1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- | Typechecking instance declarations
module GHC.Tc.TyCl.Instance
( tcInstDecls1
, tcInstDeclsDeriv
, tcInstDecls2
)
where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Hs
import GHC.Tc.Gen.Bind
import GHC.Tc.TyCl
import GHC.Tc.TyCl.Utils ( addTyConsToGblEnv )
import GHC.Tc.TyCl.Class ( tcClassDecl2, tcATDefault,
HsSigFun, mkHsSigFun, badMethodErr,
findMethodBind, instantiateMethod )
import GHC.Tc.Solver( pushLevelAndSolveEqualitiesX, reportUnsolvedEqualities )
import GHC.Tc.Gen.Sig
import GHC.Tc.Utils.Monad
import GHC.Tc.Validity
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.TcType
import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Origin
import GHC.Tc.TyCl.Build
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Instance.Class( AssocInstInfo(..), isNotAssociated )
import GHC.Core.Multiplicity
import GHC.Core.InstEnv
import GHC.Tc.Instance.Family
import GHC.Core.FamInstEnv
import GHC.Tc.Deriv
import GHC.Tc.Utils.Env
import GHC.Tc.Gen.HsType
import GHC.Tc.Utils.Unify
import GHC.Core ( Expr(..), mkApps, mkVarApps, mkLams )
import GHC.Core.Make ( nO_METHOD_BINDING_ERROR_ID )
import GHC.Core.Unfold.Make ( mkInlineUnfoldingWithArity, mkDFunUnfolding )
import GHC.Core.Type
import GHC.Core.SimpleOpt
import GHC.Core.Predicate( classMethodInstTy )
import GHC.Tc.Types.Evidence
import GHC.Core.TyCon
import GHC.Core.Coercion.Axiom
import GHC.Core.DataCon
import GHC.Core.ConLike
import GHC.Core.Class
import GHC.Types.Var as Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Data.Bag
import GHC.Types.Basic
import GHC.Types.Fixity
import GHC.Driver.Session
import GHC.Driver.Ppr
import GHC.Utils.Error
import GHC.Data.FastString
import GHC.Types.Id
import GHC.Types.SourceText
import GHC.Data.List.SetOps
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Types.SrcLoc
import GHC.Utils.Misc
import GHC.Data.BooleanFormula ( isUnsatisfied, pprBooleanFormulaNice )
import qualified GHC.LanguageExtensions as LangExt
import Control.Monad
import Data.Tuple
import GHC.Data.Maybe
import Data.List( mapAccumL )
{-
Typechecking instance declarations is done in two passes. The first
pass, made by @tcInstDecls1@, collects information to be used in the
second pass.
This pre-processed info includes the as-yet-unprocessed bindings
inside the instance declaration. These are type-checked in the second
pass, when the class-instance envs and GVE contain all the info from
all the instance and value decls. Indeed that's the reason we need
two passes over the instance decls.
Note [How instance declarations are translated]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is how we translate instance declarations into Core
Running example:
class C a where
op1, op2 :: Ix b => a -> b -> b
op2 = <dm-rhs>
instance C a => C [a]
{-# INLINE [2] op1 #-}
op1 = <rhs>
===>
-- Method selectors
op1,op2 :: forall a. C a => forall b. Ix b => a -> b -> b
op1 = ...
op2 = ...
-- Default methods get the 'self' dictionary as argument
-- so they can call other methods at the same type
-- Default methods get the same type as their method selector
$dmop2 :: forall a. C a => forall b. Ix b => a -> b -> b
$dmop2 = /\a. \(d:C a). /\b. \(d2: Ix b). <dm-rhs>
-- NB: type variables 'a' and 'b' are *both* in scope in <dm-rhs>
-- Note [Tricky type variable scoping]
-- A top-level definition for each instance method
-- Here op1_i, op2_i are the "instance method Ids"
-- The INLINE pragma comes from the user pragma
{-# INLINE [2] op1_i #-} -- From the instance decl bindings
op1_i, op2_i :: forall a. C a => forall b. Ix b => [a] -> b -> b
op1_i = /\a. \(d:C a).
let this :: C [a]
this = df_i a d
-- Note [Subtle interaction of recursion and overlap]
local_op1 :: forall b. Ix b => [a] -> b -> b
local_op1 = <rhs>
-- Source code; run the type checker on this
-- NB: Type variable 'a' (but not 'b') is in scope in <rhs>
-- Note [Tricky type variable scoping]
in local_op1 a d
op2_i = /\a \d:C a. $dmop2 [a] (df_i a d)
-- The dictionary function itself
{-# NOINLINE CONLIKE df_i #-} -- Never inline dictionary functions
df_i :: forall a. C a -> C [a]
df_i = /\a. \d:C a. MkC (op1_i a d) (op2_i a d)
-- But see Note [Default methods in instances]
-- We can't apply the type checker to the default-method call
-- Use a RULE to short-circuit applications of the class ops
{-# RULE "op1@C[a]" forall a, d:C a.
op1 [a] (df_i d) = op1_i a d #-}
Note [Instances and loop breakers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Note that df_i may be mutually recursive with both op1_i and op2_i.
It's crucial that df_i is not chosen as the loop breaker, even
though op1_i has a (user-specified) INLINE pragma.
* Instead the idea is to inline df_i into op1_i, which may then select
methods from the MkC record, and thereby break the recursion with
df_i, leaving a *self*-recursive op1_i. (If op1_i doesn't call op at
the same type, it won't mention df_i, so there won't be recursion in
the first place.)
* If op1_i is marked INLINE by the user there's a danger that we won't
inline df_i in it, and that in turn means that (since it'll be a
loop-breaker because df_i isn't), op1_i will ironically never be
inlined. But this is OK: the recursion breaking happens by way of
a RULE (the magic ClassOp rule above), and RULES work inside InlineRule
unfoldings. See Note [RULEs enabled in InitialPhase] in GHC.Core.Opt.Simplify.Utils
Note [ClassOp/DFun selection]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
One thing we see a lot is stuff like
op2 (df d1 d2)
where 'op2' is a ClassOp and 'df' is DFun. Now, we could inline *both*
'op2' and 'df' to get
case (MkD ($cop1 d1 d2) ($cop2 d1 d2) ... of
MkD _ op2 _ _ _ -> op2
And that will reduce to ($cop2 d1 d2) which is what we wanted.
But it's tricky to make this work in practice, because it requires us to
inline both 'op2' and 'df'. But neither is keen to inline without having
seen the other's result; and it's very easy to get code bloat (from the
big intermediate) if you inline a bit too much.
Instead we use a cunning trick.
* We arrange that 'df' and 'op2' NEVER inline.
* We arrange that 'df' is ALWAYS defined in the sylised form
df d1 d2 = MkD ($cop1 d1 d2) ($cop2 d1 d2) ...
* We give 'df' a magical unfolding (DFunUnfolding [$cop1, $cop2, ..])
that lists its methods.
* We make GHC.Core.Unfold.exprIsConApp_maybe spot a DFunUnfolding and return
a suitable constructor application -- inlining df "on the fly" as it
were.
* ClassOp rules: We give the ClassOp 'op2' a BuiltinRule that
extracts the right piece iff its argument satisfies
exprIsConApp_maybe. This is done in GHC.Types.Id.Make.mkDictSelId
* We make 'df' CONLIKE, so that shared uses still match; eg
let d = df d1 d2
in ...(op2 d)...(op1 d)...
Note [Single-method classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If the class has just one method (or, more accurately, just one element
of {superclasses + methods}), then we use a different strategy.
class C a where op :: a -> a
instance C a => C [a] where op = <blah>
We translate the class decl into a newtype, which just gives a
top-level axiom. The "constructor" MkC expands to a cast, as does the
class-op selector.
axiom Co:C a :: C a ~ (a->a)
op :: forall a. C a -> (a -> a)
op a d = d |> (Co:C a)
MkC :: forall a. (a->a) -> C a
MkC = /\a.\op. op |> (sym Co:C a)
The clever RULE stuff doesn't work now, because ($df a d) isn't
a constructor application, so exprIsConApp_maybe won't return
Just <blah>.
Instead, we simply rely on the fact that casts are cheap:
$df :: forall a. C a => C [a]
{-# INLINE df #-} -- NB: INLINE this
$df = /\a. \d. MkC [a] ($cop_list a d)
= $cop_list |> forall a. C a -> (sym (Co:C [a]))
$cop_list :: forall a. C a => [a] -> [a]
$cop_list = <blah>
So if we see
(op ($df a d))
we'll inline 'op' and '$df', since both are simply casts, and
good things happen.
Why do we use this different strategy? Because otherwise we
end up with non-inlined dictionaries that look like
$df = $cop |> blah
which adds an extra indirection to every use, which seems stupid. See
#4138 for an example (although the regression reported there
wasn't due to the indirection).
There is an awkward wrinkle though: we want to be very
careful when we have
instance C a => C [a] where
{-# INLINE op #-}
op = ...
then we'll get an INLINE pragma on $cop_list but it's important that
$cop_list only inlines when it's applied to *two* arguments (the
dictionary and the list argument). So we must not eta-expand $df
above. We ensure that this doesn't happen by putting an INLINE
pragma on the dfun itself; after all, it ends up being just a cast.
There is one more dark corner to the INLINE story, even more deeply
buried. Consider this (#3772):
class DeepSeq a => C a where
gen :: Int -> a
instance C a => C [a] where
gen n = ...
class DeepSeq a where
deepSeq :: a -> b -> b
instance DeepSeq a => DeepSeq [a] where
{-# INLINE deepSeq #-}
deepSeq xs b = foldr deepSeq b xs
That gives rise to these defns:
$cdeepSeq :: DeepSeq a -> [a] -> b -> b
-- User INLINE( 3 args )!
$cdeepSeq a (d:DS a) b (x:[a]) (y:b) = ...
$fDeepSeq[] :: DeepSeq a -> DeepSeq [a]
-- DFun (with auto INLINE pragma)
$fDeepSeq[] a d = $cdeepSeq a d |> blah
$cp1 a d :: C a => DeepSep [a]
-- We don't want to eta-expand this, lest
-- $cdeepSeq gets inlined in it!
$cp1 a d = $fDeepSep[] a (scsel a d)
$fC[] :: C a => C [a]
-- Ordinary DFun
$fC[] a d = MkC ($cp1 a d) ($cgen a d)
Here $cp1 is the code that generates the superclass for C [a]. The
issue is this: we must not eta-expand $cp1 either, or else $fDeepSeq[]
and then $cdeepSeq will inline there, which is definitely wrong. Like
on the dfun, we solve this by adding an INLINE pragma to $cp1.
Note [Subtle interaction of recursion and overlap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
class C a where { op1,op2 :: a -> a }
instance C a => C [a] where
op1 x = op2 x ++ op2 x
op2 x = ...
instance C [Int] where
...
When type-checking the C [a] instance, we need a C [a] dictionary (for
the call of op2). If we look up in the instance environment, we find
an overlap. And in *general* the right thing is to complain (see Note
[Overlapping instances] in GHC.Core.InstEnv). But in *this* case it's wrong to
complain, because we just want to delegate to the op2 of this same
instance.
Why is this justified? Because we generate a (C [a]) constraint in
a context in which 'a' cannot be instantiated to anything that matches
other overlapping instances, or else we would not be executing this
version of op1 in the first place.
It might even be a bit disguised:
nullFail :: C [a] => [a] -> [a]
nullFail x = op2 x ++ op2 x
instance C a => C [a] where
op1 x = nullFail x
Precisely this is used in package 'regex-base', module Context.hs.
See the overlapping instances for RegexContext, and the fact that they
call 'nullFail' just like the example above. The DoCon package also
does the same thing; it shows up in module Fraction.hs.
