1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
|
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# LANGUAGE CPP, TupleSections, ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
module GHC.Tc.Validity (
Rank, UserTypeCtxt(..), checkValidType, checkValidMonoType,
checkValidTheta,
checkValidInstance, checkValidInstHead, validDerivPred,
checkTySynRhs,
checkValidCoAxiom, checkValidCoAxBranch,
checkValidTyFamEqn, checkConsistentFamInst,
badATErr, arityErr,
checkTyConTelescope,
allDistinctTyVars
) where
#include "HsVersions.h"
import GhcPrelude
import Maybes
-- friends:
import GHC.Tc.Utils.Unify ( tcSubType_NC )
import GHC.Tc.Solver ( simplifyAmbiguityCheck )
import GHC.Tc.Instance.Class ( matchGlobalInst, ClsInstResult(..), InstanceWhat(..), AssocInstInfo(..) )
import GHC.Core.TyCo.FVs
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr
import GHC.Tc.Utils.TcType hiding ( sizeType, sizeTypes )
import TysWiredIn ( heqTyConName, eqTyConName, coercibleTyConName )
import PrelNames
import GHC.Core.Type
import GHC.Core.Unify ( tcMatchTyX_BM, BindFlag(..) )
import GHC.Core.Coercion
import GHC.Core.Coercion.Axiom
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
-- others:
import GHC.Iface.Type ( pprIfaceType, pprIfaceTypeApp )
import GHC.CoreToIface ( toIfaceTyCon, toIfaceTcArgs, toIfaceType )
import GHC.Hs
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.Env ( tcInitTidyEnv, tcInitOpenTidyEnv )
import GHC.Tc.Instance.FunDeps
import GHC.Core.FamInstEnv
( isDominatedBy, injectiveBranches, InjectivityCheckResult(..) )
import GHC.Tc.Instance.Family
import GHC.Types.Name
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Types.Var ( VarBndr(..), mkTyVar )
import FV
import ErrUtils
import GHC.Driver.Session
import Util
import ListSetOps
import GHC.Types.SrcLoc
import Outputable
import GHC.Types.Unique ( mkAlphaTyVarUnique )
import Bag ( emptyBag )
import qualified GHC.LanguageExtensions as LangExt
import Control.Monad
import Data.Foldable
import Data.List ( (\\), nub )
import qualified Data.List.NonEmpty as NE
{-
************************************************************************
* *
Checking for ambiguity
* *
************************************************************************
Note [The ambiguity check for type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
checkAmbiguity is a check on *user-supplied type signatures*. It is
*purely* there to report functions that cannot possibly be called. So for
example we want to reject:
f :: C a => Int
The idea is there can be no legal calls to 'f' because every call will
give rise to an ambiguous constraint. We could soundly omit the
ambiguity check on type signatures entirely, at the expense of
delaying ambiguity errors to call sites. Indeed, the flag
-XAllowAmbiguousTypes switches off the ambiguity check.
What about things like this:
class D a b | a -> b where ..
h :: D Int b => Int
The Int may well fix 'b' at the call site, so that signature should
not be rejected. Moreover, using *visible* fundeps is too
conservative. Consider
class X a b where ...
class D a b | a -> b where ...
instance D a b => X [a] b where...
h :: X a b => a -> a
Here h's type looks ambiguous in 'b', but here's a legal call:
...(h [True])...
That gives rise to a (X [Bool] beta) constraint, and using the
instance means we need (D Bool beta) and that fixes 'beta' via D's
fundep!
Behind all these special cases there is a simple guiding principle.
Consider
f :: <type>
f = ...blah...
g :: <type>
g = f
You would think that the definition of g would surely typecheck!
After all f has exactly the same type, and g=f. But in fact f's type
is instantiated and the instantiated constraints are solved against
the originals, so in the case an ambiguous type it won't work.
