1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, MultiWayIf, TupleSections #-}
{-# LANGUAGE FlexibleContexts #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- | The @Inst@ type: dictionaries or method instances
module GHC.Tc.Utils.Instantiate (
deeplySkolemise,
topInstantiate, topInstantiateInferred, deeplyInstantiate,
instCall, instDFunType, instStupidTheta, instTyVarsWith,
newWanted, newWanteds,
tcInstInvisibleTyBinders, tcInstInvisibleTyBinder,
newOverloadedLit, mkOverLit,
newClsInst,
tcGetInsts, tcGetInstEnvs, getOverlapFlag,
tcExtendLocalInstEnv,
instCallConstraints, newMethodFromName,
tcSyntaxName,
-- Simple functions over evidence variables
tyCoVarsOfWC,
tyCoVarsOfCt, tyCoVarsOfCts,
) where
#include "HsVersions.h"
import GhcPrelude
import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcCheckExpr, tcSyntaxOp )
import {-# SOURCE #-} GHC.Tc.Utils.Unify( unifyType, unifyKind )
import GHC.Types.Basic ( IntegralLit(..), SourceText(..) )
import FastString
import GHC.Hs
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.Monad
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.Env
import GHC.Tc.Types.Evidence
import GHC.Core.InstEnv
import GHC.Builtin.Types ( heqDataCon, eqDataCon )
import GHC.Core ( isOrphan )
import GHC.Tc.Instance.FunDeps
import GHC.Tc.Utils.TcMType
import GHC.Core.Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr ( debugPprType )
import GHC.Tc.Utils.TcType
import GHC.Driver.Types
import GHC.Core.Class( Class )
import GHC.Types.Id.Make( mkDictFunId )
import GHC.Core( Expr(..) ) -- For the Coercion constructor
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Var ( EvVar, tyVarName, VarBndr(..) )
import GHC.Core.DataCon
import GHC.Types.Var.Env
import GHC.Builtin.Names
import GHC.Types.SrcLoc as SrcLoc
import GHC.Driver.Session
import Util
import Outputable
import GHC.Types.Basic ( TypeOrKind(..) )
import qualified GHC.LanguageExtensions as LangExt
import Data.List ( sortBy )
import Control.Monad( unless )
import Data.Function ( on )
{-
************************************************************************
* *
Creating and emittind constraints
* *
************************************************************************
-}
newMethodFromName
:: CtOrigin -- ^ why do we need this?
-> Name -- ^ name of the method
-> [TcRhoType] -- ^ types with which to instantiate the class
-> TcM (HsExpr GhcTcId)
-- ^ Used when 'Name' is the wired-in name for a wired-in class method,
-- so the caller knows its type for sure, which should be of form
--
-- > forall a. C a => <blah>
--
-- 'newMethodFromName' is supposed to instantiate just the outer
-- type variable and constraint
newMethodFromName origin name ty_args
= do { id <- tcLookupId name
-- Use tcLookupId not tcLookupGlobalId; the method is almost
-- always a class op, but with -XRebindableSyntax GHC is
-- meant to find whatever thing is in scope, and that may
-- be an ordinary function.