Conclusion: when typechecking the methods in a C [a] instance, we want to
treat the 'a' as an *existential* type variable, in the sense described
by Note [Binding when looking up instances]. That is why isOverlappableTyVar
responds True to an InstSkol, which is the kind of skolem we use in
tcInstDecl2.
Note [Tricky type variable scoping]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In our example
class C a where
op1, op2 :: Ix b => a -> b -> b
op2 = <dm-rhs>
instance C a => C [a]
{-# INLINE [2] op1 #-}
op1 = <rhs>
note that 'a' and 'b' are *both* in scope in <dm-rhs>, but only 'a' is
in scope in <rhs>. In particular, we must make sure that 'b' is in
scope when typechecking <dm-rhs>. This is achieved by subFunTys,
which brings appropriate tyvars into scope. This happens for both
<dm-rhs> and for <rhs>, but that doesn't matter: the *renamer* will have
complained if 'b' is mentioned in <rhs>.
************************************************************************
* *
\subsection{Extracting instance decls}
* *
************************************************************************
Gather up the instance declarations from their various sources
-}
tcInstDecls1 -- Deal with both source-code and imported instance decls
:: [LInstDecl GhcRn] -- Source code instance decls
-> TcM (TcGblEnv, -- The full inst env
[InstInfo GhcRn], -- Source-code instance decls to process;
-- contains all dfuns for this module
[DerivInfo]) -- From data family instances
tcInstDecls1 inst_decls
= do { -- Do class and family instance declarations
; stuff <- mapAndRecoverM tcLocalInstDecl inst_decls
; let (local_infos_s, fam_insts_s, datafam_deriv_infos) = unzip3 stuff
fam_insts = concat fam_insts_s
local_infos = concat local_infos_s
; gbl_env <- addClsInsts local_infos $
addFamInsts fam_insts $
getGblEnv
; return ( gbl_env
, local_infos
, concat datafam_deriv_infos ) }
-- | Use DerivInfo for data family instances (produced by tcInstDecls1),
-- datatype declarations (TyClDecl), and standalone deriving declarations
-- (DerivDecl) to check and process all derived class instances.
tcInstDeclsDeriv
:: [DerivInfo]
-> [LDerivDecl GhcRn]
-> TcM (TcGblEnv, [InstInfo GhcRn], HsValBinds GhcRn)
tcInstDeclsDeriv deriv_infos derivds
= do th_stage <- getStage -- See Note [Deriving inside TH brackets]
if isBrackStage th_stage
then do { gbl_env <- getGblEnv
; return (gbl_env, bagToList emptyBag, emptyValBindsOut) }
else do { (tcg_env, info_bag, valbinds) <- tcDeriving deriv_infos derivds
; return (tcg_env, bagToList info_bag, valbinds) }
addClsInsts :: [InstInfo GhcRn] -> TcM a -> TcM a
addClsInsts infos thing_inside
= tcExtendLocalInstEnv (map iSpec infos) thing_inside
addFamInsts :: [FamInst] -> TcM a -> TcM a
-- Extend (a) the family instance envt
-- (b) the type envt with stuff from data type decls
addFamInsts fam_insts thing_inside
= tcExtendLocalFamInstEnv fam_insts $
tcExtendGlobalEnv axioms $
do { traceTc "addFamInsts" (pprFamInsts fam_insts)
; gbl_env <- addTyConsToGblEnv data_rep_tycons
-- Does not add its axiom; that comes
-- from adding the 'axioms' above
; setGblEnv gbl_env thing_inside }
where
axioms = map (ACoAxiom . toBranchedAxiom . famInstAxiom) fam_insts
data_rep_tycons = famInstsRepTyCons fam_insts
-- The representation tycons for 'data instances' declarations
{-
Note [Deriving inside TH brackets]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given a declaration bracket
[d| data T = A | B deriving( Show ) |]
there is really no point in generating the derived code for deriving(
Show) and then type-checking it. This will happen at the call site
anyway, and the type check should never fail! Moreover (#6005)
the scoping of the generated code inside the bracket does not seem to
work out.
The easy solution is simply not to generate the derived instances at
all. (A less brutal solution would be to generate them with no
bindings.) This will become moot when we shift to the new TH plan, so
the brutal solution will do.
-}
tcLocalInstDecl :: LInstDecl GhcRn
-> TcM ([InstInfo GhcRn], [FamInst], [DerivInfo])
-- A source-file instance declaration
-- Type-check all the stuff before the "where"
--
-- We check for respectable instance type, and context
tcLocalInstDecl (L loc (TyFamInstD { tfid_inst = decl }))
= do { fam_inst <- tcTyFamInstDecl NotAssociated (L loc decl)
; return ([], [fam_inst], []) }
tcLocalInstDecl (L loc (DataFamInstD { dfid_inst = decl }))
= do { (fam_inst, m_deriv_info) <- tcDataFamInstDecl NotAssociated emptyVarEnv (L loc decl)
; return ([], [fam_inst], maybeToList m_deriv_info) }
tcLocalInstDecl (L loc (ClsInstD { cid_inst = decl }))
= do { (insts, fam_insts, deriv_infos) <- tcClsInstDecl (L loc decl)
; return (insts, fam_insts, deriv_infos) }
tcClsInstDecl :: LClsInstDecl GhcRn
-> TcM ([InstInfo GhcRn], [FamInst], [DerivInfo])
-- The returned DerivInfos are for any associated data families
tcClsInstDecl (L loc (ClsInstDecl { cid_poly_ty = hs_ty, cid_binds = binds
, cid_sigs = uprags, cid_tyfam_insts = ats
, cid_overlap_mode = overlap_mode
, cid_datafam_insts = adts }))
= setSrcSpan loc $
addErrCtxt (instDeclCtxt1 hs_ty) $
do { dfun_ty <- tcHsClsInstType (InstDeclCtxt False) hs_ty
; let (tyvars, theta, clas, inst_tys) = tcSplitDFunTy dfun_ty
-- NB: tcHsClsInstType does checkValidInstance
; (subst, skol_tvs) <- tcInstSkolTyVars tyvars
; let tv_skol_prs = [ (tyVarName tv, skol_tv)
| (tv, skol_tv) <- tyvars `zip` skol_tvs ]
-- Map from the skolemized Names to the original Names.
-- See Note [Associated data family instances and di_scoped_tvs].
tv_skol_env = mkVarEnv $ map swap tv_skol_prs
n_inferred = countWhile ((== Inferred) . binderArgFlag) $
fst $ splitForAllTyCoVarBinders dfun_ty
visible_skol_tvs = drop n_inferred skol_tvs
; traceTc "tcLocalInstDecl 1" (ppr dfun_ty $$ ppr (invisibleTyBndrCount dfun_ty) $$ ppr skol_tvs)
-- Next, process any associated types.
; (datafam_stuff, tyfam_insts)
<- tcExtendNameTyVarEnv tv_skol_prs $
do { let mini_env = mkVarEnv (classTyVars clas `zip` substTys subst inst_tys)
mini_subst = mkTvSubst (mkInScopeSet (mkVarSet skol_tvs)) mini_env
mb_info = InClsInst { ai_class = clas
, ai_tyvars = visible_skol_tvs
, ai_inst_env = mini_env }
; df_stuff <- mapAndRecoverM (tcDataFamInstDecl mb_info tv_skol_env) adts
; tf_insts1 <- mapAndRecoverM (tcTyFamInstDecl mb_info) ats
-- Check for missing associated types and build them
-- from their defaults (if available)
; is_boot <- tcIsHsBootOrSig
; let atItems = classATItems clas
; tf_insts2 <- mapM (tcATDefault loc mini_subst defined_ats)
(if is_boot then [] else atItems)
-- Don't default type family instances, but rather omit, in hsig/hs-boot.
-- Since hsig/hs-boot files are essentially large binders we want omission
-- of the definition to result in no restriction, rather than for example
-- attempting to "pattern match" with the invisible defaults and generate
-- equalities. Without further handling, this would just result in a panic
-- anyway.
-- See https://github.com/ghc-proposals/ghc-proposals/pull/320 for
-- additional discussion.
; return (df_stuff, tf_insts1 ++ concat tf_insts2) }
-- Finally, construct the Core representation of the instance.
-- (This no longer includes the associated types.)
; dfun_name <- newDFunName clas inst_tys (getLoc hs_ty)
-- Dfun location is that of instance *header*
; ispec <- newClsInst (fmap unLoc overlap_mode) dfun_name
tyvars theta clas inst_tys
; let inst_binds = InstBindings
{ ib_binds = binds
, ib_tyvars = map Var.varName tyvars -- Scope over bindings
, ib_pragmas = uprags
, ib_extensions = []
, ib_derived = False }
inst_info = InstInfo { iSpec = ispec, iBinds = inst_binds }
(datafam_insts, m_deriv_infos) = unzip datafam_stuff
deriv_infos = catMaybes m_deriv_infos
all_insts = tyfam_insts ++ datafam_insts
-- In hs-boot files there should be no bindings
; let no_binds = isEmptyLHsBinds binds && null uprags
; is_boot <- tcIsHsBootOrSig
; failIfTc (is_boot && not no_binds) badBootDeclErr
; return ( [inst_info], all_insts, deriv_infos ) }
where
defined_ats = mkNameSet (map (tyFamInstDeclName . unLoc) ats)
`unionNameSet`
mkNameSet (map (unLoc . feqn_tycon
. dfid_eqn
. unLoc) adts)
{-
************************************************************************
* *
Type family instances
* *
************************************************************************
Family instances are somewhat of a hybrid. They are processed together with
class instance heads, but can contain data constructors and hence they share a
lot of kinding and type checking code with ordinary algebraic data types (and
GADTs).
-}
tcTyFamInstDecl :: AssocInstInfo
-> LTyFamInstDecl GhcRn -> TcM FamInst
-- "type instance"
-- See Note [Associated type instances]
tcTyFamInstDecl mb_clsinfo (L loc decl@(TyFamInstDecl { tfid_eqn = eqn }))
= setSrcSpan loc $
tcAddTyFamInstCtxt decl $
do { let fam_lname = feqn_tycon eqn
; fam_tc <- tcLookupLocatedTyCon fam_lname
; tcFamInstDeclChecks mb_clsinfo fam_tc
-- (0) Check it's an open type family
; checkTc (isTypeFamilyTyCon fam_tc) (wrongKindOfFamily fam_tc)
; checkTc (isOpenTypeFamilyTyCon fam_tc) (notOpenFamily fam_tc)
-- (1) do the work of verifying the synonym group
-- For some reason we don't have a location for the equation
-- itself, so we make do with the location of family name
; co_ax_branch <- tcTyFamInstEqn fam_tc mb_clsinfo
(L (getLoc fam_lname) eqn)
-- (2) check for validity
; checkConsistentFamInst mb_clsinfo fam_tc co_ax_branch
; checkValidCoAxBranch fam_tc co_ax_branch
-- (3) construct coercion axiom
; rep_tc_name <- newFamInstAxiomName fam_lname [coAxBranchLHS co_ax_branch]
; let axiom = mkUnbranchedCoAxiom rep_tc_name fam_tc co_ax_branch
; newFamInst SynFamilyInst axiom }
---------------------
tcFamInstDeclChecks :: AssocInstInfo -> TyCon -> TcM ()
-- Used for both type and data families
tcFamInstDeclChecks mb_clsinfo fam_tc
= do { -- Type family instances require -XTypeFamilies
-- and can't (currently) be in an hs-boot file
; traceTc "tcFamInstDecl" (ppr fam_tc)
; type_families <- xoptM LangExt.TypeFamilies
; is_boot <- tcIsHsBootOrSig -- Are we compiling an hs-boot file?
