1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- | Typechecking pattern synonym declarations
module GHC.Tc.TyCl.PatSyn
( tcPatSynDecl
, tcPatSynBuilderBind
, patSynBuilderOcc
)
where
import GHC.Prelude
import GHC.Hs
import GHC.Tc.Gen.Pat
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Zonk
import GHC.Tc.Errors.Types
import GHC.Tc.Utils.Monad
import GHC.Tc.Gen.Sig ( TcPragEnv, emptyPragEnv, completeSigFromId, lookupPragEnv
, addInlinePrags, addInlinePragArity )
import GHC.Tc.Solver
import GHC.Tc.Utils.Unify
import GHC.Tc.Utils.TcType
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Origin
import GHC.Tc.TyCl.Build
import GHC.Core.Multiplicity
import GHC.Core.Type ( typeKind, tidyForAllTyBinders, tidyTypes, tidyType, isManyTy, mkTYPEapp )
import GHC.Core.TyCo.Subst( extendTvSubstWithClone )
import GHC.Core.Predicate
import GHC.Builtin.Types.Prim
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.SrcLoc
import GHC.Core.PatSyn
import GHC.Utils.Panic
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Types.Var
import GHC.Types.Var.Env( emptyTidyEnv, mkInScopeSetList )
import GHC.Types.Id
import GHC.Types.Id.Info( RecSelParent(..) )
import GHC.Tc.Gen.Bind
import GHC.Types.Basic
import GHC.Builtin.Types
import GHC.Types.Var.Set
import GHC.Tc.TyCl.Utils
import GHC.Core.ConLike
import GHC.Types.FieldLabel
import GHC.Rename.Env
import GHC.Rename.Utils (wrapGenSpan)
import GHC.Data.Bag
import GHC.Utils.Misc
import GHC.Driver.Session ( getDynFlags, xopt_FieldSelectors )
import Data.Maybe( mapMaybe )
import Control.Monad ( zipWithM )
import Data.List( partition, mapAccumL )
import Data.List.NonEmpty (NonEmpty, nonEmpty)
{-
************************************************************************
* *
Type checking a pattern synonym
* *
************************************************************************
-}
tcPatSynDecl :: LocatedA (PatSynBind GhcRn GhcRn)
-> TcSigFun
-> TcPragEnv -- See Note [Pragmas for pattern synonyms]
-> TcM (LHsBinds GhcTc, TcGblEnv)
tcPatSynDecl (L loc psb@(PSB { psb_id = L _ name })) sig_fn prag_fn
= setSrcSpanA loc $
addErrCtxt (text "In the declaration for pattern synonym"
<+> quotes (ppr name)) $
recoverM (recoverPSB psb) $
case (sig_fn name) of
Nothing -> tcInferPatSynDecl psb prag_fn
Just (TcPatSynSig tpsi) -> tcCheckPatSynDecl psb tpsi prag_fn
_ -> panic "tcPatSynDecl"
recoverPSB :: PatSynBind GhcRn GhcRn
-> TcM (LHsBinds GhcTc, TcGblEnv)
-- See Note [Pattern synonym error recovery]
recoverPSB (PSB { psb_id = L _ name
, psb_args = details })
= do { matcher_name <- newImplicitBinder name mkMatcherOcc
; let placeholder = AConLike $ PatSynCon $
mk_placeholder matcher_name
; gbl_env <- tcExtendGlobalEnv [placeholder] getGblEnv
; return (emptyBag, gbl_env) }
where
(_arg_names, is_infix) = collectPatSynArgInfo details
mk_placeholder matcher_name
= mkPatSyn name is_infix
([mkTyVarBinder SpecifiedSpec alphaTyVar], []) ([], [])
[] -- Arg tys
alphaTy
(matcher_name, matcher_ty, True) Nothing
[] -- Field labels
where
-- The matcher_id is used only by the desugarer, so actually
-- and error-thunk would probably do just as well here.
matcher_ty = mkSpecForAllTys [alphaTyVar] alphaTy
{- Note [Pattern synonym error recovery]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If type inference for a pattern synonym fails, we can't continue with
the rest of tc_patsyn_finish, because we may get knock-on errors, or
even a crash. E.g. from
pattern What = True :: Maybe
we get a kind error; and we must stop right away (#15289).
We stop if there are /any/ unsolved constraints, not just insoluble
ones; because pattern synonyms are top-level things, we will never
solve them later if we can't solve them now. And if we were to carry
on, tc_patsyn_finish does zonkTcTypeToType, which defaults any
unsolved unification variables to Any, which confuses the error
reporting no end (#15685).
So we use simplifyTop to completely solve the constraint, report
any errors, throw an exception.
Even in the event of such an error we can recover and carry on, just
as we do for value bindings, provided we plug in placeholder for the
pattern synonym: see recoverPSB. The goal of the placeholder is not
to cause a raft of follow-on errors. I've used the simplest thing for
now, but we might need to elaborate it a bit later. (e.g. I've given
it zero args, which may cause knock-on errors if it is used in a
pattern.) But it'll do for now.
-}
tcInferPatSynDecl :: PatSynBind GhcRn GhcRn
-> TcPragEnv
-> TcM (LHsBinds GhcTc, TcGblEnv)
tcInferPatSynDecl (PSB { psb_id = lname@(L _ name), psb_args = details
, psb_def = lpat, psb_dir = dir })
prag_fn
= do { traceTc "tcInferPatSynDecl {" $ ppr name
; let (arg_names, is_infix) = collectPatSynArgInfo details
; (tclvl, wanted, ((lpat', args), pat_ty))
<- pushLevelAndCaptureConstraints $
tcInferPat FRRPatSynArg PatSyn lpat $
mapM tcLookupId arg_names
; let (ex_tvs, prov_dicts) = tcCollectEx lpat'
named_taus = (name, pat_ty) : map mk_named_tau args
mk_named_tau arg
= (getName arg, mkSpecForAllTys ex_tvs (varType arg))
-- The mkSpecForAllTys is important (#14552), albeit
-- slightly artificial (there is no variable with this funny type).
-- We do not want to quantify over variable (alpha::k)
-- that mention the existentially-bound type variables
-- ex_tvs in its kind k.
