1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, DeriveFunctor, MultiWayIf, TupleSections,
ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- | Type subsumption and unification
module GHC.Tc.Utils.Unify (
-- Full-blown subsumption
tcWrapResult, tcWrapResultO, tcWrapResultMono,
tcSkolemise, tcSkolemiseScoped, tcSkolemiseET,
tcSubType, tcSubTypeSigma, tcSubTypePat,
tcSubMult,
checkConstraints, checkTvConstraints,
buildImplicationFor, buildTvImplication, emitResidualTvConstraint,
-- Various unifications
unifyType, unifyKind,
uType, promoteTcType,
swapOverTyVars, canSolveByUnification,
--------------------------------
-- Holes
tcInfer,
matchExpectedListTy,
matchExpectedTyConApp,
matchExpectedAppTy,
matchExpectedFunTys,
matchActualFunTysRho, matchActualFunTySigma,
matchExpectedFunKind,
metaTyVarUpdateOK, occCheckForErrors, MetaTyVarUpdateResult(..)
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Hs
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr( debugPprType )
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Env
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Types.Name( isSystemName )
import GHC.Tc.Utils.Instantiate
import GHC.Core.TyCon
import GHC.Builtin.Types
import GHC.Types.Var as Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Error
import GHC.Driver.Session
import GHC.Types.Basic
import GHC.Data.Bag
import GHC.Utils.Misc
import qualified GHC.LanguageExtensions as LangExt
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import Control.Monad
import Control.Arrow ( second )
{-
************************************************************************
* *
matchExpected functions
* *
************************************************************************
Note [Herald for matchExpectedFunTys]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The 'herald' always looks like:
"The equation(s) for 'f' have"
"The abstraction (\x.e) takes"
"The section (+ x) expects"
"The function 'f' is applied to"
This is used to construct a message of form
The abstraction `\Just 1 -> ...' takes two arguments
but its type `Maybe a -> a' has only one
The equation(s) for `f' have two arguments
but its type `Maybe a -> a' has only one
The section `(f 3)' requires 'f' to take two arguments
but its type `Int -> Int' has only one
The function 'f' is applied to two arguments
but its type `Int -> Int' has only one
When visible type applications (e.g., `f @Int 1 2`, as in #13902) enter the
picture, we have a choice in deciding whether to count the type applications as
proper arguments:
The function 'f' is applied to one visible type argument
and two value arguments
but its type `forall a. a -> a` has only one visible type argument
and one value argument
Or whether to include the type applications as part of the herald itself:
The expression 'f @Int' is applied to two arguments
but its type `Int -> Int` has only one
The latter is easier to implement and is arguably easier to understand, so we
choose to implement that option.
Note [matchExpectedFunTys]
~~~~~~~~~~~~~~~~~~~~~~~~~~
matchExpectedFunTys checks that a sigma has the form
of an n-ary function. It passes the decomposed type to the
thing_inside, and returns a wrapper to coerce between the two types
It's used wherever a language construct must have a functional type,
namely:
A lambda expression
A function definition
An operator section
This function must be written CPS'd because it needs to fill in the
ExpTypes produced for arguments before it can fill in the ExpType
passed in.
-}
-- Use this one when you have an "expected" type.
-- This function skolemises at each polytype.
matchExpectedFunTys :: forall a.
SDoc -- See Note [Herald for matchExpectedFunTys]
-> UserTypeCtxt
-> Arity
-> ExpRhoType -- Skolemised
-> ([Scaled ExpSigmaType] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
-- If matchExpectedFunTys n ty = (_, wrap)
-- then wrap : (t1 -> ... -> tn -> ty_r) ~> ty,
-- where [t1, ..., tn], ty_r are passed to the thing_inside
matchExpectedFunTys herald ctx arity orig_ty thing_inside
= case orig_ty of
Check ty -> go [] arity ty
_ -> defer [] arity orig_ty
where
-- Skolemise any foralls /before/ the zero-arg case
-- so that we guarantee to return a rho-type
go acc_arg_tys n ty
| (tvs, theta, _) <- tcSplitSigmaTy ty
, not (null tvs && null theta)
= do { (wrap_gen, (wrap_res, result)) <- tcSkolemise ctx ty $ \ty' ->
go acc_arg_tys n ty'
; return (wrap_gen <.> wrap_res, result) }
-- No more args; do this /before/ tcView, so
-- that we do not unnecessarily unwrap synonyms
go acc_arg_tys 0 rho_ty
= do { result <- thing_inside (reverse acc_arg_tys) (mkCheckExpType rho_ty)
; return (idHsWrapper, result) }
go acc_arg_tys n ty
| Just ty' <- tcView ty = go acc_arg_tys n ty'
go acc_arg_tys n (FunTy { ft_mult = mult, ft_af = af, ft_arg = arg_ty, ft_res = res_ty })
= ASSERT( af == VisArg )
do { (wrap_res, result) <- go ((Scaled mult $ mkCheckExpType arg_ty) : acc_arg_tys)
(n-1) res_ty
; let fun_wrap = mkWpFun idHsWrapper wrap_res (Scaled mult arg_ty) res_ty doc
; return ( fun_wrap, result ) }
where
doc = text "When inferring the argument type of a function with type" <+>
quotes (ppr orig_ty)
go acc_arg_tys n ty@(TyVarTy tv)
| isMetaTyVar tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty' -> go acc_arg_tys n ty'
Flexi -> defer acc_arg_tys n (mkCheckExpType ty) }
-- In all other cases we bale out into ordinary unification
-- However unlike the meta-tyvar case, we are sure that the
-- number of arguments doesn't match arity of the original
-- type, so we can add a bit more context to the error message
-- (cf #7869).
--
-- It is not always an error, because specialized type may have
-- different arity, for example:
--
-- > f1 = f2 'a'
-- > f2 :: Monad m => m Bool
-- > f2 = undefined
--
-- But in that case we add specialized type into error context
-- anyway, because it may be useful. See also #9605.
go acc_arg_tys n ty = addErrCtxtM (mk_ctxt acc_arg_tys ty) $
defer acc_arg_tys n (mkCheckExpType ty)
------------
defer :: [Scaled ExpSigmaType] -> Arity -> ExpRhoType -> TcM (HsWrapper, a)
defer acc_arg_tys n fun_ty
= do { more_arg_tys <- replicateM n newInferExpType
; res_ty <- newInferExpType
; result <- thing_inside (reverse acc_arg_tys ++ (map unrestricted more_arg_tys)) res_ty
; more_arg_tys <- mapM readExpType more_arg_tys
; res_ty <- readExpType res_ty
; let unif_fun_ty = mkVisFunTysMany more_arg_tys res_ty
; wrap <- tcSubType AppOrigin ctx unif_fun_ty fun_ty
-- Not a good origin at all :-(
; return (wrap, result) }
------------
mk_ctxt :: [Scaled ExpSigmaType] -> TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
mk_ctxt arg_tys res_ty env
= do { (env', ty) <- zonkTidyTcType env (mkVisFunTys arg_tys' res_ty)
; return ( env', mk_fun_tys_msg herald ty arity) }
where
arg_tys' = map (\(Scaled u v) -> Scaled u (checkingExpType "matchExpectedFunTys" v)) (reverse arg_tys)
-- this is safe b/c we're called from "go"
-- Like 'matchExpectedFunTys', but used when you have an "actual" type,
-- for example in function application
matchActualFunTysRho :: SDoc -- See Note [Herald for matchExpectedFunTys]
-> CtOrigin
-> Maybe (HsExpr GhcRn) -- the thing with type TcSigmaType
-> Arity
-> TcSigmaType
-> TcM (HsWrapper, [Scaled TcSigmaType], TcRhoType)
-- If matchActualFunTysRho n ty = (wrap, [t1,..,tn], res_ty)
-- then wrap : ty ~> (t1 -> ... -> tn -> res_ty)
-- and res_ty is a RhoType
-- NB: the returned type is top-instantiated; it's a RhoType
matchActualFunTysRho herald ct_orig mb_thing n_val_args_wanted fun_ty
= go n_val_args_wanted [] fun_ty
where
go 0 _ fun_ty
= do { (wrap, rho) <- topInstantiate ct_orig fun_ty
; return (wrap, [], rho) }
go n so_far fun_ty
= do { (wrap_fun1, arg_ty1, res_ty1) <- matchActualFunTySigma
herald ct_orig mb_thing
(n_val_args_wanted, so_far)
fun_ty
; (wrap_res, arg_tys, res_ty) <- go (n-1) (arg_ty1:so_far) res_ty1
; let wrap_fun2 = mkWpFun idHsWrapper wrap_res arg_ty1 res_ty doc
; return (wrap_fun2 <.> wrap_fun1, arg_ty1:arg_tys, res_ty) }
where
doc = text "When inferring the argument type of a function with type" <+>
quotes (ppr fun_ty)
-- | matchActualFunTySigm does looks for just one function arrow
-- returning an uninstantiated sigma-type
matchActualFunTySigma
:: SDoc -- See Note [Herald for matchExpectedFunTys]
-> CtOrigin
-> Maybe (HsExpr GhcRn) -- The thing with type TcSigmaType
-> (Arity, [Scaled TcSigmaType]) -- Total number of value args in the call, and
-- types of values args to which function has
-- been applied already (reversed)
-- Both are used only for error messages)
-> TcSigmaType -- Type to analyse
-> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
-- See Note [matchActualFunTys error handling] for all these arguments
-- If (wrap, arg_ty, res_ty) = matchActualFunTySigma ... fun_ty
-- then wrap :: fun_ty ~> (arg_ty -> res_ty)
-- and NB: res_ty is an (uninstantiated) SigmaType
matchActualFunTySigma herald ct_orig mb_thing err_info fun_ty
= go fun_ty
-- Does not allocate unnecessary meta variables: if the input already is
-- a function, we just take it apart. Not only is this efficient,
-- it's important for higher rank: the argument might be of form
-- (forall a. ty) -> other
-- If allocated (fresh-meta-var1 -> fresh-meta-var2) and unified, we'd
-- hide the forall inside a meta-variable
-- (*) Sometimes it's necessary to call matchActualFunTys with only part
-- (that is, to the right of some arrows) of the type of the function in
-- question. (See GHC.Tc.Gen.Expr.tcArgs.) This argument is the reversed list of
-- arguments already seen (that is, not part of the TcSigmaType passed
-- in elsewhere).