; checkTc type_families $ badFamInstDecl fam_tc
; checkTc (not is_boot) $ badBootFamInstDeclErr
-- Check that it is a family TyCon, and that
-- oplevel type instances are not for associated types.
; checkTc (isFamilyTyCon fam_tc) (notFamily fam_tc)
; when (isNotAssociated mb_clsinfo && -- Not in a class decl
isTyConAssoc fam_tc) -- but an associated type
(addErr $ assocInClassErr fam_tc)
}
{- Note [Associated type instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We allow this:
class C a where
type T x a
instance C Int where
type T (S y) Int = y
type T Z Int = Char
Note that
a) The variable 'x' is not bound by the class decl
b) 'x' is instantiated to a non-type-variable in the instance
c) There are several type instance decls for T in the instance
All this is fine. Of course, you can't give any *more* instances
for (T ty Int) elsewhere, because it's an *associated* type.
************************************************************************
* *
Data family instances
* *
************************************************************************
For some reason data family instances are a lot more complicated
than type family instances
-}
tcDataFamInstDecl ::
AssocInstInfo
-> TyVarEnv Name -- If this is an associated data family instance, maps the
-- parent class's skolemized type variables to their
-- original Names. If this is a non-associated instance,
-- this will be empty.
-- See Note [Associated data family instances and di_scoped_tvs].
-> LDataFamInstDecl GhcRn -> TcM (FamInst, Maybe DerivInfo)
-- "newtype instance" and "data instance"
tcDataFamInstDecl mb_clsinfo tv_skol_env
(L loc decl@(DataFamInstDecl { dfid_eqn =
FamEqn { feqn_bndrs = outer_bndrs
, feqn_pats = hs_pats
, feqn_tycon = lfam_name@(L _ fam_name)
, feqn_fixity = fixity
, feqn_rhs = HsDataDefn { dd_ND = new_or_data
, dd_cType = cType
, dd_ctxt = hs_ctxt
, dd_cons = hs_cons
, dd_kindSig = m_ksig
, dd_derivs = derivs } }}))
= setSrcSpan loc $
tcAddDataFamInstCtxt decl $
do { fam_tc <- tcLookupLocatedTyCon lfam_name
; tcFamInstDeclChecks mb_clsinfo fam_tc
-- Check that the family declaration is for the right kind
; checkTc (isDataFamilyTyCon fam_tc) (wrongKindOfFamily fam_tc)
; gadt_syntax <- dataDeclChecks fam_name new_or_data hs_ctxt hs_cons
-- Do /not/ check that the number of patterns = tyConArity fam_tc
-- See [Arity of data families] in GHC.Core.FamInstEnv
; (qtvs, pats, res_kind, stupid_theta)
<- tcDataFamInstHeader mb_clsinfo fam_tc outer_bndrs fixity
hs_ctxt hs_pats m_ksig new_or_data
-- Eta-reduce the axiom if possible
-- Quite tricky: see Note [Implementing eta reduction for data families]
; let (eta_pats, eta_tcbs) = eta_reduce fam_tc pats
eta_tvs = map binderVar eta_tcbs
post_eta_qtvs = filterOut (`elem` eta_tvs) qtvs
full_tcbs = mkTyConBindersPreferAnon post_eta_qtvs
(tyCoVarsOfType (mkSpecForAllTys eta_tvs res_kind))
++ eta_tcbs
-- Put the eta-removed tyvars at the end
-- Remember, qtvs is in arbitrary order, except kind vars are
-- first, so there is no reason to suppose that the eta_tvs
-- (obtained from the pats) are at the end (#11148)
-- Eta-expand the representation tycon until it has result
-- kind `TYPE r`, for some `r`. If UnliftedNewtypes is not enabled, we
-- go one step further and ensure that it has kind `TYPE 'LiftedRep`.
--
-- See also Note [Arity of data families] in GHC.Core.FamInstEnv
-- NB: we can do this after eta-reducing the axiom, because if
-- we did it before the "extra" tvs from etaExpandAlgTyCon
-- would always be eta-reduced
--
; (extra_tcbs, final_res_kind) <- etaExpandAlgTyCon full_tcbs res_kind
-- Check the result kind; it may come from a user-written signature.
-- See Note [Datatype return kinds] in GHC.Tc.TyCl point 4(a)
; let extra_pats = map (mkTyVarTy . binderVar) extra_tcbs
all_pats = pats `chkAppend` extra_pats
orig_res_ty = mkTyConApp fam_tc all_pats
ty_binders = full_tcbs `chkAppend` extra_tcbs
; traceTc "tcDataFamInstDecl" $
vcat [ text "Fam tycon:" <+> ppr fam_tc
, text "Pats:" <+> ppr pats
, text "visiblities:" <+> ppr (tcbVisibilities fam_tc pats)
, text "all_pats:" <+> ppr all_pats
, text "ty_binders" <+> ppr ty_binders
, text "fam_tc_binders:" <+> ppr (tyConBinders fam_tc)
, text "res_kind:" <+> ppr res_kind
, text "final_res_kind:" <+> ppr final_res_kind
, text "eta_pats" <+> ppr eta_pats
, text "eta_tcbs" <+> ppr eta_tcbs ]
; (rep_tc, axiom) <- fixM $ \ ~(rec_rep_tc, _) ->
do { data_cons <- tcExtendTyVarEnv qtvs $
-- For H98 decls, the tyvars scope
-- over the data constructors
tcConDecls new_or_data (DDataInstance orig_res_ty)
rec_rep_tc ty_binders final_res_kind
hs_cons
; rep_tc_name <- newFamInstTyConName lfam_name pats
; axiom_name <- newFamInstAxiomName lfam_name [pats]
; tc_rhs <- case new_or_data of
DataType -> return (mkDataTyConRhs data_cons)
NewType -> ASSERT( not (null data_cons) )
mkNewTyConRhs rep_tc_name rec_rep_tc (head data_cons)
; let ax_rhs = mkTyConApp rep_tc (mkTyVarTys post_eta_qtvs)
axiom = mkSingleCoAxiom Representational axiom_name
post_eta_qtvs eta_tvs [] fam_tc eta_pats ax_rhs
parent = DataFamInstTyCon axiom fam_tc all_pats
-- NB: Use the full ty_binders from the pats. See bullet toward
-- the end of Note [Data type families] in GHC.Core.TyCon
rep_tc = mkAlgTyCon rep_tc_name
ty_binders final_res_kind
(map (const Nominal) ty_binders)
(fmap unLoc cType) stupid_theta
tc_rhs parent
gadt_syntax
-- We always assume that indexed types are recursive. Why?
-- (1) Due to their open nature, we can never be sure that a
-- further instance might not introduce a new recursive
-- dependency. (2) They are always valid loop breakers as
-- they involve a coercion.
; return (rep_tc, axiom) }
-- Remember to check validity; no recursion to worry about here
-- Check that left-hand sides are ok (mono-types, no type families,
-- consistent instantiations, etc)
; let ax_branch = coAxiomSingleBranch axiom
; checkConsistentFamInst mb_clsinfo fam_tc ax_branch
; checkValidCoAxBranch fam_tc ax_branch
; checkValidTyCon rep_tc
; let scoped_tvs = map mk_deriv_info_scoped_tv_pr (tyConTyVars rep_tc)
m_deriv_info = case derivs of
L _ [] -> Nothing
L _ preds ->
Just $ DerivInfo { di_rep_tc = rep_tc
, di_scoped_tvs = scoped_tvs
, di_clauses = preds
, di_ctxt = tcMkDataFamInstCtxt decl }
; fam_inst <- newFamInst (DataFamilyInst rep_tc) axiom
; return (fam_inst, m_deriv_info) }
where
eta_reduce :: TyCon -> [Type] -> ([Type], [TyConBinder])
-- See Note [Eta reduction for data families] in GHC.Core.Coercion.Axiom
-- Splits the incoming patterns into two: the [TyVar]
-- are the patterns that can be eta-reduced away.
-- e.g. T [a] Int a d c ==> (T [a] Int a, [d,c])
--
-- NB: quadratic algorithm, but types are small here
eta_reduce fam_tc pats
= go (reverse (zip3 pats fvs_s vis_s)) []
where
vis_s :: [TyConBndrVis]
vis_s = tcbVisibilities fam_tc pats
fvs_s :: [TyCoVarSet] -- 1-1 correspondence with pats
-- Each elt is the free vars of all /earlier/ pats
(_, fvs_s) = mapAccumL add_fvs emptyVarSet pats
add_fvs fvs pat = (fvs `unionVarSet` tyCoVarsOfType pat, fvs)
go ((pat, fvs_to_the_left, tcb_vis):pats) etad_tvs
| Just tv <- getTyVar_maybe pat
, not (tv `elemVarSet` fvs_to_the_left)
= go pats (Bndr tv tcb_vis : etad_tvs)
go pats etad_tvs = (reverse (map fstOf3 pats), etad_tvs)
-- Create a Name-TyVar mapping to bring into scope when typechecking any
-- deriving clauses this data family instance may have.
-- See Note [Associated data family instances and di_scoped_tvs].
mk_deriv_info_scoped_tv_pr :: TyVar -> (Name, TyVar)
mk_deriv_info_scoped_tv_pr tv =
let n = lookupWithDefaultVarEnv tv_skol_env (tyVarName tv) tv
in (n, tv)
{-
Note [Associated data family instances and di_scoped_tvs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some care is required to implement `deriving` correctly for associated data
family instances. Consider this example from #18055:
class C a where
data D a
class X a b
instance C (Maybe a) where
data D (Maybe a) deriving (X a)
When typechecking the `X a` in `deriving (X a)`, we must ensure that the `a`
from the instance header is brought into scope. This is the role of
di_scoped_tvs, which maps from the original, renamed `a` to the skolemized,
typechecked `a`. When typechecking the `deriving` clause, this mapping will be
consulted when looking up the `a` in `X a`.
A naĂŻve attempt at creating the di_scoped_tvs is to simply reuse the
tyConTyVars of the representation TyCon for `data D (Maybe a)`. This is only
half correct, however. We do want the typechecked `a`'s Name in the /range/
of the mapping, but we do not want it in the /domain/ of the mapping.
To ensure that the original `a`'s Name ends up in the domain, we consult a
TyVarEnv (passed as an argument to tcDataFamInstDecl) that maps from the
typechecked `a`'s Name to the original `a`'s Name. In the even that
tcDataFamInstDecl is processing a non-associated data family instance, this
TyVarEnv will simply be empty, and there is nothing to worry about.
-}
-----------------------
tcDataFamInstHeader
:: AssocInstInfo -> TyCon -> HsOuterFamEqnTyVarBndrs GhcRn
-> LexicalFixity -> LHsContext GhcRn
-> HsTyPats GhcRn -> Maybe (LHsKind GhcRn)
-> NewOrData
-> TcM ([TyVar], [Type], Kind, ThetaType)
-- The "header" of a data family instance is the part other than
-- the data constructors themselves
-- e.g. data instance D [a] :: * -> * where ...