; let ty = piResultTys (idType id) ty_args
(theta, _caller_knows_this) = tcSplitPhiTy ty
; wrap <- ASSERT( not (isForAllTy ty) && isSingleton theta )
instCall origin ty_args theta
; return (mkHsWrap wrap (HsVar noExtField (noLoc id))) }
{-
************************************************************************
* *
Deep instantiation and skolemisation
* *
************************************************************************
Note [Deep skolemisation]
~~~~~~~~~~~~~~~~~~~~~~~~~
deeplySkolemise decomposes and skolemises a type, returning a type
with all its arrows visible (ie not buried under foralls)
Examples:
deeplySkolemise (Int -> forall a. Ord a => blah)
= ( wp, [a], [d:Ord a], Int -> blah )
where wp = \x:Int. /\a. \(d:Ord a). <hole> x
deeplySkolemise (forall a. Ord a => Maybe a -> forall b. Eq b => blah)
= ( wp, [a,b], [d1:Ord a,d2:Eq b], Maybe a -> blah )
where wp = /\a.\(d1:Ord a).\(x:Maybe a)./\b.\(d2:Ord b). <hole> x
In general,
if deeplySkolemise ty = (wrap, tvs, evs, rho)
and e :: rho
then wrap e :: ty
and 'wrap' binds tvs, evs
ToDo: this eta-abstraction plays fast and loose with termination,
because it can introduce extra lambdas. Maybe add a `seq` to
fix this
-}
deeplySkolemise :: TcSigmaType
-> TcM ( HsWrapper
, [(Name,TyVar)] -- All skolemised variables
, [EvVar] -- All "given"s
, TcRhoType )
deeplySkolemise ty
= go init_subst ty
where
init_subst = mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType ty))
go subst ty
| Just (arg_tys, tvs, theta, ty') <- tcDeepSplitSigmaTy_maybe ty
= do { let arg_tys' = substTys subst arg_tys
; ids1 <- newSysLocalIds (fsLit "dk") arg_tys'
; (subst', tvs1) <- tcInstSkolTyVarsX subst tvs
; ev_vars1 <- newEvVars (substTheta subst' theta)
; (wrap, tvs_prs2, ev_vars2, rho) <- go subst' ty'
; let tv_prs1 = map tyVarName tvs `zip` tvs1
; return ( mkWpLams ids1
<.> mkWpTyLams tvs1
<.> mkWpLams ev_vars1
<.> wrap
<.> mkWpEvVarApps ids1
, tv_prs1 ++ tvs_prs2
, ev_vars1 ++ ev_vars2
, mkVisFunTys arg_tys' rho ) }
| otherwise
= return (idHsWrapper, [], [], substTy subst ty)
-- substTy is a quick no-op on an empty substitution
-- | Instantiate all outer type variables
-- and any context. Never looks through arrows.
topInstantiate :: CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType)
-- if topInstantiate ty = (wrap, rho)
-- and e :: ty
-- then wrap e :: rho (that is, wrap :: ty "->" rho)
topInstantiate = top_instantiate True
-- | Instantiate all outer 'Inferred' binders
-- and any context. Never looks through arrows or specified type variables.
-- Used for visible type application.
topInstantiateInferred :: CtOrigin -> TcSigmaType
-> TcM (HsWrapper, TcSigmaType)
-- if topInstantiate ty = (wrap, rho)
-- and e :: ty
-- then wrap e :: rho
topInstantiateInferred = top_instantiate False
top_instantiate :: Bool -- True <=> instantiate *all* variables
-- False <=> instantiate only the inferred ones
-> CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType)
top_instantiate inst_all orig ty
| not (null binders && null theta)
= do { let (inst_bndrs, leave_bndrs) = span should_inst binders
(inst_theta, leave_theta)
| null leave_bndrs = (theta, [])
| otherwise = ([], theta)
in_scope = mkInScopeSet (tyCoVarsOfType ty)
empty_subst = mkEmptyTCvSubst in_scope
inst_tvs = binderVars inst_bndrs
; (subst, inst_tvs') <- mapAccumLM newMetaTyVarX empty_subst inst_tvs
; let inst_theta' = substTheta subst inst_theta
sigma' = substTy subst (mkForAllTys leave_bndrs $
mkPhiTy leave_theta rho)
inst_tv_tys' = mkTyVarTys inst_tvs'
; wrap1 <- instCall orig inst_tv_tys' inst_theta'
; traceTc "Instantiating"
(vcat [ text "all tyvars?" <+> ppr inst_all
, text "origin" <+> pprCtOrigin orig
, text "type" <+> debugPprType ty
, text "theta" <+> ppr theta
, text "leave_bndrs" <+> ppr leave_bndrs
, text "with" <+> vcat (map debugPprType inst_tv_tys')
, text "theta:" <+> ppr inst_theta' ])
; (wrap2, rho2) <-
if null leave_bndrs
-- account for types like forall a. Num a => forall b. Ord b => ...