-- See Note [Type variables whose kind is captured]
; ((univ_tvs, req_dicts, ev_binds, _), residual)
<- captureConstraints $
simplifyInfer tclvl NoRestrictions [] named_taus wanted
; top_ev_binds <- checkNoErrs (simplifyTop residual)
; addTopEvBinds top_ev_binds $
do { prov_dicts <- mapM zonkId prov_dicts
; let filtered_prov_dicts = mkMinimalBySCs evVarPred prov_dicts
-- Filtering: see Note [Remove redundant provided dicts]
(prov_theta, prov_evs)
= unzip (mapMaybe mkProvEvidence filtered_prov_dicts)
req_theta = map evVarPred req_dicts
-- Report coercions that escape
-- See Note [Coercions that escape]
; args <- mapM zonkId args
; let bad_arg arg = fmap (\bad_cos -> (arg, bad_cos)) $
nonEmpty $
dVarSetElems $
filterDVarSet isId (tyCoVarsOfTypeDSet (idType arg))
bad_args = mapMaybe bad_arg (args ++ prov_dicts)
; mapM_ dependentArgErr bad_args
-- Report un-quantifiable type variables:
-- see Note [Unquantified tyvars in a pattern synonym]
; dvs <- candidateQTyVarsOfTypes prov_theta
; let err_ctx tidy_env
= do { (tidy_env2, theta) <- zonkTidyTcTypes tidy_env prov_theta
; return ( tidy_env2, UninfTyCtx_ProvidedContext theta ) }
; doNotQuantifyTyVars dvs err_ctx
; traceTc "tcInferPatSynDecl }" $ (ppr name $$ ppr ex_tvs)
; rec_fields <- lookupConstructorFields name
; tc_patsyn_finish lname dir is_infix lpat' prag_fn
(mkTyVarBinders InferredSpec univ_tvs
, req_theta, ev_binds, req_dicts)
(mkTyVarBinders InferredSpec ex_tvs
, mkTyVarTys ex_tvs, prov_theta, prov_evs)
(map nlHsVar args, map idType args)
pat_ty rec_fields } }
mkProvEvidence :: EvId -> Maybe (PredType, EvTerm)
-- See Note [Equality evidence in pattern synonyms]
mkProvEvidence ev_id
| EqPred r ty1 ty2 <- classifyPredType pred
, let k1 = typeKind ty1
k2 = typeKind ty2
is_homo = k1 `tcEqType` k2
homo_tys = [k1, ty1, ty2]
hetero_tys = [k1, k2, ty1, ty2]
= case r of
ReprEq | is_homo
-> Just ( mkClassPred coercibleClass homo_tys
, evDataConApp coercibleDataCon homo_tys eq_con_args )
| otherwise -> Nothing
NomEq | is_homo
-> Just ( mkClassPred eqClass homo_tys
, evDataConApp eqDataCon homo_tys eq_con_args )
| otherwise
-> Just ( mkClassPred heqClass hetero_tys
, evDataConApp heqDataCon hetero_tys eq_con_args )
| otherwise
= Just (pred, EvExpr (evId ev_id))
where
pred = evVarPred ev_id
eq_con_args = [evId ev_id]
dependentArgErr :: (Id, NonEmpty CoVar) -> TcM ()
-- See Note [Coercions that escape]
dependentArgErr (arg, bad_cos)
= failWithTc $ -- fail here: otherwise we get downstream errors
TcRnPatSynEscapedCoercion arg bad_cos
{- Note [Type variables whose kind is captured]
~~-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data AST a = Sym [a]
class Prj s where { prj :: [a] -> Maybe (s a) }
pattern P x <= Sym (prj -> Just x)
Here we get a matcher with this type
$mP :: forall s a. Prj s => AST a -> (s a -> r) -> r -> r
No problem. But note that 's' is not fixed by the type of the
pattern (AST a), nor is it existentially bound. It's really only
fixed by the type of the continuation.
#14552 showed that this can go wrong if the kind of 's' mentions
existentially bound variables. We obviously can't make a type like
$mP :: forall (s::k->*) a. Prj s => AST a -> (forall k. s a -> r)
-> r -> r
But neither is 's' itself existentially bound, so the forall (s::k->*)
can't go in the inner forall either. (What would the matcher apply
the continuation to?)
Solution: do not quantify over any unification variable whose kind
mentions the existentials. We can conveniently do that by making the
"taus" passed to simplifyInfer look like
forall ex_tvs. arg_ty
After that, Note [Naughty quantification candidates] in GHC.Tc.Utils.TcMType takes
over and errors.
Note [Remove redundant provided dicts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Recall that
HRefl :: forall k1 k2 (a1:k1) (a2:k2). (k1 ~ k2, a1 ~ a2)
=> a1 :~~: a2
(NB: technically the (k1~k2) existential dictionary is not necessary,
but it's there at the moment.)
Now consider (#14394):
pattern Foo = HRefl
in a non-poly-kinded module. We don't want to get
pattern Foo :: () => (* ~ *, b ~ a) => a :~~: b
with that redundant (* ~ *). We'd like to remove it; hence the call to
mkMinimalWithSCs.
Similarly consider
data S a where { MkS :: Ord a => a -> S a }
pattern Bam x y <- (MkS (x::a), MkS (y::a)))
The pattern (Bam x y) binds two (Ord a) dictionaries, but we only
need one. Again mkMimimalWithSCs removes the redundant one.
Note [Equality evidence in pattern synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data X a where
MkX :: Eq a => [a] -> X (Maybe a)
pattern P x = MkG x
Then there is a danger that GHC will infer
P :: forall a. () =>
forall b. (a ~# Maybe b, Eq b) => [b] -> X a
The 'builder' for P, which is called in user-code, will then
have type
$bP :: forall a b. (a ~# Maybe b, Eq b) => [b] -> X a
and that is bad because (a ~# Maybe b) is not a predicate type
(see Note [Types for coercions, predicates, and evidence] in GHC.Core.TyCo.Rep
and is not implicitly instantiated.
So in mkProvEvidence we lift (a ~# b) to (a ~ b). Tiresome, and
marginally less efficient, if the builder/matcher are not inlined.
See also Note [Lift equality constraints when quantifying] in GHC.Tc.Solver
Note [Coercions that escape]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#14507 showed an example where the inferred type of the matcher
for the pattern synonym was something like
$mSO :: forall (r :: TYPE rep) kk (a :: k).
TypeRep k a
-> ((Bool ~ k) => TypeRep Bool (a |> co_a2sv) -> r)
-> (Void# -> r)
-> r
What is that co_a2sv :: Bool ~# *?? It was bound (via a superclass
selection) by the pattern being matched; and indeed it is implicit in
the context (Bool ~ k). You could imagine trying to extract it like
this:
$mSO :: forall (r :: TYPE rep) kk (a :: k).
TypeRep k a
-> ( co :: ((Bool :: *) ~ (k :: *)) =>
let co_a2sv = sc_sel co
in TypeRep Bool (a |> co_a2sv) -> r)
-> (Void# -> r)
-> r
But we simply don't allow that in types. Maybe one day but not now.
How to detect this situation? We just look for free coercion variables
in the types of any of the arguments to the matcher. The error message
is not very helpful, but at least we don't get a Lint error.