-- Here the "header" is the bit before the "where"
tcDataFamInstHeader mb_clsinfo fam_tc outer_bndrs fixity
hs_ctxt hs_pats m_ksig new_or_data
= do { traceTc "tcDataFamInstHeader {" (ppr fam_tc <+> ppr hs_pats)
; (tclvl, wanted, (scoped_tvs, (stupid_theta, lhs_ty, master_res_kind, instance_res_kind)))
<- pushLevelAndSolveEqualitiesX "tcDataFamInstHeader" $
bindOuterFamEqnTKBndrs outer_bndrs $
do { stupid_theta <- tcHsContext hs_ctxt
; (lhs_ty, lhs_kind) <- tcFamTyPats fam_tc hs_pats
; (lhs_applied_ty, lhs_applied_kind)
<- tcInstInvisibleTyBinders lhs_ty lhs_kind
-- See Note [Data family/instance return kinds]
-- in GHC.Tc.TyCl point (DF3)
-- Ensure that the instance is consistent
-- with its parent class
; addConsistencyConstraints mb_clsinfo lhs_ty
-- Add constraints from the result signature
; res_kind <- tc_kind_sig m_ksig
-- Do not add constraints from the data constructors
-- See Note [Kind inference for data family instances]
-- Check that the result kind of the TyCon applied to its args
-- is compatible with the explicit signature (or Type, if there
-- is none)
; let hs_lhs = nlHsTyConApp fixity (getName fam_tc) hs_pats
; _ <- unifyKind (Just (ppr hs_lhs)) lhs_applied_kind res_kind
; traceTc "tcDataFamInstHeader" $
vcat [ ppr fam_tc, ppr m_ksig, ppr lhs_applied_kind, ppr res_kind ]
; return ( stupid_theta
, lhs_applied_ty
, lhs_applied_kind
, res_kind ) }
-- This code (and the stuff immediately above) is very similar
-- to that in tcTyFamInstEqnGuts. Maybe we should abstract the
-- common code; but for the moment I concluded that it's
-- clearer to duplicate it. Still, if you fix a bug here,
-- check there too!
-- See GHC.Tc.TyCl Note [Generalising in tcFamTyPatsGuts]
; dvs <- candidateQTyVarsOfTypes (lhs_ty : mkTyVarTys scoped_tvs)
; qtvs <- quantifyTyVars dvs
; reportUnsolvedEqualities FamInstSkol qtvs tclvl wanted
-- Zonk the patterns etc into the Type world
; ze <- mkEmptyZonkEnv NoFlexi
; (ze, qtvs) <- zonkTyBndrsX ze qtvs
; lhs_ty <- zonkTcTypeToTypeX ze lhs_ty
; stupid_theta <- zonkTcTypesToTypesX ze stupid_theta
; master_res_kind <- zonkTcTypeToTypeX ze master_res_kind
; instance_res_kind <- zonkTcTypeToTypeX ze instance_res_kind
-- We check that res_kind is OK with checkDataKindSig in
-- tcDataFamInstDecl, after eta-expansion. We need to check that
-- it's ok because res_kind can come from a user-written kind signature.
-- See Note [Datatype return kinds], point (4a)
; checkDataKindSig (DataInstanceSort new_or_data) master_res_kind
; checkDataKindSig (DataInstanceSort new_or_data) instance_res_kind
-- Check that type patterns match the class instance head
-- The call to splitTyConApp_maybe here is just an inlining of
-- the body of unravelFamInstPats.
; pats <- case splitTyConApp_maybe lhs_ty of
Just (_, pats) -> pure pats
Nothing -> pprPanic "tcDataFamInstHeader" (ppr lhs_ty)
; return (qtvs, pats, master_res_kind, stupid_theta) }
where
fam_name = tyConName fam_tc
data_ctxt = DataKindCtxt fam_name
-- See Note [Implementation of UnliftedNewtypes] in GHC.Tc.TyCl, wrinkle (2).
tc_kind_sig Nothing
= do { unlifted_newtypes <- xoptM LangExt.UnliftedNewtypes
; if unlifted_newtypes && new_or_data == NewType
then newOpenTypeKind
else pure liftedTypeKind
}
-- See Note [Result kind signature for a data family instance]
tc_kind_sig (Just hs_kind)
= do { sig_kind <- tcLHsKindSig data_ctxt hs_kind
; lvl <- getTcLevel
; let (tvs, inner_kind) = tcSplitForAllInvisTyVars sig_kind
; (subst, _tvs') <- tcInstSkolTyVarsAt lvl False emptyTCvSubst tvs
-- Perhaps surprisingly, we don't need the skolemised tvs themselves
; return (substTy subst inner_kind) }
{- Note [Result kind signature for a data family instance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The expected type might have a forall at the type. Normally, we
can't skolemise in kinds because we don't have type-level lambda.
But here, we're at the top-level of an instance declaration, so
we actually have a place to put the regeneralised variables.
Thus: skolemise away. cf. GHC.Tc.Utils.Unify.tcSkolemise
Examples in indexed-types/should_compile/T12369
Note [Implementing eta reduction for data families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data D :: * -> * -> * -> * -> *
data instance D [(a,b)] p q :: * -> * where
D1 :: blah1
D2 :: blah2
Then we'll generate a representation data type
data Drep a b p q z where
D1 :: blah1
D2 :: blah2
and an axiom to connect them
axiom AxDrep forall a b p q z. D [(a,b]] p q z = Drep a b p q z
except that we'll eta-reduce the axiom to
axiom AxDrep forall a b. D [(a,b]] = Drep a b
This is described at some length in Note [Eta reduction for data families]
in GHC.Core.Coercion.Axiom. There are several fiddly subtleties lurking here,
however, so this Note aims to describe these subtleties:
* The representation tycon Drep is parameterised over the free
variables of the pattern, in no particular order. So there is no
guarantee that 'p' and 'q' will come last in Drep's parameters, and
in the right order. So, if the /patterns/ of the family instance
are eta-reducible, we re-order Drep's parameters to put the
eta-reduced type variables last.
* Although we eta-reduce the axiom, we eta-/expand/ the representation
tycon Drep. The kind of D says it takes four arguments, but the
data instance header only supplies three. But the AlgTyCon for Drep
itself must have enough TyConBinders so that its result kind is Type.
So, with etaExpandAlgTyCon we make up some extra TyConBinders.
See point (3) in Note [Datatype return kinds] in GHC.Tc.TyCl.
* The result kind in the instance might be a polykind, like this:
data family DP a :: forall k. k -> *
data instance DP [b] :: forall k1 k2. (k1,k2) -> *
So in type-checking the LHS (DP Int) we need to check that it is
more polymorphic than the signature. To do that we must skolemise
the signature and instantiate the call of DP. So we end up with
data instance DP [b] @(k1,k2) (z :: (k1,k2)) where
Note that we must parameterise the representation tycon DPrep over
'k1' and 'k2', as well as 'b'.
The skolemise bit is done in tc_kind_sig, while the instantiate bit
is done by tcFamTyPats.
* Very fiddly point. When we eta-reduce to
axiom AxDrep forall a b. D [(a,b]] = Drep a b
we want the kind of (D [(a,b)]) to be the same as the kind of
(Drep a b). This ensures that applying the axiom doesn't change the
kind. Why is that hard? Because the kind of (Drep a b) depends on
the TyConBndrVis on Drep's arguments. In particular do we have
(forall (k::*). blah) or (* -> blah)?
We must match whatever D does! In #15817 we had
data family X a :: forall k. * -> * -- Note: a forall that is not used
data instance X Int b = MkX
So the data instance is really
data istance X Int @k b = MkX
The axiom will look like
axiom X Int = Xrep
and it's important that XRep :: forall k * -> *, following X.
To achieve this we get the TyConBndrVis flags from tcbVisibilities,
and use those flags for any eta-reduced arguments. Sigh.
* The final turn of the knife is that tcbVisibilities is itself
tricky to sort out. Consider
data family D k :: k
Then consider D (forall k2. k2 -> k2) Type Type
The visibility flags on an application of D may affected by the arguments
themselves. Heavy sigh. But not truly hard; that's what tcbVisibilities
does.
Note [Kind inference for data family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this GADT-style data type declaration, where I have used
fresh variables in the data constructor's type, to stress that c,d are
quite distinct from a,b.
data T a b where
MkT :: forall c d. c d -> T c d
Following Note [Inferring kinds for type declarations] in GHC.Tc.TyCl,
to infer T's kind, we initially give T :: kappa, a monomorpic kind,
gather constraints from the header and data constructors, and conclude
T :: (kappa1 -> type) -> kappa1 -> Type
Then we generalise, giving
T :: forall k. (k->Type) -> k -> Type
Now what about a data /instance/ decl
data family T :: forall k. (k->Type) -> k -> Type
data instance T p Int where ...
No doubt here! The poly-kinded T is instantiated with k=Type, so the
header really looks like
data instance T @Type (p :: Type->Type) Int where ...
But what about this?
data instance T p q where
MkT :: forall r. r Int -> T r Int
So what kind do 'p' and 'q' have? No clues from the header, but from
the data constructor we can clearly see that (r :: Type->Type). Does
that mean that the the /entire data instance/ is instantiated at Type,
like this?
data instance T @Type (p :: Type->Type) (q :: Type) where
...
Not at all! This is a /GADT/-style decl, so the kind argument might
be specialised in this particular data constructor, thus:
data instance T @k (p :: k->Type) (q :: k) where
MkT :: forall (r :: Type -> Type).
r Int -> T @Type r Int
(and perhaps specialised differently in some other data
constructor MkT2).
The key difference in this case and 'data T' at the top of this Note
is that we have no known kind for 'data T'. We thus forbid different
specialisations of T in its constructors, in an attempt to avoid
inferring polymorphic recursion. In data family T, however, there is
no problem with polymorphic recursion: we already /fully know/ T's
kind -- that came from the family declaration, and is not influenced
by the data instances -- and hence we /can/ specialise T's kind
differently in different GADT data constructors.
SHORT SUMMARY: in a data instance decl, it's not clear whether kind
constraints arising from the data constructors should be considered
local to the (GADT) data /constructor/ or should apply to the entire
data instance.
DESIGN CHOICE: in data/newtype family instance declarations, we ignore
the /data constructor/ declarations altogether, looking only at the
data instance /header/.
Observations:
* This choice is simple to describe, as well as simple to implment.
For a data/newtype instance decl, the instance kinds are influenced
/only/ by the header.
* We could treat Haskell-98 style data-instance decls differently, by
taking the data constructors into account, since there are no GADT
issues. But we don't, for simplicity, and because it means you can
understand the data type instance by looking only at the header.
* Newtypes can be declared in GADT syntax, but they can't do GADT-style
specialisation, so like Haskell-98 definitions we could take the
data constructors into account. Again we don't, for the same reason.
So for now at least, we keep the simplest choice. See #18891 and !4419
for more discussion of this issue.
Kind inference for data types (Xie et al) https://arxiv.org/abs/1911.06153
takes a slightly different approach.
-}
{- *********************************************************************
* *
Class instance declarations, pass 2
* *
********************************************************************* -}
tcInstDecls2 :: [LTyClDecl GhcRn] -> [InstInfo GhcRn]
-> TcM (LHsBinds GhcTc)
-- (a) From each class declaration,
-- generate any default-method bindings
-- (b) From each instance decl
-- generate the dfun binding
tcInstDecls2 tycl_decls inst_decls
= do { -- (a) Default methods from class decls
let class_decls = filter (isClassDecl . unLoc) tycl_decls
; dm_binds_s <- mapM tcClassDecl2 class_decls
; let dm_binds = unionManyBags dm_binds_s
-- (b) instance declarations
; let dm_ids = collectHsBindsBinders CollNoDictBinders dm_binds
-- Add the default method Ids (again)
-- (they were already added in GHC.Tc.TyCl.Utils.tcAddImplicits)
-- See Note [Default methods in the type environment]
; inst_binds_s <- tcExtendGlobalValEnv dm_ids $
mapM tcInstDecl2 inst_decls
-- Done
; return (dm_binds `unionBags` unionManyBags inst_binds_s) }
{- Note [Default methods in the type environment]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The default method Ids are already in the type environment (see Note
[Default method Ids and Template Haskell] in TcTyDcls), BUT they
don't have their InlinePragmas yet. Usually that would not matter,
because the simplifier propagates information from binding site to
use. But, unusually, when compiling instance decls we *copy* the
INLINE pragma from the default method to the method for that
particular operation (see Note [INLINE and default methods] below).