where
go :: TcSigmaType -- The remainder of the type as we're processing
-> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
go ty | Just ty' <- tcView ty = go ty'
go ty
| not (null tvs && null theta)
= do { (wrap1, rho) <- topInstantiate ct_orig ty
; (wrap2, arg_ty, res_ty) <- go rho
; return (wrap2 <.> wrap1, arg_ty, res_ty) }
where
(tvs, theta, _) = tcSplitSigmaTy ty
go (FunTy { ft_af = af, ft_mult = w, ft_arg = arg_ty, ft_res = res_ty })
= ASSERT( af == VisArg )
return (idHsWrapper, Scaled w arg_ty, res_ty)
go ty@(TyVarTy tv)
| isMetaTyVar tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty' -> go ty'
Flexi -> defer ty }
-- In all other cases we bale out into ordinary unification
-- However unlike the meta-tyvar case, we are sure that the
-- number of arguments doesn't match arity of the original
-- type, so we can add a bit more context to the error message
-- (cf #7869).
--
-- It is not always an error, because specialized type may have
-- different arity, for example:
--
-- > f1 = f2 'a'
-- > f2 :: Monad m => m Bool
-- > f2 = undefined
--
-- But in that case we add specialized type into error context
-- anyway, because it may be useful. See also #9605.
go ty = addErrCtxtM (mk_ctxt ty) (defer ty)
------------
defer fun_ty
= do { arg_ty <- newOpenFlexiTyVarTy
; res_ty <- newOpenFlexiTyVarTy
; let unif_fun_ty = mkVisFunTyMany arg_ty res_ty
; co <- unifyType mb_thing fun_ty unif_fun_ty
; return (mkWpCastN co, unrestricted arg_ty, res_ty) }
------------
mk_ctxt :: TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
mk_ctxt res_ty env
= do { (env', ty) <- zonkTidyTcType env $
mkVisFunTys (reverse arg_tys_so_far) res_ty
; return (env', mk_fun_tys_msg herald ty n_val_args_in_call) }
(n_val_args_in_call, arg_tys_so_far) = err_info
mk_fun_tys_msg :: SDoc -> TcType -> Arity -> SDoc
mk_fun_tys_msg herald ty n_args_in_call
| n_args_in_call <= n_fun_args -- Enough args, in the end
= text "In the result of a function call"
| otherwise
= hang (herald <+> speakNOf n_args_in_call (text "value argument") <> comma)
2 (sep [ text "but its type" <+> quotes (pprType ty)
, if n_fun_args == 0 then text "has none"
else text "has only" <+> speakN n_fun_args])
where
(args, _) = tcSplitFunTys ty
n_fun_args = length args
{- Note [matchActualFunTys error handling]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
matchActualFunTysPart is made much more complicated by the
desire to produce good error messages. Consider the application
f @Int x y
In GHC.Tc.Gen.Expr.tcArgs we deal with visible type arguments,
and then call matchActualFunTysPart for each individual value
argument. It, in turn, must instantiate any type/dictionary args,
before looking for an arrow type.
But if it doesn't find an arrow type, it wants to generate a message
like "f is applied to two arguments but its type only has one".
To do that, it needs to konw about the args that tcArgs has already
munched up -- hence passing in n_val_args_in_call and arg_tys_so_far;
and hence also the accumulating so_far arg to 'go'.
This allows us (in mk_ctxt) to construct f's /instantiated/ type,
with just the values-arg arrows, which is what we really want
in the error message.
Ugh!
-}
----------------------
matchExpectedListTy :: TcRhoType -> TcM (TcCoercionN, TcRhoType)
-- Special case for lists
matchExpectedListTy exp_ty
= do { (co, [elt_ty]) <- matchExpectedTyConApp listTyCon exp_ty
; return (co, elt_ty) }
---------------------
matchExpectedTyConApp :: TyCon -- T :: forall kv1 ... kvm. k1 -> ... -> kn -> *
-> TcRhoType -- orig_ty
-> TcM (TcCoercionN, -- T k1 k2 k3 a b c ~N orig_ty
[TcSigmaType]) -- Element types, k1 k2 k3 a b c
-- It's used for wired-in tycons, so we call checkWiredInTyCon
-- Precondition: never called with FunTyCon
-- Precondition: input type :: *
-- Postcondition: (T k1 k2 k3 a b c) is well-kinded
matchExpectedTyConApp tc orig_ty
= ASSERT(not $ isFunTyCon tc) go orig_ty
where
go ty
| Just ty' <- tcView ty
= go ty'
go ty@(TyConApp tycon args)
| tc == tycon -- Common case
= return (mkTcNomReflCo ty, args)
go (TyVarTy tv)
| isMetaTyVar tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty -> go ty
Flexi -> defer }
go _ = defer
-- If the common case does not occur, instantiate a template
-- T k1 .. kn t1 .. tm, and unify with the original type
-- Doing it this way ensures that the types we return are
-- kind-compatible with T. For example, suppose we have
-- matchExpectedTyConApp T (f Maybe)
-- where data T a = MkT a
-- Then we don't want to instantiate T's data constructors with
-- (a::*) ~ Maybe
-- because that'll make types that are utterly ill-kinded.
-- This happened in #7368
defer
= do { (_, arg_tvs) <- newMetaTyVars (tyConTyVars tc)
; traceTc "matchExpectedTyConApp" (ppr tc $$ ppr (tyConTyVars tc) $$ ppr arg_tvs)
; let args = mkTyVarTys arg_tvs
tc_template = mkTyConApp tc args
; co <- unifyType Nothing tc_template orig_ty
; return (co, args) }
----------------------
matchExpectedAppTy :: TcRhoType -- orig_ty
-> TcM (TcCoercion, -- m a ~N orig_ty
(TcSigmaType, TcSigmaType)) -- Returns m, a
-- If the incoming type is a mutable type variable of kind k, then
-- matchExpectedAppTy returns a new type variable (m: * -> k); note the *.
matchExpectedAppTy orig_ty
= go orig_ty
where
go ty
| Just ty' <- tcView ty = go ty'
| Just (fun_ty, arg_ty) <- tcSplitAppTy_maybe ty
= return (mkTcNomReflCo orig_ty, (fun_ty, arg_ty))
go (TyVarTy tv)
| isMetaTyVar tv
= do { cts <- readMetaTyVar tv
; case cts of
Indirect ty -> go ty
Flexi -> defer }
go _ = defer
-- Defer splitting by generating an equality constraint
defer
= do { ty1 <- newFlexiTyVarTy kind1
; ty2 <- newFlexiTyVarTy kind2
; co <- unifyType Nothing (mkAppTy ty1 ty2) orig_ty
; return (co, (ty1, ty2)) }
orig_kind = tcTypeKind orig_ty
kind1 = mkVisFunTyMany liftedTypeKind orig_kind
kind2 = liftedTypeKind -- m :: * -> k
-- arg type :: *
{-
************************************************************************
* *
Subsumption checking
* *
************************************************************************
Note [Subsumption checking: tcSubType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All the tcSubType calls have the form
tcSubType actual_ty expected_ty
which checks
actual_ty <= expected_ty
That is, that a value of type actual_ty is acceptable in
a place expecting a value of type expected_ty. I.e. that
actual ty is more polymorphic than expected_ty
It returns a wrapper function
co_fn :: actual_ty ~ expected_ty
which takes an HsExpr of type actual_ty into one of type
expected_ty.
-}
-----------------
-- tcWrapResult needs both un-type-checked (for origins and error messages)
-- and type-checked (for wrapping) expressions
tcWrapResult :: HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResult rn_expr = tcWrapResultO (exprCtOrigin rn_expr) rn_expr
tcWrapResultO :: CtOrigin -> HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO orig rn_expr expr actual_ty res_ty
= do { traceTc "tcWrapResult" (vcat [ text "Actual: " <+> ppr actual_ty
, text "Expected:" <+> ppr res_ty ])
; wrap <- tcSubTypeNC orig GenSigCtxt (Just rn_expr) actual_ty res_ty
; return (mkHsWrap wrap expr) }
tcWrapResultMono :: HsExpr GhcRn -> HsExpr GhcTc
-> TcRhoType -- Actual -- a rho-type not a sigma-type
-> ExpRhoType -- Expected
-> TcM (HsExpr GhcTc)
-- A version of tcWrapResult to use when the actual type is a
-- rho-type, so nothing to instantiate; just go straight to unify.