Note [Unquantified tyvars in a pattern synonym]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#21479)
data T a where MkT :: Int -> T Char -- A GADT
foo :: forall b. Bool -> T b -- Somewhat strange type
pattern T1 <- (foo -> MkT)
In the view pattern, foo is instantiated, let's say b :-> b0
where b0 is a unification variable. Then matching the GADT
MkT will add the "provided" constraint b0~Char, so we might infer
pattern T1 :: () => (b0~Char) => Int -> Bool
Nothing constrains that `b0`. We don't want to quantify over it.
We don't want to to zonk to Any (we don't like Any showing up in
user-visible types). So we want to error here. See
Note [Error on unconstrained meta-variables] in GHC.Tc.Utils.TcMType
Hence the call to doNotQuantifyTyVars here.
-}
tcCheckPatSynDecl :: PatSynBind GhcRn GhcRn
-> TcPatSynInfo
-> TcPragEnv
-> TcM (LHsBinds GhcTc, TcGblEnv)
tcCheckPatSynDecl psb@PSB{ psb_id = lname@(L _ name), psb_args = details
, psb_def = lpat, psb_dir = dir }
TPSI{ patsig_implicit_bndrs = implicit_bndrs
, patsig_univ_bndrs = explicit_univ_bndrs, patsig_req = req_theta
, patsig_ex_bndrs = explicit_ex_bndrs, patsig_prov = prov_theta
, patsig_body_ty = sig_body_ty }
prag_fn
= do { traceTc "tcCheckPatSynDecl" $
vcat [ ppr implicit_bndrs, ppr explicit_univ_bndrs, ppr req_theta
, ppr explicit_ex_bndrs, ppr prov_theta, ppr sig_body_ty ]
; let decl_arity = length arg_names
(arg_names, is_infix) = collectPatSynArgInfo details
; (arg_tys, pat_ty) <- case tcSplitFunTysN decl_arity sig_body_ty of
Right stuff -> return stuff
Left missing -> wrongNumberOfParmsErr name decl_arity missing
-- Complain about: pattern P :: () => forall x. x -> P x
-- The existential 'x' should not appear in the result type
-- Can't check this until we know P's arity (decl_arity above)
; let bad_tvs = filter (`elemVarSet` tyCoVarsOfType pat_ty) $ binderVars explicit_ex_bndrs
; checkTc (null bad_tvs) $ TcRnPatSynExistentialInResult name pat_ty bad_tvs
-- See Note [The pattern-synonym signature splitting rule] in GHC.Tc.Gen.Sig
; let univ_fvs = closeOverKinds $
(tyCoVarsOfTypes (pat_ty : req_theta) `extendVarSetList` (binderVars explicit_univ_bndrs))
(extra_univ, extra_ex) = partition ((`elemVarSet` univ_fvs) . binderVar) implicit_bndrs
univ_bndrs = extra_univ ++ explicit_univ_bndrs
ex_bndrs = extra_ex ++ explicit_ex_bndrs
univ_tvs = binderVars univ_bndrs
ex_tvs = binderVars ex_bndrs
-- Pattern synonyms currently cannot be linear (#18806)
; checkTc (all (isManyTy . scaledMult) arg_tys) $
TcRnLinearPatSyn sig_body_ty
; skol_info <- mkSkolemInfo (SigSkol (PatSynCtxt name) pat_ty [])
-- The type here is a bit bogus, but we do not print
-- the type for PatSynCtxt, so it doesn't matter
-- See Note [Skolem info for pattern synonyms] in "GHC.Tc.Types.Origin"
-- Skolemise the quantified type variables. This is necessary
-- in order to check the actual pattern type against the
-- expected type. Even though the tyvars in the type are
-- already skolems, this step changes their TcLevels,
-- avoiding level-check errors when unifying.
; (skol_subst0, skol_univ_bndrs) <- skolemiseTvBndrsX skol_info emptySubst univ_bndrs
; (skol_subst, skol_ex_bndrs) <- skolemiseTvBndrsX skol_info skol_subst0 ex_bndrs
; let skol_univ_tvs = binderVars skol_univ_bndrs
skol_ex_tvs = binderVars skol_ex_bndrs
skol_req_theta = substTheta skol_subst0 req_theta
skol_prov_theta = substTheta skol_subst prov_theta
skol_arg_tys = substTys skol_subst (map scaledThing arg_tys)
skol_pat_ty = substTy skol_subst pat_ty
univ_tv_prs = [ (getName orig_univ_tv, skol_univ_tv)
| (orig_univ_tv, skol_univ_tv) <- univ_tvs `zip` skol_univ_tvs ]
-- Right! Let's check the pattern against the signature
-- See Note [Checking against a pattern signature]
; req_dicts <- newEvVars skol_req_theta
; (tclvl, wanted, (lpat', (ex_tvs', prov_dicts, args'))) <-
assertPpr (equalLength arg_names arg_tys) (ppr name $$ ppr arg_names $$ ppr arg_tys) $
pushLevelAndCaptureConstraints $
tcExtendNameTyVarEnv univ_tv_prs $
tcCheckPat PatSyn lpat (unrestricted skol_pat_ty) $
do { let in_scope = mkInScopeSetList skol_univ_tvs
empty_subst = mkEmptySubst in_scope
; (inst_subst, ex_tvs') <- mapAccumLM newMetaTyVarX empty_subst skol_ex_tvs
-- newMetaTyVarX: see the "Existential type variables"
-- part of Note [Checking against a pattern signature]
; traceTc "tcpatsyn1" (vcat [ ppr v <+> dcolon <+> ppr (tyVarKind v) | v <- ex_tvs])
; traceTc "tcpatsyn2" (vcat [ ppr v <+> dcolon <+> ppr (tyVarKind v) | v <- ex_tvs'])
; let prov_theta' = substTheta inst_subst skol_prov_theta
-- Add univ_tvs to the in_scope set to
-- satisfy the substitution invariant. There's no need to
-- add 'ex_tvs' as they are already in the domain of the
-- substitution.
-- See also Note [The substitution invariant] in GHC.Core.TyCo.Subst.