Consider our earlier example f :: C a => Int. Then in g's definition,
we'll instantiate to (C alpha) and try to deduce (C alpha) from (C a),
and fail.
So in fact we use this as our *definition* of ambiguity. We use a
very similar test for *inferred* types, to ensure that they are
unambiguous. See Note [Impedance matching] in GHC.Tc.Gen.Bind.
This test is very conveniently implemented by calling
tcSubType <type> <type>
This neatly takes account of the functional dependency stuff above,
and implicit parameter (see Note [Implicit parameters and ambiguity]).
And this is what checkAmbiguity does.
What about this, though?
g :: C [a] => Int
Is every call to 'g' ambiguous? After all, we might have
instance C [a] where ...
at the call site. So maybe that type is ok! Indeed even f's
quintessentially ambiguous type might, just possibly be callable:
with -XFlexibleInstances we could have
instance C a where ...
and now a call could be legal after all! Well, we'll reject this
unless the instance is available *here*.
Note [When to call checkAmbiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We call checkAmbiguity
(a) on user-specified type signatures
(b) in checkValidType
Conncerning (b), you might wonder about nested foralls. What about
f :: forall b. (forall a. Eq a => b) -> b
The nested forall is ambiguous. Originally we called checkAmbiguity
in the forall case of check_type, but that had two bad consequences:
* We got two error messages about (Eq b) in a nested forall like this:
g :: forall a. Eq a => forall b. Eq b => a -> a
* If we try to check for ambiguity of a nested forall like
(forall a. Eq a => b), the implication constraint doesn't bind
all the skolems, which results in "No skolem info" in error
messages (see #10432).
To avoid this, we call checkAmbiguity once, at the top, in checkValidType.
(I'm still a bit worried about unbound skolems when the type mentions
in-scope type variables.)
In fact, because of the co/contra-variance implemented in tcSubType,
this *does* catch function f above. too.
Concerning (a) the ambiguity check is only used for *user* types, not
for types coming from interface files. The latter can legitimately
have ambiguous types. Example
class S a where s :: a -> (Int,Int)
instance S Char where s _ = (1,1)
f:: S a => [a] -> Int -> (Int,Int)
f (_::[a]) x = (a*x,b)
where (a,b) = s (undefined::a)
Here the worker for f gets the type
fw :: forall a. S a => Int -> (# Int, Int #)
Note [Implicit parameters and ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only a *class* predicate can give rise to ambiguity
An *implicit parameter* cannot. For example:
foo :: (?x :: [a]) => Int
foo = length ?x
is fine. The call site will supply a particular 'x'
Furthermore, the type variables fixed by an implicit parameter
propagate to the others. E.g.
foo :: (Show a, ?x::[a]) => Int
foo = show (?x++?x)
The type of foo looks ambiguous. But it isn't, because at a call site
we might have
let ?x = 5::Int in foo
and all is well. In effect, implicit parameters are, well, parameters,
so we can take their type variables into account as part of the
"tau-tvs" stuff. This is done in the function 'GHC.Tc.Instance.FunDeps.grow'.
-}
checkAmbiguity :: UserTypeCtxt -> Type -> TcM ()
checkAmbiguity ctxt ty
| wantAmbiguityCheck ctxt
= do { traceTc "Ambiguity check for" (ppr ty)
-- Solve the constraints eagerly because an ambiguous type
-- can cause a cascade of further errors. Since the free
-- tyvars are skolemised, we can safely use tcSimplifyTop
; allow_ambiguous <- xoptM LangExt.AllowAmbiguousTypes
; (_wrap, wanted) <- addErrCtxt (mk_msg allow_ambiguous) $
captureConstraints $
tcSubType_NC ctxt ty ty
; simplifyAmbiguityCheck ty wanted
; traceTc "Done ambiguity check for" (ppr ty) }
| otherwise
= return ()
where
mk_msg allow_ambiguous
= vcat [ text "In the ambiguity check for" <+> what
, ppUnless allow_ambiguous ambig_msg ]
ambig_msg = text "To defer the ambiguity check to use sites, enable AllowAmbiguousTypes"
what | Just n <- isSigMaybe ctxt = quotes (ppr n)
| otherwise = pprUserTypeCtxt ctxt
wantAmbiguityCheck :: UserTypeCtxt -> Bool
wantAmbiguityCheck ctxt
= case ctxt of -- See Note [When we don't check for ambiguity]
GhciCtxt {} -> False
TySynCtxt {} -> False
TypeAppCtxt -> False
StandaloneKindSigCtxt{} -> False
_ -> True
checkUserTypeError :: Type -> TcM ()
-- Check to see if the type signature mentions "TypeError blah"
-- anywhere in it, and fail if so.