-- It means we don't need to pass in a CtOrigin
tcWrapResultMono rn_expr expr act_ty res_ty
= ASSERT2( isRhoTy act_ty, ppr act_ty $$ ppr rn_expr )
do { co <- case res_ty of
Infer inf_res -> fillInferResult act_ty inf_res
Check exp_ty -> unifyType (Just rn_expr) act_ty exp_ty
; return (mkHsWrapCo co expr) }
------------------------
tcSubTypePat :: CtOrigin -> UserTypeCtxt
-> ExpSigmaType -> TcSigmaType -> TcM HsWrapper
-- Used in patterns; polarity is backwards compared
-- to tcSubType
-- If wrap = tc_sub_type_et t1 t2
-- => wrap :: t1 ~> t2
tcSubTypePat inst_orig ctxt (Check ty_actual) ty_expected
= tc_sub_type unifyTypeET inst_orig ctxt ty_actual ty_expected
tcSubTypePat _ _ (Infer inf_res) ty_expected
= do { co <- fillInferResult ty_expected inf_res
-- In patterns we do not instantatiate
; return (mkWpCastN (mkTcSymCo co)) }
---------------
tcSubType :: CtOrigin -> UserTypeCtxt
-> TcSigmaType -- Actual
-> ExpRhoType -- Expected
-> TcM HsWrapper
-- Checks that 'actual' is more polymorphic than 'expected'
tcSubType orig ctxt ty_actual ty_expected
= addSubTypeCtxt ty_actual ty_expected $
do { traceTc "tcSubType" (vcat [pprUserTypeCtxt ctxt, ppr ty_actual, ppr ty_expected])
; tcSubTypeNC orig ctxt Nothing ty_actual ty_expected }
tcSubTypeNC :: CtOrigin -- Used when instantiating
-> UserTypeCtxt -- Used when skolemising
-> Maybe (HsExpr GhcRn) -- The expression that has type 'actual' (if known)
-> TcSigmaType -- Actual type
-> ExpRhoType -- Expected type
-> TcM HsWrapper
tcSubTypeNC inst_orig ctxt m_thing ty_actual res_ty
= case res_ty of
Check ty_expected -> tc_sub_type (unifyType m_thing) inst_orig ctxt
ty_actual ty_expected
Infer inf_res -> do { (wrap, rho) <- topInstantiate inst_orig ty_actual
-- See Note [Instantiation of InferResult]
; co <- fillInferResult rho inf_res
; return (mkWpCastN co <.> wrap) }
{- Note [Instantiation of InferResult]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We now always instantiate before filling in InferResult, so that
the result is a TcRhoType: see #17173 for discussion.
For example:
1. Consider
f x = (*)
We want to instantiate the type of (*) before returning, else we
will infer the type
f :: forall {a}. a -> forall b. Num b => b -> b -> b
This is surely confusing for users.
And worse, the monomorphism restriction won't work properly. The MR is
dealt with in simplifyInfer, and simplifyInfer has no way of
instantiating. This could perhaps be worked around, but it may be
hard to know even when instantiation should happen.
2. Another reason. Consider
f :: (?x :: Int) => a -> a
g y = let ?x = 3::Int in f
Here want to instantiate f's type so that the ?x::Int constraint
gets discharged by the enclosing implicit-parameter binding.
3. Suppose one defines plus = (+). If we instantiate lazily, we will
infer plus :: forall a. Num a => a -> a -> a. However, the monomorphism
restriction compels us to infer
plus :: Integer -> Integer -> Integer
(or similar monotype). Indeed, the only way to know whether to apply
the monomorphism restriction at all is to instantiate
There is one place where we don't want to instantiate eagerly,
namely in GHC.Tc.Module.tcRnExpr, which implements GHCi's :type
command. See Note [Implementing :type] in GHC.Tc.Module.
-}
---------------
tcSubTypeSigma :: UserTypeCtxt -> TcSigmaType -> TcSigmaType -> TcM HsWrapper
-- External entry point, but no ExpTypes on either side
-- Checks that actual <= expected
-- Returns HsWrapper :: actual ~ expected
tcSubTypeSigma ctxt ty_actual ty_expected
= tc_sub_type (unifyType Nothing) eq_orig ctxt ty_actual ty_expected
where
eq_orig = TypeEqOrigin { uo_actual = ty_actual
, uo_expected = ty_expected
, uo_thing = Nothing
, uo_visible = True }
---------------
tc_sub_type :: (TcType -> TcType -> TcM TcCoercionN) -- How to unify
-> CtOrigin -- Used when instantiating
-> UserTypeCtxt -- Used when skolemising
-> TcSigmaType -- Actual; a sigma-type
-> TcSigmaType -- Expected; also a sigma-type
-> TcM HsWrapper
-- Checks that actual_ty is more polymorphic than expected_ty
-- If wrap = tc_sub_type t1 t2
-- => wrap :: t1 ~> t2
tc_sub_type unify inst_orig ctxt ty_actual ty_expected
| definitely_poly ty_expected -- See Note [Don't skolemise unnecessarily]
, not (possibly_poly ty_actual)
= do { traceTc "tc_sub_type (drop to equality)" $
vcat [ text "ty_actual =" <+> ppr ty_actual
, text "ty_expected =" <+> ppr ty_expected ]
; mkWpCastN <$>
unify ty_actual ty_expected }
| otherwise -- This is the general case
= do { traceTc "tc_sub_type (general case)" $
vcat [ text "ty_actual =" <+> ppr ty_actual
, text "ty_expected =" <+> ppr ty_expected ]
; (sk_wrap, inner_wrap)
<- tcSkolemise ctxt ty_expected $ \ sk_rho ->
do { (wrap, rho_a) <- topInstantiate inst_orig ty_actual
; cow <- unify rho_a sk_rho
; return (mkWpCastN cow <.> wrap) }
; return (sk_wrap <.> inner_wrap) }
where
possibly_poly ty
| isForAllTy ty = True
| Just (_, _, res) <- splitFunTy_maybe ty = possibly_poly res
| otherwise = False
-- NB *not* tcSplitFunTy, because here we want
-- to decompose type-class arguments too
definitely_poly ty
| (tvs, theta, tau) <- tcSplitSigmaTy ty
, (tv:_) <- tvs
, null theta
, isInsolubleOccursCheck NomEq tv tau
= True
| otherwise
= False
------------------------
addSubTypeCtxt :: TcType -> ExpType -> TcM a -> TcM a
addSubTypeCtxt ty_actual ty_expected thing_inside
| isRhoTy ty_actual -- If there is no polymorphism involved, the
, isRhoExpTy ty_expected -- TypeEqOrigin stuff (added by the _NC functions)
= thing_inside -- gives enough context by itself
| otherwise
= addErrCtxtM mk_msg thing_inside
where
mk_msg tidy_env
= do { (tidy_env, ty_actual) <- zonkTidyTcType tidy_env ty_actual
-- might not be filled if we're debugging. ugh.
; mb_ty_expected <- readExpType_maybe ty_expected
; (tidy_env, ty_expected) <- case mb_ty_expected of
Just ty -> second mkCheckExpType <$>
zonkTidyTcType tidy_env ty
Nothing -> return (tidy_env, ty_expected)
; ty_expected <- readExpType ty_expected
; (tidy_env, ty_expected) <- zonkTidyTcType tidy_env ty_expected
; let msg = vcat [ hang (text "When checking that:")
4 (ppr ty_actual)
, nest 2 (hang (text "is more polymorphic than:")
2 (ppr ty_expected)) ]
; return (tidy_env, msg) }
{- Note [Don't skolemise unnecessarily]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are trying to solve
(Char->Char) <= (forall a. a->a)
We could skolemise the 'forall a', and then complain
that (Char ~ a) is insoluble; but that's a pretty obscure
error. It's better to say that
(Char->Char) ~ (forall a. a->a)
fails.
So roughly:
* if the ty_expected has an outermost forall
(i.e. skolemisation is the next thing we'd do)
* and the ty_actual has no top-level polymorphism (but looking deeply)
then we can revert to simple equality. But we need to be careful.
These examples are all fine:
* (Char -> forall a. a->a) <= (forall a. Char -> a -> a)
Polymorphism is buried in ty_actual
* (Char->Char) <= (forall a. Char -> Char)
ty_expected isn't really polymorphic
* (Char->Char) <= (forall a. (a~Char) => a -> a)
ty_expected isn't really polymorphic
* (Char->Char) <= (forall a. F [a] Char -> Char)
where type instance F [x] t = t
ty_expected isn't really polymorphic
If we prematurely go to equality we'll reject a program we should
accept (e.g. #13752). So the test (which is only to improve
error message) is very conservative:
* ty_actual is /definitely/ monomorphic
* ty_expected is /definitely/ polymorphic
Note [Settting the argument context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider we are doing the ambiguity check for the (bogus)
f :: (forall a b. C b => a -> a) -> Int
We'll call
tcSubType ((forall a b. C b => a->a) -> Int )
((forall a b. C b => a->a) -> Int )
with a UserTypeCtxt of (FunSigCtxt "f"). Then we'll do the co/contra thing
on the argument type of the (->) -- and at that point we want to switch
to a UserTypeCtxt of GenSigCtxt. Why?
* Error messages. If we stick with FunSigCtxt we get errors like
* Could not deduce: C b
from the context: C b0
bound by the type signature for:
f :: forall a b. C b => a->a
But of course f does not have that type signature!
Example tests: T10508, T7220a, Simple14
* Implications. We may decide to build an implication for the whole
ambiguity check, but we don't need one for each level within it,
and GHC.Tc.Utils.Unify.alwaysBuildImplication checks the UserTypeCtxt.
See Note [When to build an implication]
Note [Wrapper returned from tcSubMult]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is no notion of multiplicity coercion in Core, therefore the wrapper
returned by tcSubMult (and derived functions such as tcCheckUsage and
checkManyPattern) is quite unlike any other wrapper: it checks whether the
coercion produced by the constraint solver is trivial, producing a type error
is it is not. This is implemented via the WpMultCoercion wrapper, as desugared
by GHC.HsToCore.Binds.dsHsWrapper, which does the reflexivity check.
