1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
module GHC.Tc.Utils.Instantiate (
topSkolemise,
topInstantiate,
instantiateSigma,
instCall, instDFunType, instStupidTheta, instTyVarsWith,
newWanted, newWanteds,
tcInstType, tcInstTypeBndrs,
tcInstSkolTyVars, tcInstSkolTyVarsX, tcInstSkolTyVarsAt,
tcSkolDFunType, tcSuperSkolTyVars, tcInstSuperSkolTyVarsX,
freshenTyVarBndrs, freshenCoVarBndrsX,
tcInstInvisibleTyBindersN, tcInstInvisibleTyBinders, tcInstInvisibleTyBinder,
newOverloadedLit, mkOverLit,
newClsInst,
tcGetInsts, tcGetInstEnvs, getOverlapFlag,
tcExtendLocalInstEnv,
instCallConstraints, newMethodFromName,
tcSyntaxName,
-- Simple functions over evidence variables
tyCoVarsOfWC,
tyCoVarsOfCt, tyCoVarsOfCts,
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Driver.Session
import GHC.Driver.Env
import GHC.Builtin.Types ( heqDataCon, eqDataCon, integerTyConName )
import GHC.Builtin.Names
import GHC.Hs
import GHC.Core.InstEnv
import GHC.Core.Predicate
import GHC.Core ( Expr(..), isOrphan ) -- For the Coercion constructor
import GHC.Core.Type
import GHC.Core.Multiplicity
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr ( debugPprType )
import GHC.Core.Class( Class )
import GHC.Core.DataCon
import {-# SOURCE #-} GHC.Tc.Gen.Expr( tcCheckPolyExpr, tcSyntaxOp )
import {-# SOURCE #-} GHC.Tc.Utils.Unify( unifyType, unifyKind )
import GHC.Tc.Utils.Zonk
import GHC.Tc.Utils.Monad
import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.Env
import GHC.Tc.Types.Evidence
import GHC.Tc.Instance.FunDeps
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.TcType
import GHC.Types.Id.Make( mkDictFunId )
import GHC.Types.Basic ( TypeOrKind(..) )
import GHC.Types.SourceText
import GHC.Types.SrcLoc as SrcLoc
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Id
import GHC.Types.Name
import GHC.Types.Var
import qualified GHC.LanguageExtensions as LangExt
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Utils.Outputable
import GHC.Unit.State
import GHC.Unit.External
import Data.List ( sortBy, mapAccumL )
import Control.Monad( unless )
import Data.Function ( on )
{-
************************************************************************
* *
Creating and emittind constraints
* *
************************************************************************
-}
newMethodFromName
:: CtOrigin -- ^ why do we need this?
-> Name -- ^ name of the method
-> [TcRhoType] -- ^ types with which to instantiate the class
-> TcM (HsExpr GhcTc)
-- ^ Used when 'Name' is the wired-in name for a wired-in class method,
-- so the caller knows its type for sure, which should be of form
--
-- > forall a. C a => <blah>
--
-- 'newMethodFromName' is supposed to instantiate just the outer
-- type variable and constraint
newMethodFromName origin name ty_args
= do { id <- tcLookupId name
-- Use tcLookupId not tcLookupGlobalId; the method is almost
-- always a class op, but with -XRebindableSyntax GHC is
-- meant to find whatever thing is in scope, and that may
-- be an ordinary function.
; let ty = piResultTys (idType id) ty_args
(theta, _caller_knows_this) = tcSplitPhiTy ty
; wrap <- ASSERT( not (isForAllTy ty) && isSingleton theta )
instCall origin ty_args theta
; return (mkHsWrap wrap (HsVar noExtField (noLocA id))) }
{-
************************************************************************
* *
Instantiation and skolemisation
* *
************************************************************************
Note [Skolemisation]
~~~~~~~~~~~~~~~~~~~~
topSkolemise decomposes and skolemises a type, returning a type
with no top level foralls or (=>)
Examples:
topSkolemise (forall a. Ord a => a -> a)
= ( wp, [a], [d:Ord a], a->a )
where wp = /\a. \(d:Ord a). <hole> a d
topSkolemise (forall a. Ord a => forall b. Eq b => a->b->b)
= ( wp, [a,b], [d1:Ord a,d2:Eq b], a->b->b )
where wp = /\a.\(d1:Ord a)./\b.\(d2:Ord b). <hole> a d1 b d2
This second example is the reason for the recursive 'go'
function in topSkolemise: we must remove successive layers
of foralls and (=>).