--
-- Very unsatisfactorily (#11144) we need to tidy the type
-- because it may have come from an /inferred/ signature, not a
-- user-supplied one. This is really only a half-baked fix;
-- the other errors in checkValidType don't do tidying, and so
-- may give bad error messages when given an inferred type.
checkUserTypeError = check
where
check ty
| Just msg <- userTypeError_maybe ty = fail_with msg
| Just (_,ts) <- splitTyConApp_maybe ty = mapM_ check ts
| Just (t1,t2) <- splitAppTy_maybe ty = check t1 >> check t2
| Just (_,t1) <- splitForAllTy_maybe ty = check t1
| otherwise = return ()
fail_with msg = do { env0 <- tcInitTidyEnv
; let (env1, tidy_msg) = tidyOpenType env0 msg
; failWithTcM (env1, pprUserTypeErrorTy tidy_msg) }
{- Note [When we don't check for ambiguity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a few places we do not want to check a user-specified type for ambiguity
* GhciCtxt: Allow ambiguous types in GHCi's :kind command
E.g. type family T a :: * -- T :: forall k. k -> *
Then :k T should work in GHCi, not complain that
(T k) is ambiguous!
* TySynCtxt: type T a b = C a b => blah
It may be that when we /use/ T, we'll give an 'a' or 'b' that somehow
cure the ambiguity. So we defer the ambiguity check to the use site.
There is also an implementation reason (#11608). In the RHS of
a type synonym we don't (currently) instantiate 'a' and 'b' with
TcTyVars before calling checkValidType, so we get assertion failures
from doing an ambiguity check on a type with TyVars in it. Fixing this
would not be hard, but let's wait till there's a reason.
* TypeAppCtxt: visible type application
f @ty
No need to check ty for ambiguity
* StandaloneKindSigCtxt: type T :: ksig
Kinds need a different ambiguity check than types, and the currently
implemented check is only good for types. See #14419, in particular
https://gitlab.haskell.org/ghc/ghc/issues/14419#note_160844
************************************************************************
* *
Checking validity of a user-defined type
* *
************************************************************************
When dealing with a user-written type, we first translate it from an HsType
to a Type, performing kind checking, and then check various things that should
be true about it. We don't want to perform these checks at the same time
as the initial translation because (a) they are unnecessary for interface-file
types and (b) when checking a mutually recursive group of type and class decls,
we can't "look" at the tycons/classes yet. Also, the checks are rather
diverse, and used to really mess up the other code.
One thing we check for is 'rank'.
Rank 0: monotypes (no foralls)
Rank 1: foralls at the front only, Rank 0 inside
Rank 2: foralls at the front, Rank 1 on left of fn arrow,
basic ::= tyvar | T basic ... basic
r2 ::= forall tvs. cxt => r2a
r2a ::= r1 -> r2a | basic
r1 ::= forall tvs. cxt => r0
r0 ::= r0 -> r0 | basic
Another thing is to check that type synonyms are saturated.
This might not necessarily show up in kind checking.
type A i = i
data T k = MkT (k Int)
f :: T A -- BAD!