This wrapper needs to be placed in the term; otherwise, checking of the
eventual coercion won't be triggered during desugaring. But it can be put
anywhere, since it doesn't affect the desugared code.
Why do we check this in the desugarer? It's a convenient place, since it's
right after all the constraints are solved. We need the constraints to be
solved to check whether they are trivial or not. Plus there is precedent for
type errors during desuraging (such as the levity polymorphism
restriction). An alternative would be to have a kind of constraint which can
only produce trivial evidence, then this check would happen in the constraint
solver.
-}
tcSubMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcSubMult origin w_actual w_expected
| Just (w1, w2) <- isMultMul w_actual =
do { w1 <- tcSubMult origin w1 w_expected
; w2 <- tcSubMult origin w2 w_expected
; return (w1 <.> w2) }
-- Currently, we consider p*q and sup p q to be equal. Therefore, p*q <= r is
-- equivalent to p <= r and q <= r. For other cases, we approximate p <= q by p
-- ~ q. This is not complete, but it's sound. See also Note [Overapproximating
-- multiplicities] in Multiplicity.
tcSubMult origin w_actual w_expected =
case submult w_actual w_expected of
Submult -> return WpHole
Unknown -> tcEqMult origin w_actual w_expected
tcEqMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcEqMult origin w_actual w_expected = do
{
-- Note that here we do not call to `submult`, so we check
-- for strict equality.
; coercion <- uType TypeLevel origin w_actual w_expected
; return $ if isReflCo coercion then WpHole else WpMultCoercion coercion }
{- *********************************************************************
* *
Generalisation
* *
********************************************************************* -}
{- Note [Skolemisation]
~~~~~~~~~~~~~~~~~~~~~~~
tcSkolemise takes "expected type" and strip off quantifiers to expose the
type underneath, binding the new skolems for the 'thing_inside'
The returned 'HsWrapper' has type (specific_ty -> expected_ty).
Note that for a nested type like
forall a. Eq a => forall b. Ord b => blah
we still only build one implication constraint
forall a b. (Eq a, Ord b) => <constraints>
This is just an optimisation, but it's why we use topSkolemise to
build the pieces from all the layers, before making a single call
to checkConstraints.
tcSkolemiseScoped is very similar, but differs in two ways:
* It deals specially with just the outer forall, bringing those
type variables into lexical scope. To my surprise, I found that
doing this regardless (in tcSkolemise) caused a non-trivial (1%-ish)
perf hit on the compiler.
* It always calls checkConstraints, even if there are no skolem
variables at all. Reason: there might be nested deferred errors
that must not be allowed to float to top level.
See Note [When to build an implication] below.
-}
tcSkolemise, tcSkolemiseScoped
:: UserTypeCtxt -> TcSigmaType
-> (TcType -> TcM result)
-> TcM (HsWrapper, result)
-- ^ The wrapper has type: spec_ty ~> expected_ty
tcSkolemiseScoped ctxt expected_ty thing_inside
= do { (wrap, tv_prs, given, rho_ty) <- topSkolemise expected_ty
; let skol_tvs = map snd tv_prs
skol_info = SigSkol ctxt expected_ty tv_prs
; (ev_binds, res)
<- checkConstraints skol_info skol_tvs given $
tcExtendNameTyVarEnv tv_prs $
thing_inside rho_ty
; return (wrap <.> mkWpLet ev_binds, res) }
tcSkolemise ctxt expected_ty thing_inside
| isRhoTy expected_ty -- Short cut for common case
= do { res <- thing_inside expected_ty
; return (idHsWrapper, res) }
| otherwise
= do { (wrap, tv_prs, given, rho_ty) <- topSkolemise expected_ty
; let skol_tvs = map snd tv_prs
skol_info = SigSkol ctxt expected_ty tv_prs
; (ev_binds, result)
<- checkConstraints skol_info skol_tvs given $
thing_inside rho_ty
; return (wrap <.> mkWpLet ev_binds, result) }
-- The ev_binds returned by checkConstraints is very
-- often empty, in which case mkWpLet is a no-op
-- | Variant of 'tcSkolemise' that takes an ExpType
tcSkolemiseET :: UserTypeCtxt -> ExpSigmaType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseET _ et@(Infer {}) thing_inside
= (idHsWrapper, ) <$> thing_inside et
tcSkolemiseET ctxt (Check ty) thing_inside
= tcSkolemise ctxt ty $ \rho_ty ->
thing_inside (mkCheckExpType rho_ty)
checkConstraints :: SkolemInfo
-> [TcTyVar] -- Skolems
-> [EvVar] -- Given
-> TcM result
-> TcM (TcEvBinds, result)
checkConstraints skol_info skol_tvs given thing_inside
= do { implication_needed <- implicationNeeded skol_info skol_tvs given
; if implication_needed
then do { (tclvl, wanted, result) <- pushLevelAndCaptureConstraints thing_inside
; (implics, ev_binds) <- buildImplicationFor tclvl skol_info skol_tvs given wanted
; traceTc "checkConstraints" (ppr tclvl $$ ppr skol_tvs)
; emitImplications implics
; return (ev_binds, result) }
else -- Fast path. We check every function argument with tcCheckPolyExpr,
-- which uses tcSkolemise and hence checkConstraints.
-- So this fast path is well-exercised
do { res <- thing_inside
; return (emptyTcEvBinds, res) } }
checkTvConstraints :: SkolemInfo
-> [TcTyVar] -- Skolem tyvars
-> TcM result
-> TcM result
checkTvConstraints skol_info skol_tvs thing_inside
= do { (tclvl, wanted, result) <- pushLevelAndCaptureConstraints thing_inside
; emitResidualTvConstraint skol_info skol_tvs tclvl wanted
; return result }
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint skol_info skol_tvs tclvl wanted
| isEmptyWC wanted
= return ()
| otherwise
= do { implic <- buildTvImplication skol_info skol_tvs tclvl wanted
; emitImplication implic }
buildTvImplication :: SkolemInfo -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication skol_info skol_tvs tclvl wanted
= do { ev_binds <- newNoTcEvBinds -- Used for equalities only, so all the constraints
-- are solved by filling in coercion holes, not
-- by creating a value-level evidence binding
; implic <- newImplication
; return (implic { ic_tclvl = tclvl
, ic_skols = skol_tvs
, ic_no_eqs = True
, ic_wanted = wanted
, ic_binds = ev_binds
, ic_info = skol_info }) }
implicationNeeded :: SkolemInfo -> [TcTyVar] -> [EvVar] -> TcM Bool
-- See Note [When to build an implication]
implicationNeeded skol_info skol_tvs given
| null skol_tvs
, null given
, not (alwaysBuildImplication skol_info)
= -- Empty skolems and givens
do { tc_lvl <- getTcLevel
; if not (isTopTcLevel tc_lvl) -- No implication needed if we are
then return False -- already inside an implication
else
do { dflags <- getDynFlags -- If any deferral can happen,
-- we must build an implication
; return (gopt Opt_DeferTypeErrors dflags ||
gopt Opt_DeferTypedHoles dflags ||
gopt Opt_DeferOutOfScopeVariables dflags) } }
| otherwise -- Non-empty skolems or givens
= return True -- Definitely need an implication
alwaysBuildImplication :: SkolemInfo -> Bool
-- See Note [When to build an implication]
alwaysBuildImplication _ = False
{- Commmented out for now while I figure out about error messages.
See #14185
alwaysBuildImplication (SigSkol ctxt _ _)
= case ctxt of
FunSigCtxt {} -> True -- RHS of a binding with a signature
_ -> False
alwaysBuildImplication (RuleSkol {}) = True
alwaysBuildImplication (InstSkol {}) = True
alwaysBuildImplication (FamInstSkol {}) = True
alwaysBuildImplication _ = False
-}
buildImplicationFor :: TcLevel -> SkolemInfo -> [TcTyVar]
-> [EvVar] -> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor tclvl skol_info skol_tvs given wanted
| isEmptyWC wanted && null given
-- Optimisation : if there are no wanteds, and no givens
-- don't generate an implication at all.
-- Reason for the (null given): we don't want to lose
-- the "inaccessible alternative" error check
= return (emptyBag, emptyTcEvBinds)
| otherwise
= ASSERT2( all (isSkolemTyVar <||> isTyVarTyVar) skol_tvs, ppr skol_tvs )
-- Why allow TyVarTvs? Because implicitly declared kind variables in
-- non-CUSK type declarations are TyVarTvs, and we need to bring them
-- into scope as a skolem in an implication. This is OK, though,
-- because TyVarTvs will always remain tyvars, even after unification.
do { ev_binds_var <- newTcEvBinds
; implic <- newImplication
; let implic' = implic { ic_tclvl = tclvl
, ic_skols = skol_tvs
, ic_given = given
, ic_wanted = wanted
, ic_binds = ev_binds_var
, ic_info = skol_info }
; return (unitBag implic', TcEvBinds ev_binds_var) }
{- Note [When to build an implication]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have some 'skolems' and some 'givens', and we are
considering whether to wrap the constraints in their scope into an
implication. We must /always/ so if either 'skolems' or 'givens' are
non-empty. But what if both are empty? You might think we could
always drop the implication. Other things being equal, the fewer
implications the better. Less clutter and overhead. But we must
take care:
* If we have an unsolved [W] g :: a ~# b, and -fdefer-type-errors,
we'll make a /term-level/ evidence binding for 'g = error "blah"'.
We must have an EvBindsVar those bindings!, otherwise they end up as
top-level unlifted bindings, which are verboten. This only matters
at top level, so we check for that
See also Note [Deferred errors for coercion holes] in GHC.Tc.Errors.
cf #14149 for an example of what goes wrong.