then top_instantiate inst_all orig sigma'
-- but don't loop if there were any un-inst'able tyvars
else return (idHsWrapper, sigma')
; return (wrap2 <.> wrap1, rho2) }
| otherwise = return (idHsWrapper, ty)
where
(binders, phi) = tcSplitForAllVarBndrs ty
(theta, rho) = tcSplitPhiTy phi
should_inst bndr
| inst_all = True
| otherwise = binderArgFlag bndr == Inferred
deeplyInstantiate :: CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType)
-- Int -> forall a. a -> a ==> (\x:Int. [] x alpha) :: Int -> alpha
-- In general if
-- if deeplyInstantiate ty = (wrap, rho)
-- and e :: ty
-- then wrap e :: rho
-- That is, wrap :: ty ~> rho
--
-- If you don't need the HsWrapper returned from this function, consider
-- using tcSplitNestedSigmaTys in GHC.Tc.Utils.TcType, which is a pure alternative that
-- only computes the returned TcRhoType.
deeplyInstantiate orig ty =
deeply_instantiate orig
(mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType ty)))
ty
deeply_instantiate :: CtOrigin
-> TCvSubst
-> TcSigmaType -> TcM (HsWrapper, TcRhoType)
-- Internal function to deeply instantiate that builds on an existing subst.
-- It extends the input substitution and applies the final substitution to
-- the types on return. See #12549.
deeply_instantiate orig subst ty
| Just (arg_tys, tvs, theta, rho) <- tcDeepSplitSigmaTy_maybe ty
= do { (subst', tvs') <- newMetaTyVarsX subst tvs
; let arg_tys' = substTys subst' arg_tys
theta' = substTheta subst' theta
; ids1 <- newSysLocalIds (fsLit "di") arg_tys'
; wrap1 <- instCall orig (mkTyVarTys tvs') theta'
; traceTc "Instantiating (deeply)" (vcat [ text "origin" <+> pprCtOrigin orig
, text "type" <+> ppr ty
, text "with" <+> ppr tvs'
, text "args:" <+> ppr ids1
, text "theta:" <+> ppr theta'
, text "subst:" <+> ppr subst'])
; (wrap2, rho2) <- deeply_instantiate orig subst' rho
; return (mkWpLams ids1
<.> wrap2
<.> wrap1
<.> mkWpEvVarApps ids1,
mkVisFunTys arg_tys' rho2) }
| otherwise
= do { let ty' = substTy subst ty
; traceTc "deeply_instantiate final subst"
(vcat [ text "origin:" <+> pprCtOrigin orig
, text "type:" <+> ppr ty
, text "new type:" <+> ppr ty'
, text "subst:" <+> ppr subst ])
; return (idHsWrapper, ty') }
instTyVarsWith :: CtOrigin -> [TyVar] -> [TcType] -> TcM TCvSubst
-- Use this when you want to instantiate (forall a b c. ty) with
-- types [ta, tb, tc], but when the kinds of 'a' and 'ta' might
-- not yet match (perhaps because there are unsolved constraints; #14154)
-- If they don't match, emit a kind-equality to promise that they will
-- eventually do so, and thus make a kind-homongeneous substitution.
instTyVarsWith orig tvs tys
= go emptyTCvSubst tvs tys
where
go subst [] []
= return subst
go subst (tv:tvs) (ty:tys)
| tv_kind `tcEqType` ty_kind
= go (extendTvSubstAndInScope subst tv ty) tvs tys
| otherwise
= do { co <- emitWantedEq orig KindLevel Nominal ty_kind tv_kind
; go (extendTvSubstAndInScope subst tv (ty `mkCastTy` co)) tvs tys }
where
tv_kind = substTy subst (tyVarKind tv)
ty_kind = tcTypeKind ty
go _ _ _ = pprPanic "instTysWith" (ppr tvs $$ ppr tys)
{-
************************************************************************
* *
Instantiating a call
* *
************************************************************************
Note [Handling boxed equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The solver deals entirely in terms of unboxed (primitive) equality.