-}
checkValidType :: UserTypeCtxt -> Type -> TcM ()
-- Checks that a user-written type is valid for the given context
-- Assumes argument is fully zonked
-- Not used for instance decls; checkValidInstance instead
checkValidType ctxt ty
= do { traceTc "checkValidType" (ppr ty <+> text "::" <+> ppr (tcTypeKind ty))
; rankn_flag <- xoptM LangExt.RankNTypes
; impred_flag <- xoptM LangExt.ImpredicativeTypes
; let gen_rank :: Rank -> Rank
gen_rank r | rankn_flag = ArbitraryRank
| otherwise = r
rank1 = gen_rank r1
rank0 = gen_rank r0
r0 = rankZeroMonoType
r1 = LimitedRank True r0
rank
= case ctxt of
DefaultDeclCtxt-> MustBeMonoType
ResSigCtxt -> MustBeMonoType
PatSigCtxt -> rank0
RuleSigCtxt _ -> rank1
TySynCtxt _ -> rank0
ExprSigCtxt -> rank1
KindSigCtxt -> rank1
StandaloneKindSigCtxt{} -> rank1
TypeAppCtxt | impred_flag -> ArbitraryRank
| otherwise -> tyConArgMonoType
-- Normally, ImpredicativeTypes is handled in check_arg_type,
-- but visible type applications don't go through there.
-- So we do this check here.
FunSigCtxt {} -> rank1
InfSigCtxt {} -> rank1 -- Inferred types should obey the
-- same rules as declared ones
ConArgCtxt _ -> rank1 -- We are given the type of the entire
-- constructor, hence rank 1
PatSynCtxt _ -> rank1
ForSigCtxt _ -> rank1
SpecInstCtxt -> rank1
ThBrackCtxt -> rank1
GhciCtxt {} -> ArbitraryRank
TyVarBndrKindCtxt _ -> rank0
DataKindCtxt _ -> rank1
TySynKindCtxt _ -> rank1
TyFamResKindCtxt _ -> rank1
_ -> panic "checkValidType"
-- Can't happen; not used for *user* sigs
; env <- tcInitOpenTidyEnv (tyCoVarsOfTypeList ty)
; expand <- initialExpandMode
; let ve = ValidityEnv{ ve_tidy_env = env, ve_ctxt = ctxt
, ve_rank = rank, ve_expand = expand }
-- Check the internal validity of the type itself
-- Fail if bad things happen, else we misleading
-- (and more complicated) errors in checkAmbiguity
; checkNoErrs $
do { check_type ve ty
; checkUserTypeError ty
; traceTc "done ct" (ppr ty) }
-- Check for ambiguous types. See Note [When to call checkAmbiguity]
-- NB: this will happen even for monotypes, but that should be cheap;
-- and there may be nested foralls for the subtype test to examine
; checkAmbiguity ctxt ty
; traceTc "checkValidType done" (ppr ty <+> text "::" <+> ppr (tcTypeKind ty)) }
checkValidMonoType :: Type -> TcM ()
-- Assumes argument is fully zonked
checkValidMonoType ty
= do { env <- tcInitOpenTidyEnv (tyCoVarsOfTypeList ty)
; expand <- initialExpandMode
; let ve = ValidityEnv{ ve_tidy_env = env, ve_ctxt = SigmaCtxt
, ve_rank = MustBeMonoType, ve_expand = expand }
; check_type ve ty }
checkTySynRhs :: UserTypeCtxt -> TcType -> TcM ()
checkTySynRhs ctxt ty
| tcReturnsConstraintKind actual_kind
= do { ck <- xoptM LangExt.ConstraintKinds
; if ck
then when (tcIsConstraintKind actual_kind)
(do { dflags <- getDynFlags
; expand <- initialExpandMode
; check_pred_ty emptyTidyEnv dflags ctxt expand ty })
else addErrTcM (constraintSynErr emptyTidyEnv actual_kind) }
| otherwise
= return ()
where
actual_kind = tcTypeKind ty
{-
Note [Higher rank types]