* If you have
f :: Int; f = f_blah
g :: Bool; g = g_blah
If we don't build an implication for f or g (no tyvars, no givens),
the constraints for f_blah and g_blah are solved together. And that
can yield /very/ confusing error messages, because we can get
[W] C Int b1 -- from f_blah
[W] C Int b2 -- from g_blan
and fundpes can yield [D] b1 ~ b2, even though the two functions have
literally nothing to do with each other. #14185 is an example.
Building an implication keeps them separage.
-}
{-
************************************************************************
* *
Boxy unification
* *
************************************************************************
The exported functions are all defined as versions of some
non-exported generic functions.
-}
unifyType :: Maybe (HsExpr GhcRn) -- ^ If present, has type 'ty1'
-> TcTauType -> TcTauType -> TcM TcCoercionN
-- Actual and expected types
-- Returns a coercion : ty1 ~ ty2
unifyType thing ty1 ty2
= uType TypeLevel origin ty1 ty2
where
origin = TypeEqOrigin { uo_actual = ty1
, uo_expected = ty2
, uo_thing = ppr <$> thing
, uo_visible = True }
unifyTypeET :: TcTauType -> TcTauType -> TcM CoercionN
-- Like unifyType, but swap expected and actual in error messages
-- This is used when typechecking patterns
unifyTypeET ty1 ty2
= uType TypeLevel origin ty1 ty2
where
origin = TypeEqOrigin { uo_actual = ty2 -- NB swapped
, uo_expected = ty1 -- NB swapped
, uo_thing = Nothing
, uo_visible = True }
unifyKind :: Maybe (HsType GhcRn) -> TcKind -> TcKind -> TcM CoercionN
unifyKind thing ty1 ty2
= uType KindLevel origin ty1 ty2
where
origin = TypeEqOrigin { uo_actual = ty1
, uo_expected = ty2
, uo_thing = ppr <$> thing
, uo_visible = True }
{-
%************************************************************************
%* *
uType and friends
%* *
%************************************************************************
uType is the heart of the unifier.
-}
uType, uType_defer
:: TypeOrKind
-> CtOrigin
-> TcType -- ty1 is the *actual* type
-> TcType -- ty2 is the *expected* type
-> TcM CoercionN
--------------
-- It is always safe to defer unification to the main constraint solver
-- See Note [Deferred unification]
uType_defer t_or_k origin ty1 ty2
= do { co <- emitWantedEq origin t_or_k Nominal ty1 ty2
-- Error trace only
-- NB. do *not* call mkErrInfo unless tracing is on,
-- because it is hugely expensive (#5631)
; whenDOptM Opt_D_dump_tc_trace $ do
{ ctxt <- getErrCtxt
; doc <- mkErrInfo emptyTidyEnv ctxt
; traceTc "utype_defer" (vcat [ debugPprType ty1
, debugPprType ty2
, pprCtOrigin origin
, doc])
; traceTc "utype_defer2" (ppr co)
}
; return co }
--------------
uType t_or_k origin orig_ty1 orig_ty2
= do { tclvl <- getTcLevel
; traceTc "u_tys" $ vcat
[ text "tclvl" <+> ppr tclvl
, sep [ ppr orig_ty1, text "~", ppr orig_ty2]
, pprCtOrigin origin]
; co <- go orig_ty1 orig_ty2
; if isReflCo co
then traceTc "u_tys yields no coercion" Outputable.empty
else traceTc "u_tys yields coercion:" (ppr co)
; return co }
where
go :: TcType -> TcType -> TcM CoercionN
-- The arguments to 'go' are always semantically identical
-- to orig_ty{1,2} except for looking through type synonyms
-- Unwrap casts before looking for variables. This way, we can easily
-- recognize (t |> co) ~ (t |> co), which is nice. Previously, we
-- didn't do it this way, and then the unification above was deferred.
go (CastTy t1 co1) t2
= do { co_tys <- uType t_or_k origin t1 t2
; return (mkCoherenceLeftCo Nominal t1 co1 co_tys) }
go t1 (CastTy t2 co2)
= do { co_tys <- uType t_or_k origin t1 t2
; return (mkCoherenceRightCo Nominal t2 co2 co_tys) }
-- Variables; go for uUnfilledVar
-- Note that we pass in *original* (before synonym expansion),
-- so that type variables tend to get filled in with
-- the most informative version of the type
go (TyVarTy tv1) ty2
= do { lookup_res <- lookupTcTyVar tv1
; case lookup_res of
Filled ty1 -> do { traceTc "found filled tyvar" (ppr tv1 <+> text ":->" <+> ppr ty1)
; go ty1 ty2 }
Unfilled _ -> uUnfilledVar origin t_or_k NotSwapped tv1 ty2 }
go ty1 (TyVarTy tv2)
= do { lookup_res <- lookupTcTyVar tv2
; case lookup_res of
Filled ty2 -> do { traceTc "found filled tyvar" (ppr tv2 <+> text ":->" <+> ppr ty2)
; go ty1 ty2 }
Unfilled _ -> uUnfilledVar origin t_or_k IsSwapped tv2 ty1 }
-- See Note [Expanding synonyms during unification]
go ty1@(TyConApp tc1 []) (TyConApp tc2 [])
| tc1 == tc2
= return $ mkNomReflCo ty1
-- See Note [Expanding synonyms during unification]
--
-- Also NB that we recurse to 'go' so that we don't push a
-- new item on the origin stack. As a result if we have
-- type Foo = Int
-- and we try to unify Foo ~ Bool
-- we'll end up saying "can't match Foo with Bool"
-- rather than "can't match "Int with Bool". See #4535.
go ty1 ty2
| Just ty1' <- tcView ty1 = go ty1' ty2
| Just ty2' <- tcView ty2 = go ty1 ty2'
-- Functions (or predicate functions) just check the two parts
go (FunTy _ w1 fun1 arg1) (FunTy _ w2 fun2 arg2)
= do { co_l <- uType t_or_k origin fun1 fun2
; co_r <- uType t_or_k origin arg1 arg2
; co_w <- uType t_or_k origin w1 w2
; return $ mkFunCo Nominal co_w co_l co_r }
-- Always defer if a type synonym family (type function)
-- is involved. (Data families behave rigidly.)
go ty1@(TyConApp tc1 _) ty2
| isTypeFamilyTyCon tc1 = defer ty1 ty2
go ty1 ty2@(TyConApp tc2 _)
| isTypeFamilyTyCon tc2 = defer ty1 ty2
go (TyConApp tc1 tys1) (TyConApp tc2 tys2)
-- See Note [Mismatched type lists and application decomposition]
| tc1 == tc2, equalLength tys1 tys2
= ASSERT2( isGenerativeTyCon tc1 Nominal, ppr tc1 )
do { cos <- zipWith3M (uType t_or_k) origins' tys1 tys2
; return $ mkTyConAppCo Nominal tc1 cos }
where
origins' = map (\is_vis -> if is_vis then origin else toInvisibleOrigin origin)
(tcTyConVisibilities tc1)
go (LitTy m) ty@(LitTy n)
| m == n
= return $ mkNomReflCo ty
-- See Note [Care with type applications]
-- Do not decompose FunTy against App;
-- it's often a type error, so leave it for the constraint solver
go (AppTy s1 t1) (AppTy s2 t2)
= go_app (isNextArgVisible s1) s1 t1 s2 t2
go (AppTy s1 t1) (TyConApp tc2 ts2)
| Just (ts2', t2') <- snocView ts2
= ASSERT( not (mustBeSaturated tc2) )
go_app (isNextTyConArgVisible tc2 ts2') s1 t1 (TyConApp tc2 ts2') t2'
go (TyConApp tc1 ts1) (AppTy s2 t2)
| Just (ts1', t1') <- snocView ts1
= ASSERT( not (mustBeSaturated tc1) )
go_app (isNextTyConArgVisible tc1 ts1') (TyConApp tc1 ts1') t1' s2 t2
go (CoercionTy co1) (CoercionTy co2)
= do { let ty1 = coercionType co1
ty2 = coercionType co2
; kco <- uType KindLevel
(KindEqOrigin orig_ty1 (Just orig_ty2) origin
(Just t_or_k))
ty1 ty2
; return $ mkProofIrrelCo Nominal kco co1 co2 }
-- Anything else fails
-- E.g. unifying for-all types, which is relative unusual
go ty1 ty2 = defer ty1 ty2
------------------
defer ty1 ty2 -- See Note [Check for equality before deferring]
| ty1 `tcEqType` ty2 = return (mkNomReflCo ty1)
| otherwise = uType_defer t_or_k origin ty1 ty2
------------------
go_app vis s1 t1 s2 t2
= do { co_s <- uType t_or_k origin s1 s2
; let arg_origin
| vis = origin
| otherwise = toInvisibleOrigin origin
; co_t <- uType t_or_k arg_origin t1 t2
; return $ mkAppCo co_s co_t }
{- Note [Check for equality before deferring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Particularly in ambiguity checks we can get equalities like (ty ~ ty).
If ty involves a type function we may defer, which isn't very sensible.
An egregious example of this was in test T9872a, which has a type signature
Proxy :: Proxy (Solutions Cubes)
Doing the ambiguity check on this signature generates the equality
Solutions Cubes ~ Solutions Cubes
and currently the constraint solver normalises both sides at vast cost.
This little short-cut in 'defer' helps quite a bit.
Note [Care with type applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note: type applications need a bit of care!