In general,
if topSkolemise ty = (wrap, tvs, evs, rho)
and e :: rho
then wrap e :: ty
and 'wrap' binds {tvs, evs}
-}
topSkolemise :: TcSigmaType
-> TcM ( HsWrapper
, [(Name,TyVar)] -- All skolemised variables
, [EvVar] -- All "given"s
, TcRhoType )
-- See Note [Skolemisation]
topSkolemise ty
= go init_subst idHsWrapper [] [] ty
where
init_subst = mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType ty))
-- Why recursive? See Note [Skolemisation]
go subst wrap tv_prs ev_vars ty
| (tvs, theta, inner_ty) <- tcSplitSigmaTy ty
, not (null tvs && null theta)
= do { (subst', tvs1) <- tcInstSkolTyVarsX subst tvs
; ev_vars1 <- newEvVars (substTheta subst' theta)
; go subst'
(wrap <.> mkWpTyLams tvs1 <.> mkWpLams ev_vars1)
(tv_prs ++ (map tyVarName tvs `zip` tvs1))
(ev_vars ++ ev_vars1)
inner_ty }
| otherwise
= return (wrap, tv_prs, ev_vars, substTy subst ty)
-- substTy is a quick no-op on an empty substitution
topInstantiate ::CtOrigin -> TcSigmaType -> TcM (HsWrapper, TcRhoType)
-- Instantiate outer invisible binders (both Inferred and Specified)
-- If top_instantiate ty = (wrap, inner_ty)
-- then wrap :: inner_ty "->" ty
-- NB: returns a type with no (=>),
-- and no invisible forall at the top
topInstantiate orig sigma
| (tvs, body1) <- tcSplitSomeForAllTyVars isInvisibleArgFlag sigma
, (theta, body2) <- tcSplitPhiTy body1
, not (null tvs && null theta)
= do { (_, wrap1, body3) <- instantiateSigma orig tvs theta body2
-- Loop, to account for types like
-- forall a. Num a => forall b. Ord b => ...
; (wrap2, body4) <- topInstantiate orig body3
; return (wrap2 <.> wrap1, body4) }
| otherwise = return (idHsWrapper, sigma)
instantiateSigma :: CtOrigin -> [TyVar] -> TcThetaType -> TcSigmaType
-> TcM ([TcTyVar], HsWrapper, TcSigmaType)
-- (instantiate orig tvs theta ty)
-- instantiates the the type variables tvs, emits the (instantiated)
-- constraints theta, and returns the (instantiated) type ty
instantiateSigma orig tvs theta body_ty
= do { (subst, inst_tvs) <- mapAccumLM newMetaTyVarX empty_subst tvs
; let inst_theta = substTheta subst theta
inst_body = substTy subst body_ty
inst_tv_tys = mkTyVarTys inst_tvs
; wrap <- instCall orig inst_tv_tys inst_theta
; traceTc "Instantiating"
(vcat [ text "origin" <+> pprCtOrigin orig
, text "tvs" <+> ppr tvs
, text "theta" <+> ppr theta
, text "type" <+> debugPprType body_ty
, text "with" <+> vcat (map debugPprType inst_tv_tys)
, text "theta:" <+> ppr inst_theta ])
; return (inst_tvs, wrap, inst_body) }
where
free_tvs = tyCoVarsOfType body_ty `unionVarSet` tyCoVarsOfTypes theta
in_scope = mkInScopeSet (free_tvs `delVarSetList` tvs)
empty_subst = mkEmptyTCvSubst in_scope
instTyVarsWith :: CtOrigin -> [TyVar] -> [TcType] -> TcM TCvSubst
-- Use this when you want to instantiate (forall a b c. ty) with
-- types [ta, tb, tc], but when the kinds of 'a' and 'ta' might
-- not yet match (perhaps because there are unsolved constraints; #14154)
-- If they don't match, emit a kind-equality to promise that they will
-- eventually do so, and thus make a kind-homongeneous substitution.
instTyVarsWith orig tvs tys
= go emptyTCvSubst tvs tys
where
go subst [] []
= return subst
go subst (tv:tvs) (ty:tys)
| tv_kind `tcEqType` ty_kind
= go (extendTvSubstAndInScope subst tv ty) tvs tys
| otherwise
= do { co <- emitWantedEq orig KindLevel Nominal ty_kind tv_kind
; go (extendTvSubstAndInScope subst tv (ty `mkCastTy` co)) tvs tys }
where
tv_kind = substTy subst (tyVarKind tv)
ty_kind = tcTypeKind ty
go _ _ _ = pprPanic "instTysWith" (ppr tvs $$ ppr tys)
{-
************************************************************************
* *
Instantiating a call
* *
************************************************************************
Note [Handling boxed equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The solver deals entirely in terms of unboxed (primitive) equality.
There should never be a boxed Wanted equality. Ever. But, what if
we are calling `foo :: forall a. (F a ~ Bool) => ...`? That equality
is boxed, so naive treatment here would emit a boxed Wanted equality.
So we simply check for this case and make the right boxing of evidence.