So right here in tcInstDecls2 we must re-extend the type envt with
the default method Ids replete with their INLINE pragmas. Urk.
-}
tcInstDecl2 :: InstInfo GhcRn -> TcM (LHsBinds GhcTc)
-- Returns a binding for the dfun
tcInstDecl2 (InstInfo { iSpec = ispec, iBinds = ibinds })
= recoverM (return emptyLHsBinds) $
setSrcSpan loc $
addErrCtxt (instDeclCtxt2 (idType dfun_id)) $
do { -- Instantiate the instance decl with skolem constants
; (inst_tyvars, dfun_theta, inst_head) <- tcSkolDFunType dfun_id
; dfun_ev_vars <- newEvVars dfun_theta
-- We instantiate the dfun_id with superSkolems.
-- See Note [Subtle interaction of recursion and overlap]
-- and Note [Binding when looking up instances]
; let (clas, inst_tys) = tcSplitDFunHead inst_head
(class_tyvars, sc_theta, _, op_items) = classBigSig clas
sc_theta' = substTheta (zipTvSubst class_tyvars inst_tys) sc_theta
; traceTc "tcInstDecl2" (vcat [ppr inst_tyvars, ppr inst_tys, ppr dfun_theta, ppr sc_theta'])
-- Deal with 'SPECIALISE instance' pragmas
-- See Note [SPECIALISE instance pragmas]
; spec_inst_info@(spec_inst_prags,_) <- tcSpecInstPrags dfun_id ibinds
-- Typecheck superclasses and methods
-- See Note [Typechecking plan for instance declarations]
; dfun_ev_binds_var <- newTcEvBinds
; let dfun_ev_binds = TcEvBinds dfun_ev_binds_var
; (tclvl, (sc_meth_ids, sc_meth_binds, sc_meth_implics))
<- pushTcLevelM $
do { (sc_ids, sc_binds, sc_implics)
<- tcSuperClasses dfun_id clas inst_tyvars dfun_ev_vars
inst_tys dfun_ev_binds
sc_theta'
-- Typecheck the methods
; (meth_ids, meth_binds, meth_implics)
<- tcMethods dfun_id clas inst_tyvars dfun_ev_vars
inst_tys dfun_ev_binds spec_inst_info
op_items ibinds
; return ( sc_ids ++ meth_ids
, sc_binds `unionBags` meth_binds
, sc_implics `unionBags` meth_implics ) }
; imp <- newImplication
; emitImplication $
imp { ic_tclvl = tclvl
, ic_skols = inst_tyvars
, ic_given = dfun_ev_vars
, ic_wanted = mkImplicWC sc_meth_implics
, ic_binds = dfun_ev_binds_var
, ic_info = InstSkol }
-- Create the result bindings
; self_dict <- newDict clas inst_tys
; let class_tc = classTyCon clas
[dict_constr] = tyConDataCons class_tc
dict_bind = mkVarBind self_dict (L loc con_app_args)
-- We don't produce a binding for the dict_constr; instead we
-- rely on the simplifier to unfold this saturated application
-- We do this rather than generate an HsCon directly, because
-- it means that the special cases (e.g. dictionary with only one
-- member) are dealt with by the common MkId.mkDataConWrapId
-- code rather than needing to be repeated here.
-- con_app_tys = MkD ty1 ty2
-- con_app_scs = MkD ty1 ty2 sc1 sc2
-- con_app_args = MkD ty1 ty2 sc1 sc2 op1 op2
con_app_tys = mkHsWrap (mkWpTyApps inst_tys)
(HsConLikeOut noExtField (RealDataCon dict_constr))
-- NB: We *can* have covars in inst_tys, in the case of
-- promoted GADT constructors.
con_app_args = foldl' app_to_meth con_app_tys sc_meth_ids
app_to_meth :: HsExpr GhcTc -> Id -> HsExpr GhcTc
app_to_meth fun meth_id = HsApp noExtField (L loc fun)
(L loc (wrapId arg_wrapper meth_id))
inst_tv_tys = mkTyVarTys inst_tyvars
arg_wrapper = mkWpEvVarApps dfun_ev_vars <.> mkWpTyApps inst_tv_tys
is_newtype = isNewTyCon class_tc
dfun_id_w_prags = addDFunPrags dfun_id sc_meth_ids
dfun_spec_prags
| is_newtype = SpecPrags []
| otherwise = SpecPrags spec_inst_prags
-- Newtype dfuns just inline unconditionally,
-- so don't attempt to specialise them
export = ABE { abe_ext = noExtField
, abe_wrap = idHsWrapper
, abe_poly = dfun_id_w_prags
, abe_mono = self_dict
, abe_prags = dfun_spec_prags }
-- NB: see Note [SPECIALISE instance pragmas]
main_bind = AbsBinds { abs_ext = noExtField
, abs_tvs = inst_tyvars
, abs_ev_vars = dfun_ev_vars
, abs_exports = [export]
, abs_ev_binds = []
, abs_binds = unitBag dict_bind
, abs_sig = True }
; return (unitBag (L loc main_bind) `unionBags` sc_meth_binds)
}
where
dfun_id = instanceDFunId ispec
loc = getSrcSpan dfun_id
addDFunPrags :: DFunId -> [Id] -> DFunId
-- DFuns need a special Unfolding and InlinePrag
-- See Note [ClassOp/DFun selection]
-- and Note [Single-method classes]
-- It's easiest to create those unfoldings right here, where
-- have all the pieces in hand, even though we are messing with
-- Core at this point, which the typechecker doesn't usually do
-- However we take care to build the unfolding using the TyVars from
-- the DFunId rather than from the skolem pieces that the typechecker
-- is messing with.
addDFunPrags dfun_id sc_meth_ids
| is_newtype
= dfun_id `setIdUnfolding` mkInlineUnfoldingWithArity 0 defaultSimpleOpts con_app
`setInlinePragma` alwaysInlinePragma { inl_sat = Just 0 }
| otherwise
= dfun_id `setIdUnfolding` mkDFunUnfolding dfun_bndrs dict_con dict_args
`setInlinePragma` dfunInlinePragma
where
con_app = mkLams dfun_bndrs $
mkApps (Var (dataConWrapId dict_con)) dict_args
-- mkApps is OK because of the checkForLevPoly call in checkValidClass
-- See Note [Levity polymorphism checking] in GHC.HsToCore.Monad
dict_args = map Type inst_tys ++
[mkVarApps (Var id) dfun_bndrs | id <- sc_meth_ids]
(dfun_tvs, dfun_theta, clas, inst_tys) = tcSplitDFunTy (idType dfun_id)
ev_ids = mkTemplateLocalsNum 1 dfun_theta
dfun_bndrs = dfun_tvs ++ ev_ids
clas_tc = classTyCon clas
[dict_con] = tyConDataCons clas_tc
is_newtype = isNewTyCon clas_tc
wrapId :: HsWrapper -> Id -> HsExpr GhcTc
wrapId wrapper id = mkHsWrap wrapper (HsVar noExtField (noLoc id))
{- Note [Typechecking plan for instance declarations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For instance declarations we generate the following bindings and implication
constraints. Example:
instance Ord a => Ord [a] where compare = <compare-rhs>
generates this:
Bindings:
-- Method bindings
$ccompare :: forall a. Ord a => a -> a -> Ordering
$ccompare = /\a \(d:Ord a). let <meth-ev-binds> in ...
-- Superclass bindings
$cp1Ord :: forall a. Ord a => Eq [a]
$cp1Ord = /\a \(d:Ord a). let <sc-ev-binds>
in dfEqList (dw :: Eq a)
Constraints:
forall a. Ord a =>
-- Method constraint
(forall. (empty) => <constraints from compare-rhs>)
-- Superclass constraint
/\ (forall. (empty) => dw :: Eq a)
Notice that
* Per-meth/sc implication. There is one inner implication per
superclass or method, with no skolem variables or givens. The only
reason for this one is to gather the evidence bindings privately
for this superclass or method. This implication is generated
by checkInstConstraints.
* Overall instance implication. There is an overall enclosing
implication for the whole instance declaration, with the expected
skolems and givens. We need this to get the correct "redundant
constraint" warnings, gathering all the uses from all the methods
and superclasses. See GHC.Tc.Solver Note [Tracking redundant
constraints]
* The given constraints in the outer implication may generate
evidence, notably by superclass selection. Since the method and
superclass bindings are top-level, we want that evidence copied
into *every* method or superclass definition. (Some of it will
be usused in some, but dead-code elimination will drop it.)
We achieve this by putting the evidence variable for the overall
instance implication into the AbsBinds for each method/superclass.
Hence the 'dfun_ev_binds' passed into tcMethods and tcSuperClasses.
(And that in turn is why the abs_ev_binds field of AbBinds is a
[TcEvBinds] rather than simply TcEvBinds.
This is a bit of a hack, but works very nicely in practice.
* Note that if a method has a locally-polymorphic binding, there will
be yet another implication for that, generated by tcPolyCheck
in tcMethodBody. E.g.
class C a where
foo :: forall b. Ord b => blah
************************************************************************
* *
Type-checking superclasses
* *
************************************************************************
-}
tcSuperClasses :: DFunId -> Class -> [TcTyVar] -> [EvVar] -> [TcType]
-> TcEvBinds
-> TcThetaType
-> TcM ([EvVar], LHsBinds GhcTc, Bag Implication)
-- Make a new top-level function binding for each superclass,
-- something like
-- $Ordp1 :: forall a. Ord a => Eq [a]
-- $Ordp1 = /\a \(d:Ord a). dfunEqList a (sc_sel d)
--
-- See Note [Recursive superclasses] for why this is so hard!
-- In effect, we build a special-purpose solver for the first step
-- of solving each superclass constraint
tcSuperClasses dfun_id cls tyvars dfun_evs inst_tys dfun_ev_binds sc_theta
= do { (ids, binds, implics) <- mapAndUnzip3M tc_super (zip sc_theta [fIRST_TAG..])
; return (ids, listToBag binds, listToBag implics) }
where
loc = getSrcSpan dfun_id
size = sizeTypes inst_tys
tc_super (sc_pred, n)
= do { (sc_implic, ev_binds_var, sc_ev_tm)
<- checkInstConstraints $ emitWanted (ScOrigin size) sc_pred
; sc_top_name <- newName (mkSuperDictAuxOcc n (getOccName cls))
; sc_ev_id <- newEvVar sc_pred
; addTcEvBind ev_binds_var $ mkWantedEvBind sc_ev_id sc_ev_tm
; let sc_top_ty = mkInfForAllTys tyvars $
mkPhiTy (map idType dfun_evs) sc_pred
sc_top_id = mkLocalId sc_top_name Many sc_top_ty
export = ABE { abe_ext = noExtField
, abe_wrap = idHsWrapper
, abe_poly = sc_top_id
, abe_mono = sc_ev_id
, abe_prags = noSpecPrags }
local_ev_binds = TcEvBinds ev_binds_var
bind = AbsBinds { abs_ext = noExtField
, abs_tvs = tyvars
, abs_ev_vars = dfun_evs
, abs_exports = [export]
, abs_ev_binds = [dfun_ev_binds, local_ev_binds]
, abs_binds = emptyBag
, abs_sig = False }
; return (sc_top_id, L loc bind, sc_implic) }
-------------------
checkInstConstraints :: TcM result
-> TcM (Implication, EvBindsVar, result)
-- See Note [Typechecking plan for instance declarations]
checkInstConstraints thing_inside
= do { (tclvl, wanted, result) <- pushLevelAndCaptureConstraints $
thing_inside
; ev_binds_var <- newTcEvBinds
; implic <- newImplication
; let implic' = implic { ic_tclvl = tclvl
, ic_wanted = wanted
, ic_binds = ev_binds_var
, ic_info = InstSkol }
; return (implic', ev_binds_var, result) }
{-
Note [Recursive superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #3731, #4809, #5751, #5913, #6117, #6161, which all
describe somewhat more complicated situations, but ones
encountered in practice.