They can match FunTy and TyConApp, so use splitAppTy_maybe
NB: we've already dealt with type variables and Notes,
so if one type is an App the other one jolly well better be too
Note [Mismatched type lists and application decomposition]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we find two TyConApps, you might think that the argument lists
are guaranteed equal length. But they aren't. Consider matching
w (T x) ~ Foo (T x y)
We do match (w ~ Foo) first, but in some circumstances we simply create
a deferred constraint; and then go ahead and match (T x ~ T x y).
This came up in #3950.
So either
(a) either we must check for identical argument kinds
when decomposing applications,
(b) or we must be prepared for ill-kinded unification sub-problems
Currently we adopt (b) since it seems more robust -- no need to maintain
a global invariant.
Note [Expanding synonyms during unification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We expand synonyms during unification, but:
* We expand *after* the variable case so that we tend to unify
variables with un-expanded type synonym. This just makes it
more likely that the inferred types will mention type synonyms
understandable to the user
* Similarly, we expand *after* the CastTy case, just in case the
CastTy wraps a variable.
* We expand *before* the TyConApp case. For example, if we have
type Phantom a = Int
and are unifying
Phantom Int ~ Phantom Char
it is *wrong* to unify Int and Char.
* The problem case immediately above can happen only with arguments
to the tycon. So we check for nullary tycons *before* expanding.
This is particularly helpful when checking (* ~ *), because * is
now a type synonym.
Note [Deferred Unification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We may encounter a unification ty1 ~ ty2 that cannot be performed syntactically,
and yet its consistency is undetermined. Previously, there was no way to still
make it consistent. So a mismatch error was issued.
Now these unifications are deferred until constraint simplification, where type
family instances and given equations may (or may not) establish the consistency.
Deferred unifications are of the form
F ... ~ ...
or x ~ ...
where F is a type function and x is a type variable.
E.g.
id :: x ~ y => x -> y
id e = e
involves the unification x = y. It is deferred until we bring into account the
context x ~ y to establish that it holds.
If available, we defer original types (rather than those where closed type
synonyms have already been expanded via tcCoreView). This is, as usual, to
improve error messages.
************************************************************************
* *
uUnfilledVar and friends
* *
************************************************************************
@uunfilledVar@ is called when at least one of the types being unified is a
variable. It does {\em not} assume that the variable is a fixed point
of the substitution; rather, notice that @uVar@ (defined below) nips
back into @uTys@ if it turns out that the variable is already bound.
-}
----------
uUnfilledVar :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar -- Tyvar 1: not necessarily a meta-tyvar
-- definitely not a /filled/ meta-tyvar
-> TcTauType -- Type 2
-> TcM Coercion
-- "Unfilled" means that the variable is definitely not a filled-in meta tyvar
-- It might be a skolem, or untouchable, or meta
uUnfilledVar origin t_or_k swapped tv1 ty2
= do { ty2 <- zonkTcType ty2
-- Zonk to expose things to the
-- occurs check, and so that if ty2
-- looks like a type variable then it
-- /is/ a type variable
; uUnfilledVar1 origin t_or_k swapped tv1 ty2 }
----------
uUnfilledVar1 :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar -- Tyvar 1: not necessarily a meta-tyvar
-- definitely not a /filled/ meta-tyvar
-> TcTauType -- Type 2, zonked
-> TcM Coercion
uUnfilledVar1 origin t_or_k swapped tv1 ty2
| Just tv2 <- tcGetTyVar_maybe ty2
= go tv2
| otherwise
= uUnfilledVar2 origin t_or_k swapped tv1 ty2
where
-- 'go' handles the case where both are
-- tyvars so we might want to swap
-- E.g. maybe tv2 is a meta-tyvar and tv1 is not
go tv2 | tv1 == tv2 -- Same type variable => no-op
= return (mkNomReflCo (mkTyVarTy tv1))
| swapOverTyVars False tv1 tv2 -- Distinct type variables
-- Swap meta tyvar to the left if poss
= do { tv1 <- zonkTyCoVarKind tv1
-- We must zonk tv1's kind because that might
-- not have happened yet, and it's an invariant of
-- uUnfilledTyVar2 that ty2 is fully zonked
-- Omitting this caused #16902
; uUnfilledVar2 origin t_or_k (flipSwap swapped)
tv2 (mkTyVarTy tv1) }
| otherwise
= uUnfilledVar2 origin t_or_k swapped tv1 ty2
----------
uUnfilledVar2 :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar -- Tyvar 1: not necessarily a meta-tyvar
-- definitely not a /filled/ meta-tyvar
-> TcTauType -- Type 2, zonked
-> TcM Coercion
uUnfilledVar2 origin t_or_k swapped tv1 ty2
= do { dflags <- getDynFlags
; cur_lvl <- getTcLevel
; go dflags cur_lvl }
where
go dflags cur_lvl
| canSolveByUnification cur_lvl tv1 ty2
, MTVU_OK ty2' <- metaTyVarUpdateOK dflags tv1 ty2
= do { co_k <- uType KindLevel kind_origin (tcTypeKind ty2') (tyVarKind tv1)
; traceTc "uUnfilledVar2 ok" $
vcat [ ppr tv1 <+> dcolon <+> ppr (tyVarKind tv1)
, ppr ty2 <+> dcolon <+> ppr (tcTypeKind ty2)
, ppr (isTcReflCo co_k), ppr co_k ]
; if isTcReflCo co_k
-- Only proceed if the kinds match
-- NB: tv1 should still be unfilled, despite the kind unification
-- because tv1 is not free in ty2 (or, hence, in its kind)
then do { writeMetaTyVar tv1 ty2'
; return (mkTcNomReflCo ty2') }
else defer } -- This cannot be solved now. See GHC.Tc.Solver.Canonical
-- Note [Equalities with incompatible kinds]
| otherwise
= do { traceTc "uUnfilledVar2 not ok" (ppr tv1 $$ ppr ty2)
-- Occurs check or an untouchable: just defer
-- NB: occurs check isn't necessarily fatal:
-- eg tv1 occurred in type family parameter
; defer }
ty1 = mkTyVarTy tv1
kind_origin = KindEqOrigin ty1 (Just ty2) origin (Just t_or_k)
defer = unSwap swapped (uType_defer t_or_k origin) ty1 ty2
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars is_given tv1 tv2
-- See Note [Unification variables on the left]
| not is_given, pri1 == 0, pri2 > 0 = True
| not is_given, pri2 == 0, pri1 > 0 = False
-- Level comparison: see Note [TyVar/TyVar orientation]
| lvl1 `strictlyDeeperThan` lvl2 = False
| lvl2 `strictlyDeeperThan` lvl1 = True
-- Priority: see Note [TyVar/TyVar orientation]
| pri1 > pri2 = False
| pri2 > pri1 = True
-- Names: see Note [TyVar/TyVar orientation]
| isSystemName tv2_name, not (isSystemName tv1_name) = True
| otherwise = False
where
lvl1 = tcTyVarLevel tv1
lvl2 = tcTyVarLevel tv2
pri1 = lhsPriority tv1
pri2 = lhsPriority tv2
tv1_name = Var.varName tv1
tv2_name = Var.varName tv2
lhsPriority :: TcTyVar -> Int
-- Higher => more important to be on the LHS
-- See Note [TyVar/TyVar orientation]
lhsPriority tv
= ASSERT2( isTyVar tv, ppr tv)
case tcTyVarDetails tv of
RuntimeUnk -> 0
SkolemTv {} -> 0
MetaTv { mtv_info = info } -> case info of
FlatSkolTv -> 1
TyVarTv -> 2
TauTv -> 3
FlatMetaTv -> 4
{- Note [TyVar/TyVar orientation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (a ~ b), should we orient the CTyEqCan as (a~b) or (b~a)?
This is a surprisingly tricky question! This is invariant (TyEq:TV).
The question is answered by swapOverTyVars, which is use
- in the eager unifier, in GHC.Tc.Utils.Unify.uUnfilledVar1
- in the constraint solver, in GHC.Tc.Solver.Canonical.canEqTyVarHomo
First note: only swap if you have to!
See Note [Avoid unnecessary swaps]
So we look for a positive reason to swap, using a three-step test:
* Level comparison. If 'a' has deeper level than 'b',
put 'a' on the left. See Note [Deeper level on the left]
* Priority. If the levels are the same, look at what kind of
type variable it is, using 'lhsPriority'.
Generally speaking we always try to put a MetaTv on the left
in preference to SkolemTv or RuntimeUnkTv:
a) Because the MetaTv may be touchable and can be unified
b) Even if it's not touchable, GHC.Tc.Solver.floatEqualities
looks for meta tyvars on the left
Tie-breaking rules for MetaTvs:
- FlatMetaTv = 4: always put on the left.
See Note [Fmv Orientation Invariant]
NB: FlatMetaTvs always have the current level, never an
outer one. So nothing can be deeper than a FlatMetaTv.
- TauTv = 3: if we have tyv_tv ~ tau_tv,
put tau_tv on the left because there are fewer
restrictions on updating TauTvs. Or to say it another
way, then we won't lose the TyVarTv flag
- TyVarTv = 2: remember, flat-skols are *only* updated by
the unflattener, never unified, so TyVarTvs come next
- FlatSkolTv = 1: put on the left in preference to a SkolemTv.
See Note [Eliminate flat-skols]
* Names. If the level and priority comparisons are all
equal, try to eliminate a TyVars with a System Name in
favour of ones with a Name derived from a user type signature
* Age. At one point in the past we tried to break any remaining
ties by eliminating the younger type variable, based on their
Uniques. See Note [Eliminate younger unification variables]
(which also explains why we don't do this any more)
Note [Unification variables on the left]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For wanteds, but not givens, swap (skolem ~ meta-tv) regardless of
level, so that the unification variable is on the left.
