <- tyConRepModOcc mod (nameOccName tc_name)
= newGlobalBinder mod occ noSrcSpan
| otherwise
= newImplicitBinder tc_name mkTyConRepOcc
|