See also tests tcrun020, tcrun021, tcrun033, and #11427.
----- THE PROBLEM --------
The problem is that it is all too easy to create a class whose
superclass is bottom when it should not be.
Consider the following (extreme) situation:
class C a => D a where ...
instance D [a] => D [a] where ... (dfunD)
instance C [a] => C [a] where ... (dfunC)
Although this looks wrong (assume D [a] to prove D [a]), it is only a
more extreme case of what happens with recursive dictionaries, and it
can, just about, make sense because the methods do some work before
recursing.
To implement the dfunD we must generate code for the superclass C [a],
which we had better not get by superclass selection from the supplied
argument:
dfunD :: forall a. D [a] -> D [a]
dfunD = \d::D [a] -> MkD (scsel d) ..
Otherwise if we later encounter a situation where
we have a [Wanted] dw::D [a] we might solve it thus:
dw := dfunD dw
Which is all fine except that now ** the superclass C is bottom **!
The instance we want is:
dfunD :: forall a. D [a] -> D [a]
dfunD = \d::D [a] -> MkD (dfunC (scsel d)) ...
----- THE SOLUTION --------
The basic solution is simple: be very careful about using superclass
selection to generate a superclass witness in a dictionary function
definition. More precisely:
Superclass Invariant: in every class dictionary,
every superclass dictionary field
is non-bottom
To achieve the Superclass Invariant, in a dfun definition we can
generate a guaranteed-non-bottom superclass witness from:
(sc1) one of the dictionary arguments itself (all non-bottom)
(sc2) an immediate superclass of a smaller dictionary
(sc3) a call of a dfun (always returns a dictionary constructor)
The tricky case is (sc2). We proceed by induction on the size of
the (type of) the dictionary, defined by GHC.Tc.Validity.sizeTypes.
Let's suppose we are building a dictionary of size 3, and
suppose the Superclass Invariant holds of smaller dictionaries.
Then if we have a smaller dictionary, its immediate superclasses
will be non-bottom by induction.
What does "we have a smaller dictionary" mean? It might be
one of the arguments of the instance, or one of its superclasses.
Here is an example, taken from CmmExpr:
class Ord r => UserOfRegs r a where ...
(i1) instance UserOfRegs r a => UserOfRegs r (Maybe a) where
(i2) instance (Ord r, UserOfRegs r CmmReg) => UserOfRegs r CmmExpr where
For (i1) we can get the (Ord r) superclass by selection from (UserOfRegs r a),
since it is smaller than the thing we are building (UserOfRegs r (Maybe a).
But for (i2) that isn't the case, so we must add an explicit, and
perhaps surprising, (Ord r) argument to the instance declaration.
Here's another example from #6161:
class Super a => Duper a where ...
class Duper (Fam a) => Foo a where ...
(i3) instance Foo a => Duper (Fam a) where ...
(i4) instance Foo Float where ...
It would be horribly wrong to define
dfDuperFam :: Foo a -> Duper (Fam a) -- from (i3)
dfDuperFam d = MkDuper (sc_sel1 (sc_sel2 d)) ...
dfFooFloat :: Foo Float -- from (i4)
dfFooFloat = MkFoo (dfDuperFam dfFooFloat) ...
Now the Super superclass of Duper is definitely bottom!
This won't happen because when processing (i3) we can use the
superclasses of (Foo a), which is smaller, namely Duper (Fam a). But
that is *not* smaller than the target so we can't take *its*
superclasses. As a result the program is rightly rejected, unless you
add (Super (Fam a)) to the context of (i3).
Note [Solving superclass constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
How do we ensure that every superclass witness is generated by
one of (sc1) (sc2) or (sc3) in Note [Recursive superclasses].
Answer:
* Superclass "wanted" constraints have CtOrigin of (ScOrigin size)
where 'size' is the size of the instance declaration. e.g.
class C a => D a where...
instance blah => D [a] where ...
The wanted superclass constraint for C [a] has origin
ScOrigin size, where size = size( D [a] ).
* (sc1) When we rewrite such a wanted constraint, it retains its
origin. But if we apply an instance declaration, we can set the
origin to (ScOrigin infinity), thus lifting any restrictions by
making prohibitedSuperClassSolve return False.
* (sc2) ScOrigin wanted constraints can't be solved from a
superclass selection, except at a smaller type. This test is
implemented by GHC.Tc.Solver.Interact.prohibitedSuperClassSolve
* The "given" constraints of an instance decl have CtOrigin
GivenOrigin InstSkol.
* When we make a superclass selection from InstSkol we use
a SkolemInfo of (InstSC size), where 'size' is the size of
the constraint whose superclass we are taking. A similarly
when taking the superclass of an InstSC. This is implemented
in GHC.Tc.Solver.Canonical.newSCWorkFromFlavored
Note [Silent superclass arguments] (historical interest only)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NB1: this note describes our *old* solution to the
recursive-superclass problem. I'm keeping the Note
for now, just as institutional memory.
However, the code for silent superclass arguments
was removed in late Dec 2014
NB2: the silent-superclass solution introduced new problems
of its own, in the form of instance overlap. Tests
SilentParametersOverlapping, T5051, and T7862 are examples
NB3: the silent-superclass solution also generated tons of
extra dictionaries. For example, in monad-transformer
code, when constructing a Monad dictionary you had to pass
an Applicative dictionary; and to construct that you need
a Functor dictionary. Yet these extra dictionaries were
often never used. Test T3064 compiled *far* faster after
silent superclasses were eliminated.
Our solution to this problem "silent superclass arguments". We pass
to each dfun some ``silent superclass arguments’’, which are the
immediate superclasses of the dictionary we are trying to
construct. In our example:
dfun :: forall a. C [a] -> D [a] -> D [a]
dfun = \(dc::C [a]) (dd::D [a]) -> DOrd dc ...
Notice the extra (dc :: C [a]) argument compared to the previous version.
This gives us:
-----------------------------------------------------------
DFun Superclass Invariant
~~~~~~~~~~~~~~~~~~~~~~~~
In the body of a DFun, every superclass argument to the
returned dictionary is
either * one of the arguments of the DFun,
or * constant, bound at top level
-----------------------------------------------------------
This net effect is that it is safe to treat a dfun application as
wrapping a dictionary constructor around its arguments (in particular,
a dfun never picks superclasses from the arguments under the
dictionary constructor). No superclass is hidden inside a dfun
application.
The extra arguments required to satisfy the DFun Superclass Invariant
always come first, and are called the "silent" arguments. You can
find out how many silent arguments there are using Id.dfunNSilent;
and then you can just drop that number of arguments to see the ones
that were in the original instance declaration.
DFun types are built (only) by MkId.mkDictFunId, so that is where we
decide what silent arguments are to be added.
-}
{-
************************************************************************
* *
Type-checking an instance method
* *
************************************************************************
tcMethod
- Make the method bindings, as a [(NonRec, HsBinds)], one per method
- Remembering to use fresh Name (the instance method Name) as the binder
- Bring the instance method Ids into scope, for the benefit of tcInstSig
- Use sig_fn mapping instance method Name -> instance tyvars
- Ditto prag_fn
- Use tcValBinds to do the checking
-}
tcMethods :: DFunId -> Class
-> [TcTyVar] -> [EvVar]
-> [TcType]
-> TcEvBinds
-> ([Located TcSpecPrag], TcPragEnv)
-> [ClassOpItem]
-> InstBindings GhcRn
-> TcM ([Id], LHsBinds GhcTc, Bag Implication)
-- The returned inst_meth_ids all have types starting
-- forall tvs. theta => ...
tcMethods dfun_id clas tyvars dfun_ev_vars inst_tys
dfun_ev_binds (spec_inst_prags, prag_fn) op_items
(InstBindings { ib_binds = binds
, ib_tyvars = lexical_tvs
, ib_pragmas = sigs
, ib_extensions = exts
, ib_derived = is_derived })
= tcExtendNameTyVarEnv (lexical_tvs `zip` tyvars) $
-- The lexical_tvs scope over the 'where' part
do { traceTc "tcInstMeth" (ppr sigs $$ ppr binds)
; checkMinimalDefinition
; checkMethBindMembership
; (ids, binds, mb_implics) <- set_exts exts $
unset_warnings_deriving $
mapAndUnzip3M tc_item op_items
; return (ids, listToBag binds, listToBag (catMaybes mb_implics)) }
where
set_exts :: [LangExt.Extension] -> TcM a -> TcM a
set_exts es thing = foldr setXOptM thing es
-- See Note [Avoid -Winaccessible-code when deriving]
unset_warnings_deriving :: TcM a -> TcM a
unset_warnings_deriving
| is_derived = unsetWOptM Opt_WarnInaccessibleCode
| otherwise = id
hs_sig_fn = mkHsSigFun sigs
inst_loc = getSrcSpan dfun_id
----------------------
tc_item :: ClassOpItem -> TcM (Id, LHsBind GhcTc, Maybe Implication)
tc_item (sel_id, dm_info)
| Just (user_bind, bndr_loc, prags) <- findMethodBind (idName sel_id) binds prag_fn
= tcMethodBody clas tyvars dfun_ev_vars inst_tys
dfun_ev_binds is_derived hs_sig_fn
spec_inst_prags prags
sel_id user_bind bndr_loc
| otherwise
= do { traceTc "tc_def" (ppr sel_id)
; tc_default sel_id dm_info }
----------------------
tc_default :: Id -> DefMethInfo
-> TcM (TcId, LHsBind GhcTc, Maybe Implication)
tc_default sel_id (Just (dm_name, _))
= do { (meth_bind, inline_prags) <- mkDefMethBind dfun_id clas sel_id dm_name
; tcMethodBody clas tyvars dfun_ev_vars inst_tys
dfun_ev_binds is_derived hs_sig_fn
spec_inst_prags inline_prags
sel_id meth_bind inst_loc }
tc_default sel_id Nothing -- No default method at all
= do { traceTc "tc_def: warn" (ppr sel_id)
; (meth_id, _) <- mkMethIds clas tyvars dfun_ev_vars
inst_tys sel_id
; dflags <- getDynFlags
; let meth_bind = mkVarBind meth_id $
mkLHsWrap lam_wrapper (error_rhs dflags)
; return (meth_id, meth_bind, Nothing) }
where
error_rhs dflags = L inst_loc $ HsApp noExtField error_fun (error_msg dflags)
error_fun = L inst_loc $
wrapId (mkWpTyApps
[ getRuntimeRep meth_tau, meth_tau])
nO_METHOD_BINDING_ERROR_ID
error_msg dflags = L inst_loc (HsLit noExtField (HsStringPrim NoSourceText
(unsafeMkByteString (error_string dflags))))
meth_tau = classMethodInstTy sel_id inst_tys
error_string dflags = showSDoc dflags
(hcat [ppr inst_loc, vbar, ppr sel_id ])
lam_wrapper = mkWpTyLams tyvars <.> mkWpLams dfun_ev_vars
----------------------
-- Check if one of the minimal complete definitions is satisfied
checkMinimalDefinition
= whenIsJust (isUnsatisfied methodExists (classMinimalDef clas)) $
warnUnsatisfiedMinimalDefinition
methodExists meth = isJust (findMethodBind meth binds prag_fn)
----------------------
-- Check if any method bindings do not correspond to the class.