There should never be a boxed Wanted equality. Ever. But, what if
we are calling `foo :: forall a. (F a ~ Bool) => ...`? That equality
is boxed, so naive treatment here would emit a boxed Wanted equality.
So we simply check for this case and make the right boxing of evidence.
-}
----------------
instCall :: CtOrigin -> [TcType] -> TcThetaType -> TcM HsWrapper
-- Instantiate the constraints of a call
-- (instCall o tys theta)
-- (a) Makes fresh dictionaries as necessary for the constraints (theta)
-- (b) Throws these dictionaries into the LIE
-- (c) Returns an HsWrapper ([.] tys dicts)
instCall orig tys theta
= do { dict_app <- instCallConstraints orig theta
; return (dict_app <.> mkWpTyApps tys) }
----------------
instCallConstraints :: CtOrigin -> TcThetaType -> TcM HsWrapper
-- Instantiates the TcTheta, puts all constraints thereby generated
-- into the LIE, and returns a HsWrapper to enclose the call site.
instCallConstraints orig preds
| null preds
= return idHsWrapper
| otherwise
= do { evs <- mapM go preds
; traceTc "instCallConstraints" (ppr evs)
; return (mkWpEvApps evs) }
where
go :: TcPredType -> TcM EvTerm
go pred
| Just (Nominal, ty1, ty2) <- getEqPredTys_maybe pred -- Try short-cut #1
= do { co <- unifyType Nothing ty1 ty2
; return (evCoercion co) }
-- Try short-cut #2
| Just (tc, args@[_, _, ty1, ty2]) <- splitTyConApp_maybe pred
, tc `hasKey` heqTyConKey
= do { co <- unifyType Nothing ty1 ty2
; return (evDFunApp (dataConWrapId heqDataCon) args [Coercion co]) }
| otherwise
= emitWanted orig pred
instDFunType :: DFunId -> [DFunInstType]
-> TcM ( [TcType] -- instantiated argument types
, TcThetaType ) -- instantiated constraint
-- See Note [DFunInstType: instantiating types] in GHC.Core.InstEnv
instDFunType dfun_id dfun_inst_tys
= do { (subst, inst_tys) <- go empty_subst dfun_tvs dfun_inst_tys
; return (inst_tys, substTheta subst dfun_theta) }
where
dfun_ty = idType dfun_id
(dfun_tvs, dfun_theta, _) = tcSplitSigmaTy dfun_ty
empty_subst = mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType dfun_ty))
-- With quantified constraints, the
-- type of a dfun may not be closed
go :: TCvSubst -> [TyVar] -> [DFunInstType] -> TcM (TCvSubst, [TcType])
go subst [] [] = return (subst, [])
go subst (tv:tvs) (Just ty : mb_tys)
= do { (subst', tys) <- go (extendTvSubstAndInScope subst tv ty)
tvs
mb_tys
; return (subst', ty : tys) }
go subst (tv:tvs) (Nothing : mb_tys)
= do { (subst', tv') <- newMetaTyVarX subst tv
; (subst'', tys) <- go subst' tvs mb_tys
; return (subst'', mkTyVarTy tv' : tys) }
go _ _ _ = pprPanic "instDFunTypes" (ppr dfun_id $$ ppr dfun_inst_tys)
----------------
instStupidTheta :: CtOrigin -> TcThetaType -> TcM ()
-- Similar to instCall, but only emit the constraints in the LIE
-- Used exclusively for the 'stupid theta' of a data constructor
instStupidTheta orig theta
= do { _co <- instCallConstraints orig theta -- Discard the coercion
; return () }
{- *********************************************************************
* *
Instantiating Kinds
* *
********************************************************************* -}
-- | Instantiates up to n invisible binders
-- Returns the instantiating types, and body kind
tcInstInvisibleTyBinders :: Int -> TcKind -> TcM ([TcType], TcKind)
tcInstInvisibleTyBinders 0 kind
= return ([], kind)
tcInstInvisibleTyBinders n ty
= go n empty_subst ty
where
empty_subst = mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType ty))
go n subst kind
| n > 0
, Just (bndr, body) <- tcSplitPiTy_maybe kind
, isInvisibleBinder bndr
= do { (subst', arg) <- tcInstInvisibleTyBinder subst bndr
; (args, inner_ty) <- go (n-1) subst' body
; return (arg:args, inner_ty) }
| otherwise
= return ([], substTy subst kind)
-- | Used only in *types*
tcInstInvisibleTyBinder :: TCvSubst -> TyBinder -> TcM (TCvSubst, TcType)
tcInstInvisibleTyBinder subst (Named (Bndr tv _))
= do { (subst', tv') <- newMetaTyVarX subst tv
; return (subst', mkTyVarTy tv') }
tcInstInvisibleTyBinder subst (Anon af ty)
| Just (mk, k1, k2) <- get_eq_tys_maybe (substTy subst ty)
-- Equality is the *only* constraint currently handled in types.