-}
----------------
instCall :: CtOrigin -> [TcType] -> TcThetaType -> TcM HsWrapper
-- Instantiate the constraints of a call
-- (instCall o tys theta)
-- (a) Makes fresh dictionaries as necessary for the constraints (theta)
-- (b) Throws these dictionaries into the LIE
-- (c) Returns an HsWrapper ([.] tys dicts)
instCall orig tys theta
= do { dict_app <- instCallConstraints orig theta
; return (dict_app <.> mkWpTyApps tys) }
----------------
instCallConstraints :: CtOrigin -> TcThetaType -> TcM HsWrapper
-- Instantiates the TcTheta, puts all constraints thereby generated
-- into the LIE, and returns a HsWrapper to enclose the call site.
instCallConstraints orig preds
| null preds
= return idHsWrapper
| otherwise
= do { evs <- mapM go preds
; traceTc "instCallConstraints" (ppr evs)
; return (mkWpEvApps evs) }
where
go :: TcPredType -> TcM EvTerm
go pred
| Just (Nominal, ty1, ty2) <- getEqPredTys_maybe pred -- Try short-cut #1
= do { co <- unifyType Nothing ty1 ty2
; return (evCoercion co) }
-- Try short-cut #2
| Just (tc, args@[_, _, ty1, ty2]) <- splitTyConApp_maybe pred
, tc `hasKey` heqTyConKey
= do { co <- unifyType Nothing ty1 ty2
; return (evDFunApp (dataConWrapId heqDataCon) args [Coercion co]) }
| otherwise
= emitWanted orig pred
instDFunType :: DFunId -> [DFunInstType]
-> TcM ( [TcType] -- instantiated argument types
, TcThetaType ) -- instantiated constraint
-- See Note [DFunInstType: instantiating types] in GHC.Core.InstEnv
instDFunType dfun_id dfun_inst_tys
= do { (subst, inst_tys) <- go empty_subst dfun_tvs dfun_inst_tys
; return (inst_tys, substTheta subst dfun_theta) }
where
dfun_ty = idType dfun_id
(dfun_tvs, dfun_theta, _) = tcSplitSigmaTy dfun_ty
empty_subst = mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType dfun_ty))
-- With quantified constraints, the
-- type of a dfun may not be closed
go :: TCvSubst -> [TyVar] -> [DFunInstType] -> TcM (TCvSubst, [TcType])
go subst [] [] = return (subst, [])
go subst (tv:tvs) (Just ty : mb_tys)
= do { (subst', tys) <- go (extendTvSubstAndInScope subst tv ty)
tvs
mb_tys
; return (subst', ty : tys) }
go subst (tv:tvs) (Nothing : mb_tys)
= do { (subst', tv') <- newMetaTyVarX subst tv
; (subst'', tys) <- go subst' tvs mb_tys
; return (subst'', mkTyVarTy tv' : tys) }
go _ _ _ = pprPanic "instDFunTypes" (ppr dfun_id $$ ppr dfun_inst_tys)
----------------
instStupidTheta :: CtOrigin -> TcThetaType -> TcM ()
-- Similar to instCall, but only emit the constraints in the LIE
-- Used exclusively for the 'stupid theta' of a data constructor
instStupidTheta orig theta
= do { _co <- instCallConstraints orig theta -- Discard the coercion
; return () }
{- *********************************************************************
* *
Instantiating Kinds
* *
********************************************************************* -}
-- | Given ty::forall k1 k2. k, instantiate all the invisible forall-binders
-- returning ty @kk1 @kk2 :: k[kk1/k1, kk2/k1]
tcInstInvisibleTyBinders :: TcType -> TcKind -> TcM (TcType, TcKind)
tcInstInvisibleTyBinders ty kind
= do { (extra_args, kind') <- tcInstInvisibleTyBindersN n_invis kind
; return (mkAppTys ty extra_args, kind') }
where
n_invis = invisibleTyBndrCount kind
tcInstInvisibleTyBindersN :: Int -> TcKind -> TcM ([TcType], TcKind)
tcInstInvisibleTyBindersN 0 kind
= return ([], kind)
tcInstInvisibleTyBindersN n ty
= go n empty_subst ty
where
empty_subst = mkEmptyTCvSubst (mkInScopeSet (tyCoVarsOfType ty))
go n subst kind
| n > 0
, Just (bndr, body) <- tcSplitPiTy_maybe kind
, isInvisibleBinder bndr
= do { (subst', arg) <- tcInstInvisibleTyBinder subst bndr
; (args, inner_ty) <- go (n-1) subst' body
; return (arg:args, inner_ty) }
| otherwise
= return ([], substTy subst kind)
-- | Used only in *types*
tcInstInvisibleTyBinder :: TCvSubst -> TyBinder -> TcM (TCvSubst, TcType)
tcInstInvisibleTyBinder subst (Named (Bndr tv _))
= do { (subst', tv') <- newMetaTyVarX subst tv
; return (subst', mkTyVarTy tv') }
tcInstInvisibleTyBinder subst (Anon af ty)
| Just (mk, k1, k2) <- get_eq_tys_maybe (substTy subst (scaledThing ty))
-- Equality is the *only* constraint currently handled in types.