* We /don't/ want this for Givens because if we ave
[G] a[2] ~ alpha[1]
[W] Bool ~ a[2]
we want to rewrite the wanted to Bool ~ alpha[1],
so we can float the constraint and solve it.
* But for Wanteds putting the unification variable on
the left means an easier job when floating, and when
reporting errors -- just fewer cases to consider.
In particular, we get better skolem-escape messages:
see #18114
Note [Deeper level on the left]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The most important thing is that we want to put tyvars with
the deepest level on the left. The reason to do so differs for
Wanteds and Givens, but either way, deepest wins! Simple.
* Wanteds. Putting the deepest variable on the left maximise the
chances that it's a touchable meta-tyvar which can be solved.
* Givens. Suppose we have something like
forall a[2]. b[1] ~ a[2] => beta[1] ~ a[2]
If we orient the Given a[2] on the left, we'll rewrite the Wanted to
(beta[1] ~ b[1]), and that can float out of the implication.
Otherwise it can't. By putting the deepest variable on the left
we maximise our changes of eliminating skolem capture.
See also GHC.Tc.Solver.Monad Note [Let-bound skolems] for another reason
to orient with the deepest skolem on the left.
IMPORTANT NOTE: this test does a level-number comparison on
skolems, so it's important that skolems have (accurate) level
numbers.
See #15009 for an further analysis of why "deepest on the left"
is a good plan.
Note [Fmv Orientation Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* We always orient a constraint
fmv ~ alpha
with fmv on the left, even if alpha is
a touchable unification variable
Reason: doing it the other way round would unify alpha:=fmv, but that
really doesn't add any info to alpha. But a later constraint alpha ~
Int might unlock everything. Comment:9 of #12526 gives a detailed
example.
WARNING: I've gone to and fro on this one several times.
I'm now pretty sure that unifying alpha:=fmv is a bad idea!
So orienting with fmvs on the left is a good thing.
This example comes from IndTypesPerfMerge. (Others include
T10226, T10009.)
From the ambiguity check for
f :: (F a ~ a) => a
we get:
[G] F a ~ a
[WD] F alpha ~ alpha, alpha ~ a
From Givens we get
[G] F a ~ fsk, fsk ~ a
Now if we flatten we get
[WD] alpha ~ fmv, F alpha ~ fmv, alpha ~ a
Now, if we unified alpha := fmv, we'd get
[WD] F fmv ~ fmv, [WD] fmv ~ a
And now we are stuck.
So instead the Fmv Orientation Invariant puts the fmv on the
left, giving
[WD] fmv ~ alpha, [WD] F alpha ~ fmv, [WD] alpha ~ a
Now we get alpha:=a, and everything works out
Note [Eliminate flat-skols]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have [G] Num (F [a])
then we flatten to
[G] Num fsk
[G] F [a] ~ fsk
where fsk is a flatten-skolem (FlatSkolTv). Suppose we have
type instance F [a] = a
then we'll reduce the second constraint to
[G] a ~ fsk
and then replace all uses of 'a' with fsk. That's bad because
in error messages instead of saying 'a' we'll say (F [a]). In all
places, including those where the programmer wrote 'a' in the first
place. Very confusing! See #7862.
Solution: re-orient a~fsk to fsk~a, so that we preferentially eliminate
the fsk.
Note [Avoid unnecessary swaps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we swap without actually improving matters, we can get an infinite loop.
Consider
work item: a ~ b
inert item: b ~ c
We canonicalise the work-item to (a ~ c). If we then swap it before
adding to the inert set, we'll add (c ~ a), and therefore kick out the
inert guy, so we get
new work item: b ~ c
inert item: c ~ a
And now the cycle just repeats
Note [Eliminate younger unification variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given a choice of unifying
alpha := beta or beta := alpha
we try, if possible, to eliminate the "younger" one, as determined
by `ltUnique`. Reason: the younger one is less likely to appear free in
an existing inert constraint, and hence we are less likely to be forced
into kicking out and rewriting inert constraints.
This is a performance optimisation only. It turns out to fix
#14723 all by itself, but clearly not reliably so!
It's simple to implement (see nicer_to_update_tv2 in swapOverTyVars).
But, to my surprise, it didn't seem to make any significant difference
to the compiler's performance, so I didn't take it any further. Still
it seemed to too nice to discard altogether, so I'm leaving these
notes. SLPJ Jan 18.
-}
-- @trySpontaneousSolve wi@ solves equalities where one side is a
-- touchable unification variable.
-- Returns True <=> spontaneous solve happened
canSolveByUnification :: TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification tclvl tv xi
| isTouchableMetaTyVar tclvl tv
= case metaTyVarInfo tv of
TyVarTv -> is_tyvar xi
_ -> True
| otherwise -- Untouchable
= False
where
is_tyvar xi
= case tcGetTyVar_maybe xi of
Nothing -> False
Just tv -> case tcTyVarDetails tv of
MetaTv { mtv_info = info }
-> case info of
TyVarTv -> True
_ -> False
SkolemTv {} -> True
RuntimeUnk -> True
{- Note [Prevent unification with type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We prevent unification with type families because of an uneasy compromise.
It's perfectly sound to unify with type families, and it even improves the
error messages in the testsuite. It also modestly improves performance, at
least in some cases. But it's disastrous for test case perf/compiler/T3064.
Here is the problem: Suppose we have (F ty) where we also have [G] F ty ~ a.
What do we do? Do we reduce F? Or do we use the given? Hard to know what's
best. GHC reduces. This is a disaster for T3064, where the type's size
spirals out of control during reduction. (We're not helped by the fact that
the flattener re-flattens all the arguments every time around.) If we prevent
unification with type families, then the solver happens to use the equality
before expanding the type family.
It would be lovely in the future to revisit this problem and remove this
extra, unnecessary check. But we retain it for now as it seems to work
better in practice.
Note [Refactoring hazard: checkTauTvUpdate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I (Richard E.) have a sad story about refactoring this code, retained here
to prevent others (or a future me!) from falling into the same traps.
It all started with #11407, which was caused by the fact that the TyVarTy
case of defer_me didn't look in the kind. But it seemed reasonable to
simply remove the defer_me check instead.
It referred to two Notes (since removed) that were out of date, and the
fast_check code in occurCheckExpand seemed to do just about the same thing as
defer_me. The one piece that defer_me did that wasn't repeated by
occurCheckExpand was the type-family check. (See Note [Prevent unification
with type families].) So I checked the result of occurCheckExpand for any
type family occurrences and deferred if there were any. This was done
in commit e9bf7bb5cc9fb3f87dd05111aa23da76b86a8967 .
This approach turned out not to be performant, because the expanded
type was bigger than the original type, and tyConsOfType (needed to
see if there are any type family occurrences) looks through type
synonyms. So it then struck me that we could dispense with the
defer_me check entirely. This simplified the code nicely, and it cut
the allocations in T5030 by half. But, as documented in Note [Prevent
unification with type families], this destroyed performance in
T3064. Regardless, I missed this regression and the change was
committed as 3f5d1a13f112f34d992f6b74656d64d95a3f506d .
Bottom lines:
* defer_me is back, but now fixed w.r.t. #11407.
* Tread carefully before you start to refactor here. There can be
lots of hard-to-predict consequences.
Note [Type synonyms and the occur check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking we try to update a variable with type synonyms not
expanded, which improves later error messages, unless looking
inside a type synonym may help resolve a spurious occurs check
error. Consider:
type A a = ()
f :: (A a -> a -> ()) -> ()
f = \ _ -> ()
x :: ()
x = f (\ x p -> p x)
We will eventually get a constraint of the form t ~ A t. The ok function above will
properly expand the type (A t) to just (), which is ok to be unified with t. If we had
unified with the original type A t, we would lead the type checker into an infinite loop.
Hence, if the occurs check fails for a type synonym application, then (and *only* then),
the ok function expands the synonym to detect opportunities for occurs check success using
the underlying definition of the type synonym.
The same applies later on in the constraint interaction code; see GHC.Tc.Solver.Interact,
function @occ_check_ok@.
Note [Non-TcTyVars in GHC.Tc.Utils.Unify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because the same code is now shared between unifying types and unifying
kinds, we sometimes will see proper TyVars floating around the unifier.
Example (from test case polykinds/PolyKinds12):
type family Apply (f :: k1 -> k2) (x :: k1) :: k2
type instance Apply g y = g y
When checking the instance declaration, we first *kind-check* the LHS
and RHS, discovering that the instance really should be
type instance Apply k3 k4 (g :: k3 -> k4) (y :: k3) = g y
During this kind-checking, all the tyvars will be TcTyVars. Then, however,
as a second pass, we desugar the RHS (which is done in functions prefixed
with "tc" in GHC.Tc.TyCl"). By this time, all the kind-vars are proper
TyVars, not TcTyVars, get some kind unification must happen.
Thus, we always check if a TyVar is a TcTyVar before asking if it's a
meta-tyvar.
This used to not be necessary for type-checking (that is, before * :: *)
because expressions get desugared via an algorithm separate from
type-checking (with wrappers, etc.). Types get desugared very differently,
causing this wibble in behavior seen here.
-}
data LookupTyVarResult -- The result of a lookupTcTyVar call
= Unfilled TcTyVarDetails -- SkolemTv or virgin MetaTv
| Filled TcType
lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar tyvar
| MetaTv { mtv_ref = ref } <- details
= do { meta_details <- readMutVar ref
; case meta_details of
Indirect ty -> return (Filled ty)
Flexi -> do { is_touchable <- isTouchableTcM tyvar
-- Note [Unifying untouchables]
; if is_touchable then
return (Unfilled details)
else
return (Unfilled vanillaSkolemTv) } }
| otherwise
= return (Unfilled details)
where
details = tcTyVarDetails tyvar
{-
Note [Unifying untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat an untouchable type variable as if it was a skolem. That
ensures it won't unify with anything. It's a slight hack, because
we return a made-up TcTyVarDetails, but I think it works smoothly.