; prov_dicts <- mapM (emitWanted (ProvCtxtOrigin psb)) prov_theta'
; args' <- zipWithM (tc_arg inst_subst) arg_names
skol_arg_tys
; return (ex_tvs', prov_dicts, args') }
; (implics, ev_binds) <- buildImplicationFor tclvl (getSkolemInfo skol_info) skol_univ_tvs
req_dicts wanted
-- Solve the constraints now, because we are about to make a PatSyn,
-- which should not contain unification variables and the like (#10997)
; simplifyTopImplic implics
-- ToDo: in the bidirectional case, check that the ex_tvs' are all distinct
-- Otherwise we may get a type error when typechecking the builder,
-- when that should be impossible
; traceTc "tcCheckPatSynDecl }" $ ppr name
; rec_fields <- lookupConstructorFields name
; tc_patsyn_finish lname dir is_infix lpat' prag_fn
(skol_univ_bndrs, skol_req_theta, ev_binds, req_dicts)
(skol_ex_bndrs, mkTyVarTys ex_tvs', skol_prov_theta, prov_dicts)
(args', skol_arg_tys)
skol_pat_ty rec_fields }
where
tc_arg :: Subst -> Name -> Type -> TcM (LHsExpr GhcTc)
-- Look up the variable actually bound by lpat
-- and check that it has the expected type
tc_arg subst arg_name arg_ty
= setSrcSpan (nameSrcSpan arg_name) $
-- Set the SrcSpan to be the binding site of the Id (#18856)
-- e.g. pattern P :: Int -> Maybe (Int,Bool)
-- pattern P x = Just (x,True)
-- Before unifying x's actual type with its expected type, in tc_arg, set
-- location to x's binding site in lpat, namely the 'x' in Just (x,True).
-- Else the error message location is wherever tcCheckPat finished,
-- namely the right-hand corner of the pattern
do { arg_id <- tcLookupId arg_name
; wrap <- tcSubTypeSigma (OccurrenceOf (idName arg_id))
GenSigCtxt
(idType arg_id)
(substTy subst arg_ty)
-- Why do we need tcSubType here?
-- See Note [Pattern synonyms and higher rank types]
; return (mkLHsWrap wrap $ nlHsVar arg_id) }
skolemiseTvBndrsX :: SkolemInfo -> Subst -> [VarBndr TyVar flag]
-> TcM (Subst, [VarBndr TcTyVar flag])
-- Make new TcTyVars, all skolems with levels, but do not clone
-- The level is one level deeper than the current level
-- See Note [Skolemising when checking a pattern synonym]
skolemiseTvBndrsX skol_info orig_subst tvs
= do { tc_lvl <- getTcLevel
; let pushed_lvl = pushTcLevel tc_lvl
details = SkolemTv skol_info pushed_lvl False
mk_skol_tv_x :: Subst -> VarBndr TyVar flag
-> (Subst, VarBndr TcTyVar flag)
mk_skol_tv_x subst (Bndr tv flag)
= (subst', Bndr new_tv flag)
where
new_kind = substTyUnchecked subst (tyVarKind tv)
new_tv = mkTcTyVar (tyVarName tv) new_kind details
subst' = extendTvSubstWithClone subst tv new_tv
; return (mapAccumL mk_skol_tv_x orig_subst tvs) }
{- Note [Skolemising when checking a pattern synonym]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
pattern P1 :: forall a. a -> Maybe a
pattern P1 x <- Just x where
P1 x = Just (x :: a)
The scoped type variable 'a' scopes over the builder RHS, Just (x::a).
But the builder RHS is typechecked much later in tcPatSynBuilderBind,
and gets its scoped type variables from the type of the builder_id.
The easiest way to achieve this is not to clone when skolemising.
Hence a special-purpose skolemiseTvBndrX here, similar to
GHC.Tc.Utils.Instantiate.tcInstSkolTyVarsX except that the latter
does cloning.
Note [Pattern synonyms and higher rank types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T = MkT (forall a. a->a)
pattern P :: (Int -> Int) -> T
pattern P x <- MkT x
This should work. But in the matcher we must match against MkT, and then
instantiate its argument 'x', to get a function of type (Int -> Int).
Equality is not enough! #13752 was an example.
Note [The pattern-synonym signature splitting rule]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given a pattern signature, we must split
the kind-generalised variables, and
the implicitly-bound variables
into universal and existential. The rule is this
(see discussion on #11224):
The universal tyvars are the ones mentioned in
- univ_tvs: the user-specified (forall'd) universals
- req_theta
- res_ty
The existential tyvars are all the rest
For example
pattern P :: () => b -> T a
pattern P x = ...
Here 'a' is universal, and 'b' is existential. But there is a wrinkle:
how do we split the arg_tys from req_ty? Consider
pattern Q :: () => b -> S c -> T a
pattern Q x = ...
This is an odd example because Q has only one syntactic argument, and
so presumably is defined by a view pattern matching a function. But
it can happen (#11977, #12108).
We don't know Q's arity from the pattern signature, so we have to wait
until we see the pattern declaration itself before deciding res_ty is,
and hence which variables are existential and which are universal.
And that in turn is why TcPatSynInfo has a separate field,
patsig_implicit_bndrs, to capture the implicitly bound type variables,
because we don't yet know how to split them up.
It's a slight compromise, because it means we don't really know the
pattern synonym's real signature until we see its declaration. So,
for example, in hs-boot file, we may need to think what to do...
(eg don't have any implicitly-bound variables).
Note [Checking against a pattern signature]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking the actual supplied pattern against the pattern synonym
signature, we need to be quite careful.
----- Provided constraints
Example
data T a where
MkT :: Ord a => a -> T a
pattern P :: () => Eq a => a -> [T a]
pattern P x = [MkT x]
We must check that the (Eq a) that P claims to bind (and to
make available to matches against P), is derivable from the
actual pattern. For example:
f (P (x::a)) = ...here (Eq a) should be available...
And yes, (Eq a) is derivable from the (Ord a) bound by P's rhs.
----- Existential type variables
Unusually, we instantiate the existential tyvars of the pattern with
*meta* type variables. For example
data S where
MkS :: Eq a => [a] -> S
pattern P :: () => Eq x => x -> S
pattern P x <- MkS x
The pattern synonym conceals from its client the fact that MkS has a
list inside it. The client just thinks it's a type 'x'. So we must
unify x := [a] during type checking, and then use the instantiating type
[a] (called ex_tys) when building the matcher. In this case we'll get
$mP :: S -> (forall x. Ex x => x -> r) -> r -> r
$mP x k = case x of
MkS a (d:Eq a) (ys:[a]) -> let dl :: Eq [a]
dl = $dfunEqList d
in k [a] dl ys
All this applies when type-checking the /matching/ side of
a pattern synonym. What about the /building/ side?
* For Unidirectional, there is no builder
* For ExplicitBidirectional, the builder is completely separate
code, typechecked in tcPatSynBuilderBind
* For ImplicitBidirectional, the builder is still typechecked in
tcPatSynBuilderBind, by converting the pattern to an expression and
typechecking it.
At one point, for ImplicitBidirectional I used TyVarTvs (instead of
TauTvs) in tcCheckPatSynDecl. But (a) strengthening the check here
is redundant since tcPatSynBuilderBind does the job, (b) it was
still incomplete (TyVarTvs can unify with each other), and (c) it
didn't even work (#13441 was accepted with
ExplicitBidirectional, but rejected if expressed in
ImplicitBidirectional form. Conclusion: trying to be too clever is
a bad idea.