-- See Note [Constraints in kinds] in GHC.Core.TyCo.Rep
= ASSERT( af == InvisArg )
do { co <- unifyKind Nothing k1 k2
; arg' <- mk co
; return (subst, arg') }
| otherwise -- This should never happen
-- See GHC.Core.TyCo.Rep Note [Constraints in kinds]
= pprPanic "tcInvisibleTyBinder" (ppr ty)
-------------------------------
get_eq_tys_maybe :: Type
-> Maybe ( Coercion -> TcM Type
-- given a coercion proving t1 ~# t2, produce the
-- right instantiation for the TyBinder at hand
, Type -- t1
, Type -- t2
)
-- See Note [Constraints in kinds] in GHC.Core.TyCo.Rep
get_eq_tys_maybe ty
-- Lifted heterogeneous equality (~~)
| Just (tc, [_, _, k1, k2]) <- splitTyConApp_maybe ty
, tc `hasKey` heqTyConKey
= Just (\co -> mkHEqBoxTy co k1 k2, k1, k2)
-- Lifted homogeneous equality (~)
| Just (tc, [_, k1, k2]) <- splitTyConApp_maybe ty
, tc `hasKey` eqTyConKey
= Just (\co -> mkEqBoxTy co k1 k2, k1, k2)
| otherwise
= Nothing
-- | This takes @a ~# b@ and returns @a ~~ b@.
mkHEqBoxTy :: TcCoercion -> Type -> Type -> TcM Type
-- monadic just for convenience with mkEqBoxTy
mkHEqBoxTy co ty1 ty2
= return $
mkTyConApp (promoteDataCon heqDataCon) [k1, k2, ty1, ty2, mkCoercionTy co]
where k1 = tcTypeKind ty1
k2 = tcTypeKind ty2
-- | This takes @a ~# b@ and returns @a ~ b@.
mkEqBoxTy :: TcCoercion -> Type -> Type -> TcM Type
mkEqBoxTy co ty1 ty2
= return $
mkTyConApp (promoteDataCon eqDataCon) [k, ty1, ty2, mkCoercionTy co]
where k = tcTypeKind ty1
{- *********************************************************************
* *
SkolemTvs (immutable)
* *
********************************************************************* -}
tcInstType :: ([TyVar] -> TcM (TCvSubst, [TcTyVar]))
-- ^ How to instantiate the type variables
-> Id -- ^ Type to instantiate
-> TcM ([(Name, TcTyVar)], TcThetaType, TcType) -- ^ Result
-- (type vars, preds (incl equalities), rho)
tcInstType inst_tyvars id
| null tyvars -- There may be overloading despite no type variables;
-- (?x :: Int) => Int -> Int
= return ([], theta, tau)
| otherwise
= do { (subst, tyvars') <- inst_tyvars tyvars
; let tv_prs = map tyVarName tyvars `zip` tyvars'
subst' = extendTCvInScopeSet subst (tyCoVarsOfType rho)
; return (tv_prs, substTheta subst' theta, substTy subst' tau) }
where
(tyvars, rho) = tcSplitForAllInvisTyVars (idType id)
(theta, tau) = tcSplitPhiTy rho
tcInstTypeBndrs :: Id -> TcM ([(Name, InvisTVBinder)], TcThetaType, TcType)
-- (type vars, preds (incl equalities), rho)
-- Instantiate the binders of a type signature with TyVarTvs
tcInstTypeBndrs id
| null tyvars -- There may be overloading despite no type variables;
-- (?x :: Int) => Int -> Int
= return ([], theta, tau)
| otherwise
= do { (subst, tyvars') <- mapAccumLM inst_invis_bndr emptyTCvSubst tyvars
; let tv_prs = map (tyVarName . binderVar) tyvars `zip` tyvars'
subst' = extendTCvInScopeSet subst (tyCoVarsOfType rho)
; return (tv_prs, substTheta subst' theta, substTy subst' tau) }
where
(tyvars, rho) = splitForAllInvisTVBinders (idType id)
(theta, tau) = tcSplitPhiTy rho
inst_invis_bndr :: TCvSubst -> InvisTVBinder
-> TcM (TCvSubst, InvisTVBinder)
inst_invis_bndr subst (Bndr tv spec)
= do { (subst', tv') <- newMetaTyVarTyVarX subst tv
; return (subst', Bndr tv' spec) }
tcSkolDFunType :: DFunId -> TcM ([TcTyVar], TcThetaType, TcType)
-- Instantiate a type signature with skolem constants.