-- See Note [Constraints in kinds] in GHC.Core.TyCo.Rep
= ASSERT( af == InvisArg )
do { co <- unifyKind Nothing k1 k2
; arg' <- mk co
; return (subst, arg') }
| otherwise -- This should never happen
-- See GHC.Core.TyCo.Rep Note [Constraints in kinds]
= pprPanic "tcInvisibleTyBinder" (ppr ty)
-------------------------------
get_eq_tys_maybe :: Type
-> Maybe ( Coercion -> TcM Type
-- given a coercion proving t1 ~# t2, produce the
-- right instantiation for the TyBinder at hand
, Type -- t1
, Type -- t2
)
-- See Note [Constraints in kinds] in GHC.Core.TyCo.Rep
get_eq_tys_maybe ty
-- Lifted heterogeneous equality (~~)
| Just (tc, [_, _, k1, k2]) <- splitTyConApp_maybe ty
, tc `hasKey` heqTyConKey
= Just (\co -> mkHEqBoxTy co k1 k2, k1, k2)
-- Lifted homogeneous equality (~)
| Just (tc, [_, k1, k2]) <- splitTyConApp_maybe ty
, tc `hasKey` eqTyConKey
= Just (\co -> mkEqBoxTy co k1 k2, k1, k2)
| otherwise
= Nothing
-- | This takes @a ~# b@ and returns @a ~~ b@.
mkHEqBoxTy :: TcCoercion -> Type -> Type -> TcM Type
-- monadic just for convenience with mkEqBoxTy
mkHEqBoxTy co ty1 ty2
= return $
mkTyConApp (promoteDataCon heqDataCon) [k1, k2, ty1, ty2, mkCoercionTy co]
where k1 = tcTypeKind ty1
k2 = tcTypeKind ty2
-- | This takes @a ~# b@ and returns @a ~ b@.
mkEqBoxTy :: TcCoercion -> Type -> Type -> TcM Type
mkEqBoxTy co ty1 ty2
= return $
mkTyConApp (promoteDataCon eqDataCon) [k, ty1, ty2, mkCoercionTy co]
where k = tcTypeKind ty1
{-
************************************************************************
* *
Literals
* *
************************************************************************
-}
{-
In newOverloadedLit we convert directly to an Int or Integer if we
know that's what we want. This may save some time, by not
temporarily generating overloaded literals, but it won't catch all
cases (the rest are caught in lookupInst).
-}
newOverloadedLit :: HsOverLit GhcRn
-> ExpRhoType
-> TcM (HsOverLit GhcTcId)
newOverloadedLit
lit@(OverLit { ol_val = val, ol_ext = rebindable }) res_ty
| not rebindable
-- all built-in overloaded lits are tau-types, so we can just
-- tauify the ExpType
= do { res_ty <- expTypeToType res_ty
; dflags <- getDynFlags
; let platform = targetPlatform dflags
; case shortCutLit platform val res_ty of
-- Do not generate a LitInst for rebindable syntax.