-}
collectPatSynArgInfo :: HsPatSynDetails GhcRn
-> ([Name], Bool)
collectPatSynArgInfo details =
case details of
PrefixCon _ names -> (map unLoc names, False)
InfixCon name1 name2 -> (map unLoc [name1, name2], True)
RecCon names -> (map (unLoc . recordPatSynPatVar) names, False)
wrongNumberOfParmsErr :: Name -> Arity -> Arity -> TcM a
wrongNumberOfParmsErr name decl_arity missing
= failWithTc $ TcRnPatSynArityMismatch name decl_arity missing
-------------------------
-- Shared by both tcInferPatSyn and tcCheckPatSyn
tc_patsyn_finish :: LocatedN Name -- ^ PatSyn Name
-> HsPatSynDir GhcRn -- ^ PatSyn type (Uni/Bidir/ExplicitBidir)
-> Bool -- ^ Whether infix
-> LPat GhcTc -- ^ Pattern of the PatSyn
-> TcPragEnv
-> ([TcInvisTVBinder], [PredType], TcEvBinds, [EvVar])
-> ([TcInvisTVBinder], [TcType], [PredType], [EvTerm])
-> ([LHsExpr GhcTc], [TcTypeFRR])
-- ^ Pattern arguments and types.
-- These must have a syntactically fixed RuntimeRep as per
-- Note [Fixed RuntimeRep] in GHC.Tc.Utils.Concrete.
-> TcType -- ^ Pattern type
-> [FieldLabel] -- ^ Selector names
-- ^ Whether fields, empty if not record PatSyn
-> TcM (LHsBinds GhcTc, TcGblEnv)
tc_patsyn_finish lname dir is_infix lpat' prag_fn
(univ_tvs, req_theta, req_ev_binds, req_dicts)
(ex_tvs, ex_tys, prov_theta, prov_dicts)
(args, arg_tys)
pat_ty field_labels
= do { -- Zonk everything. We are about to build a final PatSyn
-- so there had better be no unification variables in there
; ze <- mkEmptyZonkEnv NoFlexi
; (ze, univ_tvs') <- zonkTyVarBindersX ze univ_tvs
; req_theta' <- zonkTcTypesToTypesX ze req_theta
; (ze, ex_tvs') <- zonkTyVarBindersX ze ex_tvs
; prov_theta' <- zonkTcTypesToTypesX ze prov_theta
; pat_ty' <- zonkTcTypeToTypeX ze pat_ty
; arg_tys' <- zonkTcTypesToTypesX ze arg_tys
; let (env1, univ_tvs) = tidyForAllTyBinders emptyTidyEnv univ_tvs'
(env2, ex_tvs) = tidyForAllTyBinders env1 ex_tvs'
req_theta = tidyTypes env2 req_theta'
prov_theta = tidyTypes env2 prov_theta'
arg_tys = tidyTypes env2 arg_tys'
pat_ty = tidyType env2 pat_ty'
; traceTc "tc_patsyn_finish {" $
ppr (unLoc lname) $$ ppr (unLoc lpat') $$
ppr (univ_tvs, req_theta, req_ev_binds, req_dicts) $$
ppr (ex_tvs, prov_theta, prov_dicts) $$
ppr args $$
ppr arg_tys $$
ppr pat_ty
-- Make the 'matcher'
; (matcher, matcher_bind) <- tcPatSynMatcher lname lpat' prag_fn
(binderVars univ_tvs, req_theta, req_ev_binds, req_dicts)
(binderVars ex_tvs, ex_tys, prov_theta, prov_dicts)
(args, arg_tys)
pat_ty
-- Make the 'builder'
; builder <- mkPatSynBuilder dir lname
univ_tvs req_theta
ex_tvs prov_theta
arg_tys pat_ty
-- Make the PatSyn itself
; let patSyn = mkPatSyn (unLoc lname) is_infix
(univ_tvs, req_theta)
(ex_tvs, prov_theta)
arg_tys
pat_ty
matcher builder
field_labels
-- Selectors
; has_sel <- xopt_FieldSelectors <$> getDynFlags
; let rn_rec_sel_binds = mkPatSynRecSelBinds patSyn (patSynFieldLabels patSyn) has_sel
tything = AConLike (PatSynCon patSyn)
; tcg_env <- tcExtendGlobalEnv [tything] $
tcRecSelBinds rn_rec_sel_binds
; traceTc "tc_patsyn_finish }" empty
; return (matcher_bind, tcg_env) }
{-
************************************************************************
* *
Constructing the "matcher" Id and its binding
* *
************************************************************************
-}
tcPatSynMatcher :: LocatedN Name
-> LPat GhcTc
-> TcPragEnv
-> ([TcTyVar], ThetaType, TcEvBinds, [EvVar])
-> ([TcTyVar], [TcType], ThetaType, [EvTerm])
-> ([LHsExpr GhcTc], [TcType])
-> TcType
-> TcM (PatSynMatcher, LHsBinds GhcTc)
-- See Note [Matchers and builders for pattern synonyms] in GHC.Core.PatSyn
tcPatSynMatcher (L loc ps_name) lpat prag_fn
(univ_tvs, req_theta, req_ev_binds, req_dicts)
(ex_tvs, ex_tys, prov_theta, prov_dicts)
(args, arg_tys) pat_ty
= do { let loc' = locA loc
; rr_name <- newNameAt (mkTyVarOccFS (fsLit "rep")) loc'
; tv_name <- newNameAt (mkTyVarOccFS (fsLit "r")) loc'
; let rr_tv = mkTyVar rr_name runtimeRepTy
rr = mkTyVarTy rr_tv
res_tv = mkTyVar tv_name (mkTYPEapp rr)
res_ty = mkTyVarTy res_tv
is_unlifted = null args && null prov_dicts
(cont_args, cont_arg_tys)
| is_unlifted = ([nlHsDataCon unboxedUnitDataCon], [unboxedUnitTy])
| otherwise = (args, arg_tys)
cont_ty = mkInfSigmaTy ex_tvs prov_theta $
mkVisFunTysMany cont_arg_tys res_ty
fail_ty = mkVisFunTyMany unboxedUnitTy res_ty
; matcher_name <- newImplicitBinder ps_name mkMatcherOcc
; scrutinee <- newSysLocalId (fsLit "scrut") ManyTy pat_ty
; cont <- newSysLocalId (fsLit "cont") ManyTy cont_ty
; fail <- newSysLocalId (fsLit "fail") ManyTy fail_ty
; dflags <- getDynFlags
; let matcher_tau = mkVisFunTysMany [pat_ty, cont_ty, fail_ty] res_ty
matcher_sigma = mkInfSigmaTy (rr_tv:res_tv:univ_tvs) req_theta matcher_tau
matcher_id = mkExportedVanillaId matcher_name matcher_sigma
patsyn_id = mkExportedVanillaId ps_name matcher_sigma
-- See Note [Exported LocalIds] in GHC.Types.Id
inst_wrap = mkWpEvApps prov_dicts <.> mkWpTyApps ex_tys
cont' = foldl' nlHsApp (mkLHsWrap inst_wrap (nlHsVar cont)) cont_args
fail' = nlHsApps fail [nlHsDataCon unboxedUnitDataCon]
args = map nlVarPat [scrutinee, cont, fail]
lwpat = noLocA $ WildPat pat_ty