-- This freshens the names, but no need to do so
tcSkolDFunType dfun
= do { (tv_prs, theta, tau) <- tcInstType tcInstSuperSkolTyVars dfun
; return (map snd tv_prs, theta, tau) }
tcSuperSkolTyVars :: [TyVar] -> (TCvSubst, [TcTyVar])
-- Make skolem constants, but do *not* give them new names, as above
-- Moreover, make them "super skolems"; see comments with superSkolemTv
-- see Note [Kind substitution when instantiating]
-- Precondition: tyvars should be ordered by scoping
tcSuperSkolTyVars = mapAccumL tcSuperSkolTyVar emptyTCvSubst
tcSuperSkolTyVar :: TCvSubst -> TyVar -> (TCvSubst, TcTyVar)
tcSuperSkolTyVar subst tv
= (extendTvSubstWithClone subst tv new_tv, new_tv)
where
kind = substTyUnchecked subst (tyVarKind tv)
new_tv = mkTcTyVar (tyVarName tv) kind superSkolemTv
-- | Given a list of @['TyVar']@, skolemize the type variables,
-- returning a substitution mapping the original tyvars to the
-- skolems, and the list of newly bound skolems.
tcInstSkolTyVars :: [TyVar] -> TcM (TCvSubst, [TcTyVar])
-- See Note [Skolemising type variables]
tcInstSkolTyVars = tcInstSkolTyVarsX emptyTCvSubst
tcInstSkolTyVarsX :: TCvSubst -> [TyVar] -> TcM (TCvSubst, [TcTyVar])
-- See Note [Skolemising type variables]
tcInstSkolTyVarsX = tcInstSkolTyVarsPushLevel False
tcInstSuperSkolTyVars :: [TyVar] -> TcM (TCvSubst, [TcTyVar])
-- See Note [Skolemising type variables]
-- This version freshens the names and creates "super skolems";
-- see comments around superSkolemTv.
tcInstSuperSkolTyVars = tcInstSuperSkolTyVarsX emptyTCvSubst
tcInstSuperSkolTyVarsX :: TCvSubst -> [TyVar] -> TcM (TCvSubst, [TcTyVar])
-- See Note [Skolemising type variables]
-- This version freshens the names and creates "super skolems";
-- see comments around superSkolemTv.
tcInstSuperSkolTyVarsX subst = tcInstSkolTyVarsPushLevel True subst
tcInstSkolTyVarsPushLevel :: Bool -- True <=> make "super skolem"
-> TCvSubst -> [TyVar]
-> TcM (TCvSubst, [TcTyVar])
-- Skolemise one level deeper, hence pushTcLevel
-- See Note [Skolemising type variables]
tcInstSkolTyVarsPushLevel overlappable subst tvs
= do { tc_lvl <- getTcLevel
; let pushed_lvl = pushTcLevel tc_lvl
; tcInstSkolTyVarsAt pushed_lvl overlappable subst tvs }
tcInstSkolTyVarsAt :: TcLevel -> Bool
-> TCvSubst -> [TyVar]
-> TcM (TCvSubst, [TcTyVar])
tcInstSkolTyVarsAt lvl overlappable subst tvs
= freshenTyCoVarsX new_skol_tv subst tvs
where
details = SkolemTv lvl overlappable
new_skol_tv name kind = mkTcTyVar name kind details
------------------
freshenTyVarBndrs :: [TyVar] -> TcM (TCvSubst, [TyVar])
-- ^ Give fresh uniques to a bunch of TyVars, but they stay
-- as TyVars, rather than becoming TcTyVars
-- Used in 'GHC.Tc.Instance.Family.newFamInst', and 'GHC.Tc.Utils.Instantiate.newClsInst'
freshenTyVarBndrs = freshenTyCoVars mkTyVar
freshenCoVarBndrsX :: TCvSubst -> [CoVar] -> TcM (TCvSubst, [CoVar])
-- ^ Give fresh uniques to a bunch of CoVars
-- Used in "GHC.Tc.Instance.Family.newFamInst"
freshenCoVarBndrsX subst = freshenTyCoVarsX mkCoVar subst
------------------
freshenTyCoVars :: (Name -> Kind -> TyCoVar)
-> [TyVar] -> TcM (TCvSubst, [TyCoVar])
freshenTyCoVars mk_tcv = freshenTyCoVarsX mk_tcv emptyTCvSubst
freshenTyCoVarsX :: (Name -> Kind -> TyCoVar)
-> TCvSubst -> [TyCoVar]
-> TcM (TCvSubst, [TyCoVar])
freshenTyCoVarsX mk_tcv = mapAccumLM (freshenTyCoVarX mk_tcv)
freshenTyCoVarX :: (Name -> Kind -> TyCoVar)
-> TCvSubst -> TyCoVar -> TcM (TCvSubst, TyCoVar)
-- This a complete freshening operation:
-- the skolems have a fresh unique, and a location from the monad
-- See Note [Skolemising type variables]
freshenTyCoVarX mk_tcv subst tycovar
= do { loc <- getSrcSpanM
; uniq <- newUnique
; let old_name = tyVarName tycovar
new_name = mkInternalName uniq (getOccName old_name) loc
new_kind = substTyUnchecked subst (tyVarKind tycovar)
new_tcv = mk_tcv new_name new_kind
subst1 = extendTCvSubstWithClone subst tycovar new_tcv
; return (subst1, new_tcv) }
{- Note [Skolemising type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The tcInstSkolTyVars family of functions instantiate a list of TyVars
to fresh skolem TcTyVars. Important notes:
a) Level allocation. We generally skolemise /before/ calling
pushLevelAndCaptureConstraints. So we want their level to the level
of the soon-to-be-created implication, which has a level ONE HIGHER
than the current level. Hence the pushTcLevel. It feels like a
slight hack.