-- Reason: If we do, tcSimplify will call lookupInst, which
-- will call tcSyntaxName, which does unification,
-- which tcSimplify doesn't like
Just expr -> return (lit { ol_witness = expr
, ol_ext = OverLitTc False res_ty })
Nothing -> newNonTrivialOverloadedLit orig lit
(mkCheckExpType res_ty) }
| otherwise
= newNonTrivialOverloadedLit orig lit res_ty
where
orig = LiteralOrigin lit
-- Does not handle things that 'shortCutLit' can handle. See also
-- newOverloadedLit in GHC.Tc.Utils.Unify
newNonTrivialOverloadedLit :: CtOrigin
-> HsOverLit GhcRn
-> ExpRhoType
-> TcM (HsOverLit GhcTcId)
newNonTrivialOverloadedLit orig
lit@(OverLit { ol_val = val, ol_witness = HsVar _ (L _ meth_name)
, ol_ext = rebindable }) res_ty
= do { hs_lit <- mkOverLit val
; let lit_ty = hsLitType hs_lit
; (_, fi') <- tcSyntaxOp orig (mkRnSyntaxExpr meth_name)
[synKnownType lit_ty] res_ty $
\_ -> return ()
; let L _ witness = nlHsSyntaxApps fi' [nlHsLit hs_lit]
; res_ty <- readExpType res_ty
; return (lit { ol_witness = witness
, ol_ext = OverLitTc rebindable res_ty }) }
newNonTrivialOverloadedLit _ lit _
= pprPanic "newNonTrivialOverloadedLit" (ppr lit)
------------
mkOverLit ::OverLitVal -> TcM (HsLit GhcTc)
mkOverLit (HsIntegral i)
= do { integer_ty <- tcMetaTy integerTyConName
; return (HsInteger (il_text i)
(il_value i) integer_ty) }
mkOverLit (HsFractional r)
= do { rat_ty <- tcMetaTy rationalTyConName
; return (HsRat noExtField r rat_ty) }
mkOverLit (HsIsString src s) = return (HsString src s)
{-
************************************************************************
* *
Re-mappable syntax
Used only for arrow syntax -- find a way to nuke this
* *
************************************************************************
Suppose we are doing the -XRebindableSyntax thing, and we encounter
a do-expression. We have to find (>>) in the current environment, which is
done by the rename. Then we have to check that it has the same type as
Control.Monad.(>>). Or, more precisely, a compatible type. One 'customer' had
this:
(>>) :: HB m n mn => m a -> n b -> mn b
So the idea is to generate a local binding for (>>), thus:
let then72 :: forall a b. m a -> m b -> m b
then72 = ...something involving the user's (>>)...
in
...the do-expression...
Now the do-expression can proceed using then72, which has exactly
the expected type.
In fact tcSyntaxName just generates the RHS for then72, because we only
want an actual binding in the do-expression case. For literals, we can
just use the expression inline.
-}
tcSyntaxName :: CtOrigin
-> TcType -- ^ Type to instantiate it at
-> (Name, HsExpr GhcRn) -- ^ (Standard name, user name)
-> TcM (Name, HsExpr GhcTcId)
-- ^ (Standard name, suitable expression)
-- USED ONLY FOR CmdTop (sigh) ***
-- See Note [CmdSyntaxTable] in GHC.Hs.Expr
tcSyntaxName orig ty (std_nm, HsVar _ (L _ user_nm))
| std_nm == user_nm
= do rhs <- newMethodFromName orig std_nm [ty]
return (std_nm, rhs)
tcSyntaxName orig ty (std_nm, user_nm_expr) = do
std_id <- tcLookupId std_nm
let
-- C.f. newMethodAtLoc
([tv], _, tau) = tcSplitSigmaTy (idType std_id)
sigma1 = substTyWith [tv] [ty] tau
-- Actually, the "tau-type" might be a sigma-type in the
-- case of locally-polymorphic methods.
addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1) $ do
-- Check that the user-supplied thing has the
-- same type as the standard one.