cases = if isIrrefutableHsPat dflags lpat
then [mkHsCaseAlt lpat cont']
else [mkHsCaseAlt lpat cont',
mkHsCaseAlt lwpat fail']
body = mkLHsWrap (mkWpLet req_ev_binds) $
L (getLoc lpat) $
HsCase noExtField (nlHsVar scrutinee) $
MG{ mg_alts = L (l2l $ getLoc lpat) cases
, mg_ext = MatchGroupTc [unrestricted pat_ty] res_ty Generated
}
body' = noLocA $
HsLam noExtField $
MG{ mg_alts = noLocA [mkSimpleMatch LambdaExpr
args body]
, mg_ext = MatchGroupTc (map unrestricted [pat_ty, cont_ty, fail_ty]) res_ty Generated
}
match = mkMatch (mkPrefixFunRhs (L loc (idName patsyn_id))) []
(mkHsLams (rr_tv:res_tv:univ_tvs)
req_dicts body')
(EmptyLocalBinds noExtField)
mg :: MatchGroup GhcTc (LHsExpr GhcTc)
mg = MG{ mg_alts = L (l2l $ getLoc match) [match]
, mg_ext = MatchGroupTc [] res_ty Generated
}
matcher_arity = length req_theta + 3
-- See Note [Pragmas for pattern synonyms]
-- Add INLINE pragmas; see Note [Pragmas for pattern synonyms]
-- NB: prag_fn is keyed by the PatSyn Name, not the (internal) matcher name
; matcher_prag_id <- addInlinePrags matcher_id $
map (addInlinePragArity matcher_arity) $
lookupPragEnv prag_fn ps_name
; let bind = FunBind{ fun_id = L loc matcher_prag_id
, fun_matches = mg
, fun_ext = (idHsWrapper, [])
}
matcher_bind = unitBag (noLocA bind)
; traceTc "tcPatSynMatcher" (ppr ps_name $$ ppr (idType matcher_id))
; traceTc "tcPatSynMatcher" (ppr matcher_bind)
; return ((matcher_name, matcher_sigma, is_unlifted), matcher_bind) }
mkPatSynRecSelBinds :: PatSyn
-> [FieldLabel] -- ^ Visible field labels
-> FieldSelectors
-> [(Id, LHsBind GhcRn)]
mkPatSynRecSelBinds ps fields has_sel
= [ mkOneRecordSelector [PatSynCon ps] (RecSelPatSyn ps) fld_lbl has_sel
| fld_lbl <- fields ]
isUnidirectional :: HsPatSynDir a -> Bool
isUnidirectional Unidirectional = True
isUnidirectional ImplicitBidirectional = False
isUnidirectional ExplicitBidirectional{} = False
{-
************************************************************************
* *
Constructing the "builder" Id
* *
************************************************************************
-}
mkPatSynBuilder :: HsPatSynDir a -> LocatedN Name
-> [InvisTVBinder] -> ThetaType
-> [InvisTVBinder] -> ThetaType
-> [Type] -> Type
-> TcM PatSynBuilder
mkPatSynBuilder dir (L _ name)
univ_bndrs req_theta ex_bndrs prov_theta
arg_tys pat_ty
| isUnidirectional dir
= return Nothing
| otherwise
= do { builder_name <- newImplicitBinder name mkBuilderOcc
; let theta = req_theta ++ prov_theta
need_dummy_arg = isUnliftedType pat_ty && null arg_tys && null theta
-- NB: pattern arguments cannot be representation-polymorphic,
-- as checked in 'tcPatSynSig'. So 'isUnliftedType' is OK here.
builder_sigma = add_void need_dummy_arg $
mkInvisForAllTys univ_bndrs $
mkInvisForAllTys ex_bndrs $
mkPhiTy theta $
mkVisFunTysMany arg_tys $
pat_ty
; return (Just (builder_name, builder_sigma, need_dummy_arg)) }
tcPatSynBuilderBind :: TcPragEnv
-> PatSynBind GhcRn GhcRn
-> TcM (LHsBinds GhcTc)
-- See Note [Matchers and builders for pattern synonyms] in GHC.Core.PatSyn
tcPatSynBuilderBind prag_fn (PSB { psb_id = ps_lname@(L loc ps_name)
, psb_def = lpat
, psb_dir = dir
, psb_args = details })
| isUnidirectional dir
= return emptyBag
| Left why <- mb_match_group -- Can't invert the pattern
= setSrcSpan (getLocA lpat) $ failWithTc $ TcRnPatSynInvalidRhs ps_name lpat args why
| Right match_group <- mb_match_group -- Bidirectional
= do { patsyn <- tcLookupPatSyn ps_name
; case patSynBuilder patsyn of {
Nothing -> return emptyBag ;
-- This case happens if we found a type error in the
-- pattern synonym, recovered, and put a placeholder
-- with patSynBuilder=Nothing in the environment
Just (builder_name, builder_ty, need_dummy_arg) -> -- Normal case
do { -- Bidirectional, so patSynBuilder returns Just
let builder_id = mkExportedVanillaId builder_name builder_ty
-- See Note [Exported LocalIds] in GHC.Types.Id
(_, req_theta, _, prov_theta, arg_tys, _) = patSynSigBndr patsyn
builder_arity = length req_theta + length prov_theta
+ length arg_tys
+ (if need_dummy_arg then 1 else 0)
-- Add INLINE pragmas; see Note [Pragmas for pattern synonyms]
-- NB: prag_fn is keyed by the PatSyn Name, not the (internal) builder name
; builder_id <- addInlinePrags builder_id $
map (addInlinePragArity builder_arity) $
lookupPragEnv prag_fn ps_name
; let match_group' | need_dummy_arg = add_dummy_arg match_group
| otherwise = match_group
bind = FunBind { fun_id = L loc (idName builder_id)
, fun_matches = match_group'
, fun_ext = emptyNameSet
}
sig = completeSigFromId (PatSynCtxt ps_name) builder_id
; traceTc "tcPatSynBuilderBind {" $
vcat [ ppr patsyn
, ppr builder_id <+> dcolon <+> ppr (idType builder_id) ]
; (builder_binds, _) <- tcPolyCheck emptyPragEnv sig (noLocA bind)
; traceTc "tcPatSynBuilderBind }" $ ppr builder_binds
; return builder_binds } } }
#if __GLASGOW_HASKELL__ <= 810
| otherwise = panic "tcPatSynBuilderBind" -- Both cases dealt with
#endif
where
mb_match_group
= case dir of
ExplicitBidirectional explicit_mg -> Right explicit_mg
ImplicitBidirectional -> fmap mk_mg (tcPatToExpr args lpat)
Unidirectional -> panic "tcPatSynBuilderBind"