b) The [TyVar] should be ordered (kind vars first)
See Note [Kind substitution when instantiating]
c) Clone the variable to give a fresh unique. This is essential.
Consider (tc160)
type Foo x = forall a. a -> x
And typecheck the expression
(e :: Foo (Foo ())
We will skolemise the signature, but after expanding synonyms it
looks like
forall a. a -> forall a. a -> x
We don't want to make two big-lambdas with the same unique!
d) We retain locations. Because the location of the variable is the correct
location to report in errors (e.g. in the signature). We don't want the
location to change to the body of the function, which does *not* explicitly
bind the variable.
e) The resulting skolems are
non-overlappable for tcInstSkolTyVars,
but overlappable for tcInstSuperSkolTyVars
See GHC.Tc.Deriv.Infer Note [Overlap and deriving] for an example
of where this matters.
Note [Kind substitution when instantiating]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we instantiate a bunch of kind and type variables, first we
expect them to be topologically sorted.
Then we have to instantiate the kind variables, build a substitution
from old variables to the new variables, then instantiate the type
variables substituting the original kind.
Exemple: If we want to instantiate
[(k1 :: *), (k2 :: *), (a :: k1 -> k2), (b :: k1)]
we want
[(?k1 :: *), (?k2 :: *), (?a :: ?k1 -> ?k2), (?b :: ?k1)]
instead of the bogus
[(?k1 :: *), (?k2 :: *), (?a :: k1 -> k2), (?b :: k1)]
-}
{- *********************************************************************
* *
Literals
* *
********************************************************************* -}
{-
In newOverloadedLit we convert directly to an Int or Integer if we
know that's what we want. This may save some time, by not
temporarily generating overloaded literals, but it won't catch all
cases (the rest are caught in lookupInst).
-}
newOverloadedLit :: HsOverLit GhcRn
-> ExpRhoType
-> TcM (HsOverLit GhcTc)
newOverloadedLit lit res_ty
= do { mb_lit' <- tcShortCutLit lit res_ty
; case mb_lit' of
Just lit' -> return lit'
Nothing -> newNonTrivialOverloadedLit lit res_ty }
-- Does not handle things that 'shortCutLit' can handle. See also
-- newOverloadedLit in GHC.Tc.Utils.Unify
newNonTrivialOverloadedLit :: HsOverLit GhcRn
-> ExpRhoType
-> TcM (HsOverLit GhcTc)
newNonTrivialOverloadedLit
lit@(OverLit { ol_val = val, ol_witness = HsVar _ (L _ meth_name)
, ol_ext = rebindable }) res_ty
= do { hs_lit <- mkOverLit val
; let lit_ty = hsLitType hs_lit
; (_, fi') <- tcSyntaxOp orig (mkRnSyntaxExpr meth_name)
[synKnownType lit_ty] res_ty $
\_ _ -> return ()
; let L _ witness = nlHsSyntaxApps fi' [nlHsLit hs_lit]
; res_ty <- readExpType res_ty
; return (lit { ol_witness = witness
, ol_ext = OverLitTc rebindable res_ty }) }
where
orig = LiteralOrigin lit
newNonTrivialOverloadedLit lit _
= pprPanic "newNonTrivialOverloadedLit" (ppr lit)
------------
mkOverLit ::OverLitVal -> TcM (HsLit GhcTc)
mkOverLit (HsIntegral i)
= do { integer_ty <- tcMetaTy integerTyConName
; return (HsInteger (il_text i)
(il_value i) integer_ty) }
mkOverLit (HsFractional r)
= do { rat_ty <- tcMetaTy rationalTyConName
; return (HsRat noExtField r rat_ty) }
mkOverLit (HsIsString src s) = return (HsString src s)
{-
************************************************************************
* *
Re-mappable syntax
Used only for arrow syntax -- find a way to nuke this
* *
************************************************************************
Suppose we are doing the -XRebindableSyntax thing, and we encounter
a do-expression. We have to find (>>) in the current environment, which is
done by the rename. Then we have to check that it has the same type as
Control.Monad.(>>). Or, more precisely, a compatible type. One 'customer' had
this:
(>>) :: HB m n mn => m a -> n b -> mn b
So the idea is to generate a local binding for (>>), thus:
let then72 :: forall a b. m a -> m b -> m b
then72 = ...something involving the user's (>>)...
in
...the do-expression...