-- Tiresome jiggling because tcCheckSigma takes a located expression
span <- getSrcSpanM
expr <- tcCheckExpr (L span user_nm_expr) sigma1
return (std_nm, unLoc expr)
syntaxNameCtxt :: HsExpr GhcRn -> CtOrigin -> Type -> TidyEnv
-> TcRn (TidyEnv, SDoc)
syntaxNameCtxt name orig ty tidy_env
= do { inst_loc <- getCtLocM orig (Just TypeLevel)
; let msg = vcat [ text "When checking that" <+> quotes (ppr name)
<+> text "(needed by a syntactic construct)"
, nest 2 (text "has the required type:"
<+> ppr (tidyType tidy_env ty))
, nest 2 (pprCtLoc inst_loc) ]
; return (tidy_env, msg) }
{-
************************************************************************
* *
Instances
* *
************************************************************************
-}
getOverlapFlag :: Maybe OverlapMode -> TcM OverlapFlag
-- Construct the OverlapFlag from the global module flags,
-- but if the overlap_mode argument is (Just m),
-- set the OverlapMode to 'm'
getOverlapFlag overlap_mode
= do { dflags <- getDynFlags
; let overlap_ok = xopt LangExt.OverlappingInstances dflags
incoherent_ok = xopt LangExt.IncoherentInstances dflags
use x = OverlapFlag { isSafeOverlap = safeLanguageOn dflags
, overlapMode = x }
default_oflag | incoherent_ok = use (Incoherent NoSourceText)
| overlap_ok = use (Overlaps NoSourceText)
| otherwise = use (NoOverlap NoSourceText)
final_oflag = setOverlapModeMaybe default_oflag overlap_mode
; return final_oflag }
tcGetInsts :: TcM [ClsInst]
-- Gets the local class instances.
tcGetInsts = fmap tcg_insts getGblEnv
newClsInst :: Maybe OverlapMode -> Name -> [TyVar] -> ThetaType
-> Class -> [Type] -> TcM ClsInst
newClsInst overlap_mode dfun_name tvs theta clas tys
= do { (subst, tvs') <- freshenTyVarBndrs tvs
-- Be sure to freshen those type variables,
-- so they are sure not to appear in any lookup
; let tys' = substTys subst tys
dfun = mkDictFunId dfun_name tvs theta clas tys
-- The dfun uses the original 'tvs' because
-- (a) they don't need to be fresh
-- (b) they may be mentioned in the ib_binds field of
-- an InstInfo, and in GHC.Tc.Utils.Env.pprInstInfoDetails it's
-- helpful to use the same names
; oflag <- getOverlapFlag overlap_mode
; let inst = mkLocalInstance dfun oflag tvs' clas tys'
; warnIfFlag Opt_WarnOrphans
(isOrphan (is_orphan inst))
(instOrphWarn inst)
; return inst }
instOrphWarn :: ClsInst -> SDoc
instOrphWarn inst
= hang (text "Orphan instance:") 2 (pprInstanceHdr inst)
$$ text "To avoid this"
$$ nest 4 (vcat possibilities)
where
possibilities =
text "move the instance declaration to the module of the class or of the type, or" :
text "wrap the type with a newtype and declare the instance on the new type." :
[]
tcExtendLocalInstEnv :: [ClsInst] -> TcM a -> TcM a
-- Add new locally-defined instances
tcExtendLocalInstEnv dfuns thing_inside
= do { traceDFuns dfuns
; env <- getGblEnv
; (inst_env', cls_insts') <- foldlM addLocalInst
(tcg_inst_env env, tcg_insts env)
dfuns
; let env' = env { tcg_insts = cls_insts'
, tcg_inst_env = inst_env' }
; setGblEnv env' thing_inside }
addLocalInst :: (InstEnv, [ClsInst]) -> ClsInst -> TcM (InstEnv, [ClsInst])
-- Check that the proposed new instance is OK,
-- and then add it to the home inst env
-- If overwrite_inst, then we can overwrite a direct match
addLocalInst (home_ie, my_insts) ispec
= do {
-- Load imported instances, so that we report
-- duplicates correctly
-- 'matches' are existing instance declarations that are less
-- specific than the new one
-- 'dups' are those 'matches' that are equal to the new one
; isGHCi <- getIsGHCi
; eps <- getEps
; tcg_env <- getGblEnv
-- In GHCi, we *override* any identical instances
-- that are also defined in the interactive context
-- See Note [Override identical instances in GHCi]
; let home_ie'
| isGHCi = deleteFromInstEnv home_ie ispec
| otherwise = home_ie
global_ie = eps_inst_env eps
inst_envs = InstEnvs { ie_global = global_ie
, ie_local = home_ie'
, ie_visible = tcVisibleOrphanMods tcg_env }
-- Check for inconsistent functional dependencies
; let inconsistent_ispecs = checkFunDeps inst_envs ispec
; unless (null inconsistent_ispecs) $
funDepErr ispec inconsistent_ispecs
-- Check for duplicate instance decls.