-- See Note [Mismatched class methods and associated type families].
checkMethBindMembership
= mapM_ (addErrTc . badMethodErr clas) mismatched_meths
where
bind_nms = map unLoc $ collectMethodBinders binds
cls_meth_nms = map (idName . fst) op_items
mismatched_meths = bind_nms `minusList` cls_meth_nms
{-
Note [Mismatched class methods and associated type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's entirely possible for someone to put methods or associated type family
instances inside of a class in which it doesn't belong. For instance, we'd
want to fail if someone wrote this:
instance Eq () where
type Rep () = Maybe
compare = undefined
Since neither the type family `Rep` nor the method `compare` belong to the
class `Eq`. Normally, this is caught in the renamer when resolving RdrNames,
since that would discover that the parent class `Eq` is incorrect.
However, there is a scenario in which the renamer could fail to catch this:
if the instance was generated through Template Haskell, as in #12387. In that
case, Template Haskell will provide fully resolved names (e.g.,
`GHC.Classes.compare`), so the renamer won't notice the sleight-of-hand going
on. For this reason, we also put an extra validity check for this in the
typechecker as a last resort.
Note [Avoid -Winaccessible-code when deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-Winaccessible-code can be particularly noisy when deriving instances for
GADTs. Consider the following example (adapted from #8128):
data T a where
MkT1 :: Int -> T Int
MkT2 :: T Bool
MkT3 :: T Bool
deriving instance Eq (T a)
deriving instance Ord (T a)
In the derived Ord instance, GHC will generate the following code:
instance Ord (T a) where
compare x y
= case x of
MkT2
-> case y of
MkT1 {} -> GT
MkT2 -> EQ
_ -> LT
...
However, that MkT1 is unreachable, since the type indices for MkT1 and MkT2
differ, so if -Winaccessible-code is enabled, then deriving this instance will
result in unwelcome warnings.
One conceivable approach to fixing this issue would be to change `deriving Ord`
such that it becomes smarter about not generating unreachable cases. This,
however, would be a highly nontrivial refactor, as we'd have to propagate
through typing information everywhere in the algorithm that generates Ord
instances in order to determine which cases were unreachable. This seems like
a lot of work for minimal gain, so we have opted not to go for this approach.
Instead, we take the much simpler approach of always disabling
-Winaccessible-code for derived code. To accomplish this, we do the following:
1. In tcMethods (which typechecks method bindings), disable
-Winaccessible-code.
2. When creating Implications during typechecking, record this flag
(in ic_warn_inaccessible) at the time of creation.
3. After typechecking comes error reporting, where GHC must decide how to
report inaccessible code to the user, on an Implication-by-Implication
basis. If an Implication's DynFlags indicate that -Winaccessible-code was
disabled, then don't bother reporting it. That's it!
-}
------------------------
tcMethodBody :: Class -> [TcTyVar] -> [EvVar] -> [TcType]
-> TcEvBinds -> Bool
-> HsSigFun
-> [LTcSpecPrag] -> [LSig GhcRn]
-> Id -> LHsBind GhcRn -> SrcSpan
-> TcM (TcId, LHsBind GhcTc, Maybe Implication)
tcMethodBody clas tyvars dfun_ev_vars inst_tys
dfun_ev_binds is_derived
sig_fn spec_inst_prags prags
sel_id (L bind_loc meth_bind) bndr_loc
= add_meth_ctxt $
do { traceTc "tcMethodBody" (ppr sel_id <+> ppr (idType sel_id) $$ ppr bndr_loc)
; (global_meth_id, local_meth_id) <- setSrcSpan bndr_loc $
mkMethIds clas tyvars dfun_ev_vars
inst_tys sel_id
; let lm_bind = meth_bind { fun_id = L bndr_loc (idName local_meth_id) }
-- Substitute the local_meth_name for the binder
-- NB: the binding is always a FunBind
-- taking instance signature into account might change the type of
-- the local_meth_id
; (meth_implic, ev_binds_var, tc_bind)
<- checkInstConstraints $
tcMethodBodyHelp sig_fn sel_id local_meth_id (L bind_loc lm_bind)
; global_meth_id <- addInlinePrags global_meth_id prags
; spec_prags <- tcSpecPrags global_meth_id prags
; let specs = mk_meth_spec_prags global_meth_id spec_inst_prags spec_prags
export = ABE { abe_ext = noExtField
, abe_poly = global_meth_id
, abe_mono = local_meth_id
, abe_wrap = idHsWrapper
, abe_prags = specs }
local_ev_binds = TcEvBinds ev_binds_var
full_bind = AbsBinds { abs_ext = noExtField
, abs_tvs = tyvars
, abs_ev_vars = dfun_ev_vars
, abs_exports = [export]
, abs_ev_binds = [dfun_ev_binds, local_ev_binds]
, abs_binds = tc_bind
, abs_sig = True }
; return (global_meth_id, L bind_loc full_bind, Just meth_implic) }
where
-- For instance decls that come from deriving clauses
-- we want to print out the full source code if there's an error
-- because otherwise the user won't see the code at all
add_meth_ctxt thing
| is_derived = addLandmarkErrCtxt (derivBindCtxt sel_id clas inst_tys) thing
| otherwise = thing
tcMethodBodyHelp :: HsSigFun -> Id -> TcId
-> LHsBind GhcRn -> TcM (LHsBinds GhcTc)
tcMethodBodyHelp hs_sig_fn sel_id local_meth_id meth_bind
| Just hs_sig_ty <- hs_sig_fn sel_name
-- There is a signature in the instance
-- See Note [Instance method signatures]
= do { (sig_ty, hs_wrap)
<- setSrcSpan (getLoc hs_sig_ty) $
do { inst_sigs <- xoptM LangExt.InstanceSigs
; checkTc inst_sigs (misplacedInstSig sel_name hs_sig_ty)
; sig_ty <- tcHsSigType (FunSigCtxt sel_name False) hs_sig_ty
; let local_meth_ty = idType local_meth_id
ctxt = FunSigCtxt sel_name False
-- False <=> do not report redundant constraints when
-- checking instance-sig <= class-meth-sig
-- The instance-sig is the focus here; the class-meth-sig
-- is fixed (#18036)
; hs_wrap <- addErrCtxtM (methSigCtxt sel_name sig_ty local_meth_ty) $
tcSubTypeSigma ctxt sig_ty local_meth_ty
; return (sig_ty, hs_wrap) }
; inner_meth_name <- newName (nameOccName sel_name)
; let ctxt = FunSigCtxt sel_name True
-- True <=> check for redundant constraints in the
-- user-specified instance signature
inner_meth_id = mkLocalId inner_meth_name Many sig_ty
inner_meth_sig = CompleteSig { sig_bndr = inner_meth_id
, sig_ctxt = ctxt
, sig_loc = getLoc hs_sig_ty }
; (tc_bind, [inner_id]) <- tcPolyCheck no_prag_fn inner_meth_sig meth_bind
; let export = ABE { abe_ext = noExtField
, abe_poly = local_meth_id
, abe_mono = inner_id
, abe_wrap = hs_wrap
, abe_prags = noSpecPrags }
; return (unitBag $ L (getLoc meth_bind) $
AbsBinds { abs_ext = noExtField, abs_tvs = [], abs_ev_vars = []
, abs_exports = [export]
, abs_binds = tc_bind, abs_ev_binds = []
, abs_sig = True }) }
| otherwise -- No instance signature
= do { let ctxt = FunSigCtxt sel_name False
-- False <=> don't report redundant constraints
-- The signature is not under the users control!
tc_sig = completeSigFromId ctxt local_meth_id
-- Absent a type sig, there are no new scoped type variables here
-- Only the ones from the instance decl itself, which are already
-- in scope. Example:
-- class C a where { op :: forall b. Eq b => ... }
-- instance C [c] where { op = <rhs> }
-- In <rhs>, 'c' is scope but 'b' is not!
; (tc_bind, _) <- tcPolyCheck no_prag_fn tc_sig meth_bind
; return tc_bind }
where
sel_name = idName sel_id
no_prag_fn = emptyPragEnv -- No pragmas for local_meth_id;
-- they are all for meth_id
------------------------
mkMethIds :: Class -> [TcTyVar] -> [EvVar]
-> [TcType] -> Id -> TcM (TcId, TcId)
-- returns (poly_id, local_id), but ignoring any instance signature
-- See Note [Instance method signatures]
mkMethIds clas tyvars dfun_ev_vars inst_tys sel_id
= do { poly_meth_name <- newName (mkClassOpAuxOcc sel_occ)
; local_meth_name <- newName sel_occ
-- Base the local_meth_name on the selector name, because
-- type errors from tcMethodBody come from here
; let poly_meth_id = mkLocalId poly_meth_name Many poly_meth_ty
local_meth_id = mkLocalId local_meth_name Many local_meth_ty
; return (poly_meth_id, local_meth_id) }
where
sel_name = idName sel_id
sel_occ = nameOccName sel_name
local_meth_ty = instantiateMethod clas sel_id inst_tys
poly_meth_ty = mkSpecSigmaTy tyvars theta local_meth_ty
theta = map idType dfun_ev_vars
methSigCtxt :: Name -> TcType -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
methSigCtxt sel_name sig_ty meth_ty env0
= do { (env1, sig_ty) <- zonkTidyTcType env0 sig_ty
; (env2, meth_ty) <- zonkTidyTcType env1 meth_ty
; let msg = hang (text "When checking that instance signature for" <+> quotes (ppr sel_name))
2 (vcat [ text "is more general than its signature in the class"
, text "Instance sig:" <+> ppr sig_ty
, text " Class sig:" <+> ppr meth_ty ])
; return (env2, msg) }
misplacedInstSig :: Name -> LHsSigType GhcRn -> SDoc
misplacedInstSig name hs_ty
= vcat [ hang (text "Illegal type signature in instance declaration:")
2 (hang (pprPrefixName name)
2 (dcolon <+> ppr hs_ty))
, text "(Use InstanceSigs to allow this)" ]
{- Note [Instance method signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With -XInstanceSigs we allow the user to supply a signature for the
method in an instance declaration. Here is an artificial example:
data T a = MkT a
instance Ord a => Ord (T a) where
(>) :: forall b. b -> b -> Bool
(>) = error "You can't compare Ts"
The instance signature can be *more* polymorphic than the instantiated
class method (in this case: Age -> Age -> Bool), but it cannot be less
polymorphic. Moreover, if a signature is given, the implementation
code should match the signature, and type variables bound in the
singature should scope over the method body.
We achieve this by building a TcSigInfo for the method, whether or not
there is an instance method signature, and using that to typecheck
the declaration (in tcMethodBody). That means, conveniently,
that the type variables bound in the signature will scope over the body.
What about the check that the instance method signature is more
polymorphic than the instantiated class method type? We just do a
tcSubType call in tcMethodBodyHelp, and generate a nested AbsBind, like
this (for the example above
AbsBind { abs_tvs = [a], abs_ev_vars = [d:Ord a]
, abs_exports
= ABExport { (>) :: forall a. Ord a => T a -> T a -> Bool
, gr_lcl :: T a -> T a -> Bool }
, abs_binds
= AbsBind { abs_tvs = [], abs_ev_vars = []
, abs_exports = ABExport { gr_lcl :: T a -> T a -> Bool
, gr_inner :: forall b. b -> b -> Bool }
, abs_binds = AbsBind { abs_tvs = [b], abs_ev_vars = []
, ..etc.. }
} }
Wow! Three nested AbsBinds!
* The outer one abstracts over the tyvars and dicts for the instance
* The middle one is only present if there is an instance signature,
and does the impedance matching for that signature
* The inner one is for the method binding itself against either the
signature from the class, or the instance signature.