Now the do-expression can proceed using then72, which has exactly
the expected type.
In fact tcSyntaxName just generates the RHS for then72, because we only
want an actual binding in the do-expression case. For literals, we can
just use the expression inline.
-}
tcSyntaxName :: CtOrigin
-> TcType -- ^ Type to instantiate it at
-> (Name, HsExpr GhcRn) -- ^ (Standard name, user name)
-> TcM (Name, HsExpr GhcTc)
-- ^ (Standard name, suitable expression)
-- USED ONLY FOR CmdTop (sigh) ***
-- See Note [CmdSyntaxTable] in "GHC.Hs.Expr"
tcSyntaxName orig ty (std_nm, HsVar _ (L _ user_nm))
| std_nm == user_nm
= do rhs <- newMethodFromName orig std_nm [ty]
return (std_nm, rhs)
tcSyntaxName orig ty (std_nm, user_nm_expr) = do
std_id <- tcLookupId std_nm
let
-- C.f. newMethodAtLoc
([tv], _, tau) = tcSplitSigmaTy (idType std_id)
sigma1 = substTyWith [tv] [ty] tau
-- Actually, the "tau-type" might be a sigma-type in the
-- case of locally-polymorphic methods.
addErrCtxtM (syntaxNameCtxt user_nm_expr orig sigma1) $ do
-- Check that the user-supplied thing has the
-- same type as the standard one.
-- Tiresome jiggling because tcCheckSigma takes a located expression
span <- getSrcSpanM
expr <- tcCheckPolyExpr (L (noAnnSrcSpan span) user_nm_expr) sigma1
return (std_nm, unLoc expr)
syntaxNameCtxt :: HsExpr GhcRn -> CtOrigin -> Type -> TidyEnv
-> TcRn (TidyEnv, SDoc)
syntaxNameCtxt name orig ty tidy_env
= do { inst_loc <- getCtLocM orig (Just TypeLevel)
; let msg = vcat [ text "When checking that" <+> quotes (ppr name)
<+> text "(needed by a syntactic construct)"
, nest 2 (text "has the required type:"
<+> ppr (tidyType tidy_env ty))
, nest 2 (pprCtLoc inst_loc) ]
; return (tidy_env, msg) }
{-
************************************************************************
* *
Instances
* *
************************************************************************
-}
getOverlapFlag :: Maybe OverlapMode -> TcM OverlapFlag
-- Construct the OverlapFlag from the global module flags,
-- but if the overlap_mode argument is (Just m),
-- set the OverlapMode to 'm'
getOverlapFlag overlap_mode
= do { dflags <- getDynFlags
; let overlap_ok = xopt LangExt.OverlappingInstances dflags
incoherent_ok = xopt LangExt.IncoherentInstances dflags
use x = OverlapFlag { isSafeOverlap = safeLanguageOn dflags
, overlapMode = x }
default_oflag | incoherent_ok = use (Incoherent NoSourceText)
| overlap_ok = use (Overlaps NoSourceText)
| otherwise = use (NoOverlap NoSourceText)
final_oflag = setOverlapModeMaybe default_oflag overlap_mode
; return final_oflag }
tcGetInsts :: TcM [ClsInst]
-- Gets the local class instances.