; let (_tvs, cls, tys) = instanceHead ispec
(matches, _, _) = lookupInstEnv False inst_envs cls tys
dups = filter (identicalClsInstHead ispec) (map fst matches)
; unless (null dups) $
dupInstErr ispec (head dups)
; return (extendInstEnv home_ie' ispec, ispec : my_insts) }
{-
Note [Signature files and type class instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instances in signature files do not have an effect when compiling:
when you compile a signature against an implementation, you will
see the instances WHETHER OR NOT the instance is declared in
the file (this is because the signatures go in the EPS and we
can't filter them out easily.) This is also why we cannot
place the instance in the hi file: it would show up as a duplicate,
and we don't have instance reexports anyway.
However, you might find them useful when typechecking against
a signature: the instance is a way of indicating to GHC that
some instance exists, in case downstream code uses it.
Implementing this is a little tricky. Consider the following
situation (sigof03):
module A where
instance C T where ...
module ASig where
instance C T
When compiling ASig, A.hi is loaded, which brings its instances
into the EPS. When we process the instance declaration in ASig,
we should ignore it for the purpose of doing a duplicate check,
since it's not actually a duplicate. But don't skip the check
entirely, we still want this to fail (tcfail221):
module ASig where
instance C T
instance C T
Note that in some situations, the interface containing the type
class instances may not have been loaded yet at all. The usual
situation when A imports another module which provides the
instances (sigof02m):
module A(module B) where
import B
See also Note [Signature lazy interface loading]. We can't
rely on this, however, since sometimes we'll have spurious
type class instances in the EPS, see #9422 (sigof02dm)
************************************************************************
* *
Errors and tracing
* *
************************************************************************
-}
traceDFuns :: [ClsInst] -> TcRn ()
traceDFuns ispecs
= traceTc "Adding instances:" (vcat (map pp ispecs))
where
pp ispec = hang (ppr (instanceDFunId ispec) <+> colon)
2 (ppr ispec)
-- Print the dfun name itself too
funDepErr :: ClsInst -> [ClsInst] -> TcRn ()
funDepErr ispec ispecs
= addClsInstsErr (text "Functional dependencies conflict between instance declarations:")
(ispec : ispecs)
dupInstErr :: ClsInst -> ClsInst -> TcRn ()
dupInstErr ispec dup_ispec
= addClsInstsErr (text "Duplicate instance declarations:")
[ispec, dup_ispec]
addClsInstsErr :: SDoc -> [ClsInst] -> TcRn ()
addClsInstsErr herald ispecs
= setSrcSpan (getSrcSpan (head sorted)) $
addErr (hang herald 2 (pprInstances sorted))
where
sorted = sortBy (SrcLoc.leftmost_smallest `on` getSrcSpan) ispecs
-- The sortBy just arranges that instances are displayed in order
-- of source location, which reduced wobbling in error messages,
-- and is better for users
|