-}
----------------------
mk_meth_spec_prags :: Id -> [LTcSpecPrag] -> [LTcSpecPrag] -> TcSpecPrags
-- Adapt the 'SPECIALISE instance' pragmas to work for this method Id
-- There are two sources:
-- * spec_prags_for_me: {-# SPECIALISE op :: <blah> #-}
-- * spec_prags_from_inst: derived from {-# SPECIALISE instance :: <blah> #-}
-- These ones have the dfun inside, but [perhaps surprisingly]
-- the correct wrapper.
-- See Note [Handling SPECIALISE pragmas] in GHC.Tc.Gen.Bind
mk_meth_spec_prags meth_id spec_inst_prags spec_prags_for_me
= SpecPrags (spec_prags_for_me ++ spec_prags_from_inst)
where
spec_prags_from_inst
| isInlinePragma (idInlinePragma meth_id)
= [] -- Do not inherit SPECIALISE from the instance if the
-- method is marked INLINE, because then it'll be inlined
-- and the specialisation would do nothing. (Indeed it'll provoke
-- a warning from the desugarer
| otherwise
= [ L inst_loc (SpecPrag meth_id wrap inl)
| L inst_loc (SpecPrag _ wrap inl) <- spec_inst_prags]
mkDefMethBind :: DFunId -> Class -> Id -> Name
-> TcM (LHsBind GhcRn, [LSig GhcRn])
-- The is a default method (vanailla or generic) defined in the class
-- So make a binding op = $dmop @t1 @t2
-- where $dmop is the name of the default method in the class,
-- and t1,t2 are the instance types.
-- See Note [Default methods in instances] for why we use
-- visible type application here
mkDefMethBind dfun_id clas sel_id dm_name
= do { dflags <- getDynFlags
; dm_id <- tcLookupId dm_name
; let inline_prag = idInlinePragma dm_id
inline_prags | isAnyInlinePragma inline_prag
= [noLoc (InlineSig noExtField fn inline_prag)]
| otherwise
= []
-- Copy the inline pragma (if any) from the default method
-- to this version. Note [INLINE and default methods]
fn = noLoc (idName sel_id)
visible_inst_tys = [ ty | (tcb, ty) <- tyConBinders (classTyCon clas) `zip` inst_tys
, tyConBinderArgFlag tcb /= Inferred ]
rhs = foldl' mk_vta (nlHsVar dm_name) visible_inst_tys
bind = noLoc $ mkTopFunBind Generated fn $
[mkSimpleMatch (mkPrefixFunRhs fn) [] rhs]
; liftIO (dumpIfSet_dyn dflags Opt_D_dump_deriv "Filling in method body"
FormatHaskell
(vcat [ppr clas <+> ppr inst_tys,
nest 2 (ppr sel_id <+> equals <+> ppr rhs)]))
; return (bind, inline_prags) }
where
(_, _, _, inst_tys) = tcSplitDFunTy (idType dfun_id)
mk_vta :: LHsExpr GhcRn -> Type -> LHsExpr GhcRn
mk_vta fun ty = noLoc (HsAppType noExtField fun (mkEmptyWildCardBndrs $ nlHsParTy
$ noLoc $ XHsType ty))
-- NB: use visible type application
-- See Note [Default methods in instances]
----------------------
derivBindCtxt :: Id -> Class -> [Type ] -> SDoc
derivBindCtxt sel_id clas tys
= vcat [ text "When typechecking the code for" <+> quotes (ppr sel_id)
, nest 2 (text "in a derived instance for"
<+> quotes (pprClassPred clas tys) <> colon)
, nest 2 $ text "To see the code I am typechecking, use -ddump-deriv" ]
warnUnsatisfiedMinimalDefinition :: ClassMinimalDef -> TcM ()
warnUnsatisfiedMinimalDefinition mindef
= do { warn <- woptM Opt_WarnMissingMethods
; warnTc (Reason Opt_WarnMissingMethods) warn message
}
where
message = vcat [text "No explicit implementation for"
,nest 2 $ pprBooleanFormulaNice mindef
]
{-
Note [Export helper functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We arrange to export the "helper functions" of an instance declaration,
so that they are not subject to preInlineUnconditionally, even if their
RHS is trivial. Reason: they are mentioned in the DFunUnfolding of
the dict fun as Ids, not as CoreExprs, so we can't substitute a
non-variable for them.
We could change this by making DFunUnfoldings have CoreExprs, but it
seems a bit simpler this way.
Note [Default methods in instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this
class Baz v x where
foo :: x -> x
foo y = <blah>
instance Baz Int Int
From the class decl we get
$dmfoo :: forall v x. Baz v x => x -> x
$dmfoo y = <blah>
Notice that the type is ambiguous. So we use Visible Type Application
to disambiguate:
$dBazIntInt = MkBaz fooIntInt
fooIntInt = $dmfoo @Int @Int
Lacking VTA we'd get ambiguity errors involving the default method. This applies
equally to vanilla default methods (#1061) and generic default methods
(#12220).
Historical note: before we had VTA we had to generate
post-type-checked code, which took a lot more code, and didn't work for
generic default methods.
Note [INLINE and default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Default methods need special case. They are supposed to behave rather like
macros. For example
class Foo a where
op1, op2 :: Bool -> a -> a
{-# INLINE op1 #-}
op1 b x = op2 (not b) x
instance Foo Int where
-- op1 via default method
op2 b x = <blah>
The instance declaration should behave
just as if 'op1' had been defined with the
code, and INLINE pragma, from its original
definition.
That is, just as if you'd written
instance Foo Int where
op2 b x = <blah>
{-# INLINE op1 #-}
op1 b x = op2 (not b) x
So for the above example we generate:
{-# INLINE $dmop1 #-}
-- $dmop1 has an InlineCompulsory unfolding
$dmop1 d b x = op2 d (not b) x
$fFooInt = MkD $cop1 $cop2
{-# INLINE $cop1 #-}
$cop1 = $dmop1 $fFooInt
$cop2 = <blah>
Note carefully:
* We *copy* any INLINE pragma from the default method $dmop1 to the
instance $cop1. Otherwise we'll just inline the former in the
latter and stop, which isn't what the user expected
* Regardless of its pragma, we give the default method an
unfolding with an InlineCompulsory source. That means
that it'll be inlined at every use site, notably in
each instance declaration, such as $cop1. This inlining
must happen even though
a) $dmop1 is not saturated in $cop1
b) $cop1 itself has an INLINE pragma
It's vital that $dmop1 *is* inlined in this way, to allow the mutual
recursion between $fooInt and $cop1 to be broken
* To communicate the need for an InlineCompulsory to the desugarer
(which makes the Unfoldings), we use the IsDefaultMethod constructor
in TcSpecPrags.
************************************************************************
* *
Specialise instance pragmas
* *
************************************************************************
Note [SPECIALISE instance pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
instance (Ix a, Ix b) => Ix (a,b) where
{-# SPECIALISE instance Ix (Int,Int) #-}
range (x,y) = ...
We make a specialised version of the dictionary function, AND
specialised versions of each *method*. Thus we should generate
something like this:
$dfIxPair :: (Ix a, Ix b) => Ix (a,b)
{-# DFUN [$crangePair, ...] #-}
{-# SPECIALISE $dfIxPair :: Ix (Int,Int) #-}
$dfIxPair da db = Ix ($crangePair da db) (...other methods...)
$crange :: (Ix a, Ix b) -> ((a,b),(a,b)) -> [(a,b)]
{-# SPECIALISE $crange :: ((Int,Int),(Int,Int)) -> [(Int,Int)] #-}
$crange da db = <blah>
The SPECIALISE pragmas are acted upon by the desugarer, which generate
dii :: Ix Int
dii = ...
$s$dfIxPair :: Ix ((Int,Int),(Int,Int))
{-# DFUN [$crangePair di di, ...] #-}
$s$dfIxPair = Ix ($crangePair di di) (...)
{-# RULE forall (d1,d2:Ix Int). $dfIxPair Int Int d1 d2 = $s$dfIxPair #-}
$s$crangePair :: ((Int,Int),(Int,Int)) -> [(Int,Int)]
$c$crangePair = ...specialised RHS of $crangePair...
{-# RULE forall (d1,d2:Ix Int). $crangePair Int Int d1 d2 = $s$crangePair #-}
Note that
* The specialised dictionary $s$dfIxPair is very much needed, in case we
call a function that takes a dictionary, but in a context where the
specialised dictionary can be used. See #7797.
* The ClassOp rule for 'range' works equally well on $s$dfIxPair, because
it still has a DFunUnfolding. See Note [ClassOp/DFun selection]
* A call (range ($dfIxPair Int Int d1 d2)) might simplify two ways:
--> {ClassOp rule for range} $crangePair Int Int d1 d2
--> {SPEC rule for $crangePair} $s$crangePair
or thus:
--> {SPEC rule for $dfIxPair} range $s$dfIxPair
--> {ClassOpRule for range} $s$crangePair
It doesn't matter which way.
* We want to specialise the RHS of both $dfIxPair and $crangePair,
but the SAME HsWrapper will do for both! We can call tcSpecPrag
just once, and pass the result (in spec_inst_info) to tcMethods.
-}
tcSpecInstPrags :: DFunId -> InstBindings GhcRn
-> TcM ([Located TcSpecPrag], TcPragEnv)
tcSpecInstPrags dfun_id (InstBindings { ib_binds = binds, ib_pragmas = uprags })
= do { spec_inst_prags <- mapM (wrapLocM (tcSpecInst dfun_id)) $
filter isSpecInstLSig uprags
-- The filter removes the pragmas for methods
; return (spec_inst_prags, mkPragEnv uprags binds) }
------------------------------
tcSpecInst :: Id -> Sig GhcRn -> TcM TcSpecPrag
tcSpecInst dfun_id prag@(SpecInstSig _ _ hs_ty)
= addErrCtxt (spec_ctxt prag) $
do { spec_dfun_ty <- tcHsClsInstType SpecInstCtxt hs_ty
; co_fn <- tcSpecWrapper SpecInstCtxt (idType dfun_id) spec_dfun_ty
; return (SpecPrag dfun_id co_fn defaultInlinePragma) }
where
spec_ctxt prag = hang (text "In the pragma:") 2 (ppr prag)
tcSpecInst _ _ = panic "tcSpecInst"
{-
************************************************************************
* *
\subsection{Error messages}
* *
************************************************************************
-}
instDeclCtxt1 :: LHsSigType GhcRn -> SDoc
instDeclCtxt1 hs_inst_ty
= inst_decl_ctxt (ppr (getLHsInstDeclHead hs_inst_ty))
instDeclCtxt2 :: Type -> SDoc
instDeclCtxt2 dfun_ty
= inst_decl_ctxt (ppr (mkClassPred cls tys))
where
(_,_,cls,tys) = tcSplitDFunTy dfun_ty
inst_decl_ctxt :: SDoc -> SDoc
inst_decl_ctxt doc = hang (text "In the instance declaration for")
2 (quotes doc)
badBootFamInstDeclErr :: SDoc
badBootFamInstDeclErr
= text "Illegal family instance in hs-boot file"
notFamily :: TyCon -> SDoc
notFamily tycon
= vcat [ text "Illegal family instance for" <+> quotes (ppr tycon)
, nest 2 $ parens (ppr tycon <+> text "is not an indexed type family")]
assocInClassErr :: TyCon -> SDoc
assocInClassErr name
= text "Associated type" <+> quotes (ppr name) <+>
text "must be inside a class instance"
badFamInstDecl :: TyCon -> SDoc
badFamInstDecl tc_name
= vcat [ text "Illegal family instance for" <+>
quotes (ppr tc_name)
, nest 2 (parens $ text "Use TypeFamilies to allow indexed type families") ]
notOpenFamily :: TyCon -> SDoc
notOpenFamily tc
= text "Illegal instance for closed family" <+> quotes (ppr tc)
|