tcGetInsts = fmap tcg_insts getGblEnv
newClsInst :: Maybe OverlapMode -> Name -> [TyVar] -> ThetaType
-> Class -> [Type] -> TcM ClsInst
newClsInst overlap_mode dfun_name tvs theta clas tys
= do { (subst, tvs') <- freshenTyVarBndrs tvs
-- Be sure to freshen those type variables,
-- so they are sure not to appear in any lookup
; let tys' = substTys subst tys
dfun = mkDictFunId dfun_name tvs theta clas tys
-- The dfun uses the original 'tvs' because
-- (a) they don't need to be fresh
-- (b) they may be mentioned in the ib_binds field of
-- an InstInfo, and in GHC.Tc.Utils.Env.pprInstInfoDetails it's
-- helpful to use the same names
; oflag <- getOverlapFlag overlap_mode
; let inst = mkLocalInstance dfun oflag tvs' clas tys'
; warnIfFlag Opt_WarnOrphans
(isOrphan (is_orphan inst))
(instOrphWarn inst)
; return inst }
instOrphWarn :: ClsInst -> SDoc
instOrphWarn inst
= hang (text "Orphan instance:") 2 (pprInstanceHdr inst)
$$ text "To avoid this"
$$ nest 4 (vcat possibilities)
where
possibilities =
text "move the instance declaration to the module of the class or of the type, or" :
text "wrap the type with a newtype and declare the instance on the new type." :
[]
tcExtendLocalInstEnv :: [ClsInst] -> TcM a -> TcM a
-- Add new locally-defined instances
tcExtendLocalInstEnv dfuns thing_inside
= do { traceDFuns dfuns
; env <- getGblEnv
; (inst_env', cls_insts') <- foldlM addLocalInst
(tcg_inst_env env, tcg_insts env)
dfuns
; let env' = env { tcg_insts = cls_insts'
, tcg_inst_env = inst_env' }
; setGblEnv env' thing_inside }
addLocalInst :: (InstEnv, [ClsInst]) -> ClsInst -> TcM (InstEnv, [ClsInst])
-- Check that the proposed new instance is OK,
-- and then add it to the home inst env
-- If overwrite_inst, then we can overwrite a direct match
addLocalInst (home_ie, my_insts) ispec
= do {
-- Load imported instances, so that we report
-- duplicates correctly
-- 'matches' are existing instance declarations that are less
-- specific than the new one
-- 'dups' are those 'matches' that are equal to the new one
; isGHCi <- getIsGHCi
; eps <- getEps
; tcg_env <- getGblEnv
-- In GHCi, we *override* any identical instances
-- that are also defined in the interactive context
-- See Note [Override identical instances in GHCi]
; let home_ie'
| isGHCi = deleteFromInstEnv home_ie ispec
| otherwise = home_ie
global_ie = eps_inst_env eps
inst_envs = InstEnvs { ie_global = global_ie
, ie_local = home_ie'
, ie_visible = tcVisibleOrphanMods tcg_env }
-- Check for inconsistent functional dependencies
; let inconsistent_ispecs = checkFunDeps inst_envs ispec
; unless (null inconsistent_ispecs) $
funDepErr ispec inconsistent_ispecs
-- Check for duplicate instance decls.
; let (_tvs, cls, tys) = instanceHead ispec
(matches, _, _) = lookupInstEnv False inst_envs cls tys
dups = filter (identicalClsInstHead ispec) (map fst matches)
; unless (null dups) $
dupInstErr ispec (head dups)
; return (extendInstEnv home_ie' ispec, ispec : my_insts) }
{-
Note [Signature files and type class instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instances in signature files do not have an effect when compiling:
when you compile a signature against an implementation, you will
see the instances WHETHER OR NOT the instance is declared in
the file (this is because the signatures go in the EPS and we
can't filter them out easily.) This is also why we cannot
place the instance in the hi file: it would show up as a duplicate,
and we don't have instance reexports anyway.
However, you might find them useful when typechecking against
a signature: the instance is a way of indicating to GHC that
some instance exists, in case downstream code uses it.
Implementing this is a little tricky. Consider the following
situation (sigof03):
module A where
instance C T where ...
module ASig where
instance C T
When compiling ASig, A.hi is loaded, which brings its instances
into the EPS. When we process the instance declaration in ASig,
we should ignore it for the purpose of doing a duplicate check,
since it's not actually a duplicate. But don't skip the check
entirely, we still want this to fail (tcfail221):
module ASig where
instance C T
instance C T
Note that in some situations, the interface containing the type
class instances may not have been loaded yet at all. The usual
situation when A imports another module which provides the
instances (sigof02m):
module A(module B) where
import B
See also Note [Signature lazy interface loading]. We can't
rely on this, however, since sometimes we'll have spurious
type class instances in the EPS, see #9422 (sigof02dm)
************************************************************************
* *
Errors and tracing
* *
************************************************************************
-}
traceDFuns :: [ClsInst] -> TcRn ()
traceDFuns ispecs
= traceTc "Adding instances:" (vcat (map pp ispecs))
where
pp ispec = hang (ppr (instanceDFunId ispec) <+> colon)
2 (ppr ispec)
-- Print the dfun name itself too
funDepErr :: ClsInst -> [ClsInst] -> TcRn ()
funDepErr ispec ispecs
= addClsInstsErr (text "Functional dependencies conflict between instance declarations:")
(ispec : ispecs)
dupInstErr :: ClsInst -> ClsInst -> TcRn ()
dupInstErr ispec dup_ispec
= addClsInstsErr (text "Duplicate instance declarations:")
[ispec, dup_ispec]
addClsInstsErr :: SDoc -> [ClsInst] -> TcRn ()
addClsInstsErr herald ispecs = do
unit_state <- hsc_units <$> getTopEnv
setSrcSpan (getSrcSpan (head sorted)) $
addErr $ pprWithUnitState unit_state $ (hang herald 2 (pprInstances sorted))
where
sorted = sortBy (SrcLoc.leftmost_smallest `on` getSrcSpan) ispecs
-- The sortBy just arranges that instances are displayed in order
-- of source location, which reduced wobbling in error messages,
-- and is better for users
|