-}
-- | Breaks apart a function kind into its pieces.
matchExpectedFunKind
:: Outputable fun
=> fun -- ^ type, only for errors
-> Arity -- ^ n: number of desired arrows
-> TcKind -- ^ fun_ kind
-> TcM Coercion -- ^ co :: fun_kind ~ (arg1 -> ... -> argn -> res)
matchExpectedFunKind hs_ty n k = go n k
where
go 0 k = return (mkNomReflCo k)
go n k | Just k' <- tcView k = go n k'
go n k@(TyVarTy kvar)
| isMetaTyVar kvar
= do { maybe_kind <- readMetaTyVar kvar
; case maybe_kind of
Indirect fun_kind -> go n fun_kind
Flexi -> defer n k }
go n (FunTy _ w arg res)
= do { co <- go (n-1) res
; return (mkTcFunCo Nominal (mkTcNomReflCo w) (mkTcNomReflCo arg) co) }
go n other
= defer n other
defer n k
= do { arg_kinds <- newMetaKindVars n
; res_kind <- newMetaKindVar
; let new_fun = mkVisFunTysMany arg_kinds res_kind
origin = TypeEqOrigin { uo_actual = k
, uo_expected = new_fun
, uo_thing = Just (ppr hs_ty)
, uo_visible = True
}
; uType KindLevel origin k new_fun }
{- *********************************************************************
* *
Occurrence checking
* *
********************************************************************* -}
{- Note [Checking for foralls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unless we have -XImpredicativeTypes (which is a totally unsupported
feature), we do not want to unify
alpha ~ (forall a. a->a) -> Int
So we look for foralls hidden inside the type, and it's convenient
to do that at the same time as the occurs check (which looks for
occurrences of alpha).
However, it's not just a question of looking for foralls /anywhere/!
Consider
(alpha :: forall k. k->*) ~ (beta :: forall k. k->*)
This is legal; e.g. dependent/should_compile/T11635.
We don't want to reject it because of the forall in beta's kind, but
(see Note [Occurrence checking: look inside kinds] in GHC.Core.Type)
we do need to look in beta's kind. So we carry a flag saying if a
'forall' is OK, and switch the flag on when stepping inside a kind.
Why is it OK? Why does it not count as impredicative polymorphism?
The reason foralls are bad is because we reply on "seeing" foralls
when doing implicit instantiation. But the forall inside the kind is
fine. We'll generate a kind equality constraint
(forall k. k->*) ~ (forall k. k->*)
to check that the kinds of lhs and rhs are compatible. If alpha's
kind had instead been
(alpha :: kappa)
then this kind equality would rightly complain about unifying kappa
with (forall k. k->*)
-}
data MetaTyVarUpdateResult a
= MTVU_OK a
| MTVU_Bad -- Forall, predicate, or type family
| MTVU_HoleBlocker -- Blocking coercion hole
-- See Note [Equalities with incompatible kinds] in "GHC.Tc.Solver.Canonical"
| MTVU_Occurs
deriving (Functor)
instance Applicative MetaTyVarUpdateResult where
pure = MTVU_OK
(<*>) = ap
instance Monad MetaTyVarUpdateResult where
MTVU_OK x >>= k = k x
MTVU_Bad >>= _ = MTVU_Bad
MTVU_HoleBlocker >>= _ = MTVU_HoleBlocker
MTVU_Occurs >>= _ = MTVU_Occurs
instance Outputable a => Outputable (MetaTyVarUpdateResult a) where
ppr (MTVU_OK a) = text "MTVU_OK" <+> ppr a
ppr MTVU_Bad = text "MTVU_Bad"
ppr MTVU_HoleBlocker = text "MTVU_HoleBlocker"
ppr MTVU_Occurs = text "MTVU_Occurs"
occCheckForErrors :: DynFlags -> TcTyVar -> Type -> MetaTyVarUpdateResult ()
-- Just for error-message generation; so we return MetaTyVarUpdateResult
-- so the caller can report the right kind of error
-- Check whether
-- a) the given variable occurs in the given type.
-- b) there is a forall in the type (unless we have -XImpredicativeTypes)
occCheckForErrors dflags tv ty
= case preCheck dflags True tv ty of
MTVU_OK _ -> MTVU_OK ()
MTVU_Bad -> MTVU_Bad
MTVU_HoleBlocker -> MTVU_HoleBlocker
MTVU_Occurs -> case occCheckExpand [tv] ty of
Nothing -> MTVU_Occurs
Just _ -> MTVU_OK ()
----------------
metaTyVarUpdateOK :: DynFlags
-> TcTyVar -- tv :: k1
-> TcType -- ty :: k2
-> MetaTyVarUpdateResult TcType -- possibly-expanded ty
-- (metaTyVarUpdateOK tv ty)
-- We are about to update the meta-tyvar tv with ty
-- Check (a) that tv doesn't occur in ty (occurs check)
-- (b) that ty does not have any foralls
-- (in the impredicative case), or type functions
-- (c) that ty does not have any blocking coercion holes
-- See Note [Equalities with incompatible kinds] in "GHC.Tc.Solver.Canonical"
--
-- We have two possible outcomes:
-- (1) Return the type to update the type variable with,
-- [we know the update is ok]
-- (2) Return Nothing,
-- [the update might be dodgy]
--
-- Note that "Nothing" does not mean "definite error". For example
-- type family F a
-- type instance F Int = Int
-- consider
-- a ~ F a
-- This is perfectly reasonable, if we later get a ~ Int. For now, though,
-- we return Nothing, leaving it to the later constraint simplifier to
-- sort matters out.
--
-- See Note [Refactoring hazard: checkTauTvUpdate]
metaTyVarUpdateOK dflags tv ty
= case preCheck dflags False tv ty of
-- False <=> type families not ok
-- See Note [Prevent unification with type families]
MTVU_OK _ -> MTVU_OK ty
MTVU_Bad -> MTVU_Bad -- forall, predicate, type function
MTVU_HoleBlocker -> MTVU_HoleBlocker -- coercion hole
MTVU_Occurs -> case occCheckExpand [tv] ty of
Just expanded_ty -> MTVU_OK expanded_ty
Nothing -> MTVU_Occurs
preCheck :: DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
-- A quick check for
-- (a) a forall type (unless -XImpredicativeTypes)
-- (b) a predicate type (unless -XImpredicativeTypes)
-- (c) a type family
-- (d) a blocking coercion hole
-- (e) an occurrence of the type variable (occurs check)
--
-- For (a), (b), and (c) we check only the top level of the type, NOT
-- inside the kinds of variables it mentions. For (d) we look deeply
-- in coercions, and for (e) we do look in the kinds of course.
preCheck dflags ty_fam_ok tv ty
= fast_check ty
where
details = tcTyVarDetails tv
impredicative_ok = canUnifyWithPolyType dflags details
ok :: MetaTyVarUpdateResult ()
ok = MTVU_OK ()
fast_check :: TcType -> MetaTyVarUpdateResult ()
fast_check (TyVarTy tv')
| tv == tv' = MTVU_Occurs
| otherwise = fast_check_occ (tyVarKind tv')
-- See Note [Occurrence checking: look inside kinds]
-- in GHC.Core.Type
fast_check (TyConApp tc tys)
| bad_tc tc = MTVU_Bad
| otherwise = mapM fast_check tys >> ok
fast_check (LitTy {}) = ok
fast_check (FunTy{ft_af = af, ft_mult = w, ft_arg = a, ft_res = r})
| InvisArg <- af
, not impredicative_ok = MTVU_Bad
| otherwise = fast_check w >> fast_check a >> fast_check r
fast_check (AppTy fun arg) = fast_check fun >> fast_check arg
fast_check (CastTy ty co) = fast_check ty >> fast_check_co co
fast_check (CoercionTy co) = fast_check_co co
fast_check (ForAllTy (Bndr tv' _) ty)
| not impredicative_ok = MTVU_Bad
| tv == tv' = ok
| otherwise = do { fast_check_occ (tyVarKind tv')
; fast_check_occ ty }
-- Under a forall we look only for occurrences of
-- the type variable
-- For kinds, we only do an occurs check; we do not worry
-- about type families or foralls
-- See Note [Checking for foralls]
fast_check_occ k | tv `elemVarSet` tyCoVarsOfType k = MTVU_Occurs
| otherwise = ok
-- no bother about impredicativity in coercions, as they're
-- inferred
fast_check_co co | not (gopt Opt_DeferTypeErrors dflags)
, badCoercionHoleCo co = MTVU_HoleBlocker
-- Wrinkle (4b) in "GHC.Tc.Solver.Canonical" Note [Equalities with incompatible kinds]
| tv `elemVarSet` tyCoVarsOfCo co = MTVU_Occurs
| otherwise = ok
bad_tc :: TyCon -> Bool
bad_tc tc
| not (impredicative_ok || isTauTyCon tc) = True
| not (ty_fam_ok || isFamFreeTyCon tc) = True
| otherwise = False
canUnifyWithPolyType :: DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType dflags details
= case details of
MetaTv { mtv_info = TyVarTv } -> False
MetaTv { mtv_info = TauTv } -> xopt LangExt.ImpredicativeTypes dflags
_other -> True
-- We can have non-meta tyvars in given constraints
|