mk_mg :: LHsExpr GhcRn -> MatchGroup GhcRn (LHsExpr GhcRn)
mk_mg body = mkMatchGroup Generated (noLocA [builder_match])
where
builder_args = [L (na2la loc) (VarPat noExtField (L loc n))
| L loc n <- args]
builder_match = mkMatch (mkPrefixFunRhs ps_lname)
builder_args body
(EmptyLocalBinds noExtField)
args = case details of
PrefixCon _ args -> args
InfixCon arg1 arg2 -> [arg1, arg2]
RecCon args -> map recordPatSynPatVar args
add_dummy_arg :: MatchGroup GhcRn (LHsExpr GhcRn)
-> MatchGroup GhcRn (LHsExpr GhcRn)
add_dummy_arg mg@(MG { mg_alts =
(L l [L loc match@(Match { m_pats = pats })]) })
= mg { mg_alts = L l [L loc (match { m_pats = nlWildPatName : pats })] }
add_dummy_arg other_mg = pprPanic "add_dummy_arg" $
pprMatches other_mg
patSynBuilderOcc :: PatSyn -> Maybe (HsExpr GhcTc, TcSigmaType)
patSynBuilderOcc ps
| Just (_, builder_ty, add_void_arg) <- patSynBuilder ps
, let builder_expr = mkConLikeTc (PatSynCon ps)
= Just $
if add_void_arg
then ( builder_expr -- still just return builder_expr; the void# arg
-- is added by dsConLike in the desugarer
, tcFunResultTy builder_ty )
else (builder_expr, builder_ty)
| otherwise -- Unidirectional
= Nothing
add_void :: Bool -> Type -> Type
add_void need_dummy_arg ty
| need_dummy_arg = mkVisFunTyMany unboxedUnitTy ty
| otherwise = ty
tcPatToExpr :: [LocatedN Name] -> LPat GhcRn
-> Either PatSynInvalidRhsReason (LHsExpr GhcRn)
-- Given a /pattern/, return an /expression/ that builds a value
-- that matches the pattern. E.g. if the pattern is (Just [x]),
-- the expression is (Just [x]). They look the same, but the
-- input uses constructors from HsPat and the output uses constructors
-- from HsExpr.
--
-- Returns (Left r) if the pattern is not invertible, for reason r.
-- See Note [Builder for a bidirectional pattern synonym]
tcPatToExpr args pat = go pat
where
lhsVars = mkNameSet (map unLoc args)
-- Make a prefix con for prefix and infix patterns for simplicity
mkPrefixConExpr :: LocatedN Name -> [LPat GhcRn]
-> Either PatSynInvalidRhsReason (HsExpr GhcRn)
mkPrefixConExpr lcon@(L loc _) pats
= do { exprs <- mapM go pats
; let con = L (l2l loc) (HsVar noExtField lcon)
; return (unLoc $ mkHsApps con exprs)
}
mkRecordConExpr :: LocatedN Name -> HsRecFields GhcRn (LPat GhcRn)
-> Either PatSynInvalidRhsReason (HsExpr GhcRn)
mkRecordConExpr con (HsRecFields fields dd)
= do { exprFields <- mapM go' fields
; return (RecordCon noExtField con (HsRecFields exprFields dd)) }
go' :: LHsRecField GhcRn (LPat GhcRn) -> Either PatSynInvalidRhsReason (LHsRecField GhcRn (LHsExpr GhcRn))
go' (L l rf) = L l <$> traverse go rf
go :: LPat GhcRn -> Either PatSynInvalidRhsReason (LHsExpr GhcRn)
go (L loc p) = L loc <$> go1 p
go1 :: Pat GhcRn -> Either PatSynInvalidRhsReason (HsExpr GhcRn)
go1 (ConPat NoExtField con info)
= case info of
PrefixCon _ ps -> mkPrefixConExpr con ps
InfixCon l r -> mkPrefixConExpr con [l,r]
RecCon fields -> mkRecordConExpr con fields
go1 (SigPat _ pat _) = go1 (unLoc pat)
-- See Note [Type signatures and the builder expression]
go1 (VarPat _ (L l var))
| var `elemNameSet` lhsVars
= return $ HsVar noExtField (L l var)
| otherwise
= Left (PatSynUnboundVar var)
go1 (ParPat _ lpar pat rpar) = fmap (\e -> HsPar noAnn lpar e rpar) $ go pat
go1 (ListPat _ pats)
= do { exprs <- mapM go pats
; return $ ExplicitList noExtField exprs }
go1 (TuplePat _ pats box) = do { exprs <- mapM go pats
; return $ ExplicitTuple noExtField
(map (Present noAnn) exprs) box }
go1 (SumPat _ pat alt arity) = do { expr <- go1 (unLoc pat)
; return $ ExplicitSum noExtField alt arity
(noLocA expr)
}
go1 (LitPat _ lit) = return $ HsLit noComments lit
go1 (NPat _ (L _ n) mb_neg _)
| Just (SyntaxExprRn neg) <- mb_neg
= return $ unLoc $ foldl' nlHsApp (noLocA neg)
[noLocA (HsOverLit noAnn n)]
| otherwise = return $ HsOverLit noAnn n
go1 (SplicePat (HsUntypedSpliceTop _ pat) _) = go1 pat
go1 (SplicePat (HsUntypedSpliceNested _) _) = panic "tcPatToExpr: invalid nested splice"
go1 (XPat (HsPatExpanded _ pat))= go1 pat
-- See Note [Invertible view patterns]
go1 p@(ViewPat mbInverse _ pat) = case mbInverse of
Nothing -> notInvertible p
Just inverse ->
fmap
(\ expr -> HsApp noAnn (wrapGenSpan inverse) (wrapGenSpan expr))
(go1 (unLoc pat))
-- The following patterns are not invertible.
go1 p@(BangPat {}) = notInvertible p -- #14112
go1 p@(LazyPat {}) = notInvertible p
go1 p@(WildPat {}) = notInvertible p
go1 p@(AsPat {}) = notInvertible p
go1 p@(NPlusKPat {}) = notInvertible p
notInvertible p = Left (PatSynNotInvertible p)
{- Note [Builder for a bidirectional pattern synonym]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For a bidirectional pattern synonym, the function 'tcPatToExpr'
needs to produce an /expression/ that matches the supplied /pattern/,
given values for the arguments of the pattern synonym. For example:
pattern F x y = (Just x, [y])
The 'builder' for F looks like
$builderF x y = (Just x, [y])
We can't always do this:
* Some patterns aren't invertible; e.g. general view patterns
pattern F x = (f -> x)
as we don't have the ability to write down an expression that matches
the view pattern specified by an arbitrary view function `f`.
It is however sometimes possible to write down an inverse;
see Note [Invertible view patterns].
* The RHS pattern might bind more variables than the pattern
synonym, so again we can't invert it
pattern F x = (x,y)
* Ditto wildcards
pattern F x = (x,_)
Note [Invertible view patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For some view patterns, such as those that arise from expansion of overloaded
patterns (as detailed in Note [Handling overloaded and rebindable patterns]),
we are able to explicitly write out an inverse (in the sense of the previous
Note [Builder for a bidirectional pattern synonym]).
For instance, the inverse to the pattern
(toList -> [True, False])
is the expression
(fromListN 2 [True,False])
Keeping track of the inverse for such view patterns fixed #14380.
Note [Redundant constraints for builder]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The builder can have redundant constraints, which are awkward to eliminate.
Consider
pattern P = Just 34
To match against this pattern we need (Eq a, Num a). But to build
(Just 34) we need only (Num a). Fortunately instTcSigFromId sets
sig_warn_redundant to False.
************************************************************************
* *
Helper functions
* *
************************************************************************
Note [As-patterns in pattern synonym definitions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The rationale for rejecting as-patterns in pattern synonym definitions
is that an as-pattern would introduce nonindependent pattern synonym
arguments, e.g. given a pattern synonym like:
pattern K x y = x@(Just y)
one could write a nonsensical function like
f (K Nothing x) = ...
or
g (K (Just True) False) = ...
Note [Type signatures and the builder expression]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
pattern L x = Left x :: Either [a] [b]
In tc{Infer/Check}PatSynDecl we will check that the pattern has the
specified type. We check the pattern *as a pattern*, so the type
signature is a pattern signature, and so brings 'a' and 'b' into
scope. But we don't have a way to bind 'a, b' in the LHS, as we do
'x', say. Nevertheless, the signature may be useful to constrain
the type.
When making the binding for the *builder*, though, we don't want
$buildL x = Left x :: Either [a] [b]
because that wil either mean (forall a b. Either [a] [b]), or we'll
get a complaint that 'a' and 'b' are out of scope. (Actually the
latter; #9867.) No, the job of the signature is done, so when
converting the pattern to an expression (for the builder RHS) we
simply discard the signature.
Note [Record PatSyn Desugaring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is important that prov_theta comes before req_theta as this ordering is used
when desugaring record pattern synonym updates.
Any change to this ordering should make sure to change GHC.HsToCore.Expr if you
want to avoid difficult to decipher core lint errors!
Note [Pragmas for pattern synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
INLINE and NOINLINE pragmas are supported for pattern synonyms.
They affect both the matcher and the builder.
(See Note [Matchers and builders for pattern synonyms] in PatSyn)
For example:
pattern InlinedPattern x = [x]
{-# INLINE InlinedPattern #-}
pattern NonInlinedPattern x = [x]
{-# NOINLINE NonInlinedPattern #-}
For pattern synonyms with explicit builders, only a pragma for the
entire pattern synonym is supported. For example:
pattern HeadC x <- x:xs where
HeadC x = [x]
-- This wouldn't compile: {-# INLINE HeadC #-}
{-# INLINE HeadC #-} -- But this works
When no pragma is provided for a pattern, the inlining decision might change
between different versions of GHC.
Implementation notes. The prag_fn passed in to tcPatSynDecl will have a binding
for the /pattern synonym/ Name, thus
InlinedPattern :-> INLINE
From this we cook up an INLINE pragma for the matcher (in tcPatSynMatcher)
and builder (in tcPatSynBuilderBind), by looking up the /pattern synonym/
Name in the prag_fn, and then using addInlinePragArity to add the right
inl_sat field to that INLINE pragma for the matcher or builder respectively.
-}
-- Walk the whole pattern and for all ConPatOuts, collect the
-- existentially-bound type variables and evidence binding variables.
--
-- These are used in computing the type of a pattern synonym and also
-- in generating matcher functions, since success continuations need
-- to be passed these pattern-bound evidences.
tcCollectEx
:: LPat GhcTc
-> ( [TyVar] -- Existentially-bound type variables
-- in correctly-scoped order; e.g. [ k:*, x:k ]
, [EvVar] ) -- and evidence variables
tcCollectEx pat = go pat
where
go :: LPat GhcTc -> ([TyVar], [EvVar])
go = go1 . unLoc
go1 :: Pat GhcTc -> ([TyVar], [EvVar])
go1 (LazyPat _ p) = go p
go1 (AsPat _ _ _ p) = go p
go1 (ParPat _ _ p _) = go p
go1 (BangPat _ p) = go p
go1 (ListPat _ ps) = mergeMany . map go $ ps
go1 (TuplePat _ ps _) = mergeMany . map go $ ps
go1 (SumPat _ p _ _) = go p
go1 (ViewPat _ _ p) = go p
go1 con@ConPat{ pat_con_ext = con' }
= merge (cpt_tvs con', cpt_dicts con') $
goConDetails $ pat_args con
go1 (SigPat _ p _) = go p
go1 (XPat ext) = case ext of
CoPat _ p _ -> go1 p
ExpansionPat _ p -> go1 p
go1 (NPlusKPat _ n k _ geq subtract)
= pprPanic "TODO: NPlusKPat" $ ppr n $$ ppr k $$ ppr geq $$ ppr subtract
go1 _ = empty
goConDetails :: HsConPatDetails GhcTc -> ([TyVar], [EvVar])
goConDetails (PrefixCon _ ps) = mergeMany . map go $ ps
goConDetails (InfixCon p1 p2) = go p1 `merge` go p2
goConDetails (RecCon HsRecFields{ rec_flds = flds })
= mergeMany . map goRecFd $ flds
goRecFd :: LHsRecField GhcTc (LPat GhcTc) -> ([TyVar], [EvVar])
goRecFd (L _ HsFieldBind{ hfbRHS = p }) = go p
merge (vs1, evs1) (vs2, evs2) = (vs1 ++ vs2, evs1 ++ evs2)
mergeMany = foldr merge empty
empty = ([], [])
|