~~~~~~~~~~~~~~~~~~~~~~~~
Technically
Int -> forall a. a->a
is still a rank-1 type, but it's not Haskell 98 (#5957). So the
validity checker allow a forall after an arrow only if we allow it
before -- that is, with Rank2Types or RankNTypes
-}
data Rank = ArbitraryRank -- Any rank ok
| LimitedRank -- Note [Higher rank types]
Bool -- Forall ok at top
Rank -- Use for function arguments
| MonoType SDoc -- Monotype, with a suggestion of how it could be a polytype
| MustBeMonoType -- Monotype regardless of flags
instance Outputable Rank where
ppr ArbitraryRank = text "ArbitraryRank"
ppr (LimitedRank top_forall_ok r)
= text "LimitedRank" <+> ppr top_forall_ok
<+> parens (ppr r)
ppr (MonoType msg) = text "MonoType" <+> parens msg
ppr MustBeMonoType = text "MustBeMonoType"
rankZeroMonoType, tyConArgMonoType, synArgMonoType, constraintMonoType :: Rank
rankZeroMonoType = MonoType (text "Perhaps you intended to use RankNTypes")
tyConArgMonoType = MonoType (text "GHC doesn't yet support impredicative polymorphism")
synArgMonoType = MonoType (text "Perhaps you intended to use LiberalTypeSynonyms")
constraintMonoType = MonoType (vcat [ text "A constraint must be a monotype"
, text "Perhaps you intended to use QuantifiedConstraints" ])
funArgResRank :: Rank -> (Rank, Rank) -- Function argument and result
funArgResRank (LimitedRank _ arg_rank) = (arg_rank, LimitedRank (forAllAllowed arg_rank) arg_rank)
funArgResRank other_rank = (other_rank, other_rank)
forAllAllowed :: Rank -> Bool
forAllAllowed ArbitraryRank = True
forAllAllowed (LimitedRank forall_ok _) = forall_ok
forAllAllowed _ = False
allConstraintsAllowed :: UserTypeCtxt -> Bool
-- We don't allow arbitrary constraints in kinds
allConstraintsAllowed (TyVarBndrKindCtxt {}) = False
allConstraintsAllowed (DataKindCtxt {}) = False
allConstraintsAllowed (TySynKindCtxt {}) = False
allConstraintsAllowed (TyFamResKindCtxt {}) = False
allConstraintsAllowed (StandaloneKindSigCtxt {}) = False
allConstraintsAllowed _ = True
-- | Returns 'True' if the supplied 'UserTypeCtxt' is unambiguously not the
-- context for the type of a term, where visible, dependent quantification is
-- currently disallowed.
--
-- An example of something that is unambiguously the type of a term is the
-- @forall a -> a -> a@ in @foo :: forall a -> a -> a@. On the other hand, the
-- same type in @type family Foo :: forall a -> a -> a@ is unambiguously the
-- kind of a type, not the type of a term, so it is permitted.
--
-- For more examples, see
-- @testsuite/tests/dependent/should_compile/T16326_Compile*.hs@ (for places
-- where VDQ is permitted) and
-- @testsuite/tests/dependent/should_fail/T16326_Fail*.hs@ (for places where
-- VDQ is disallowed).
vdqAllowed :: UserTypeCtxt -> Bool
-- Currently allowed in the kinds of types...
vdqAllowed (KindSigCtxt {}) = True
vdqAllowed (StandaloneKindSigCtxt {}) = True
vdqAllowed (TySynCtxt {}) = True
vdqAllowed (ThBrackCtxt {}) = True
vdqAllowed (GhciCtxt {}) = True
vdqAllowed (TyVarBndrKindCtxt {}) = True
vdqAllowed (DataKindCtxt {}) = True
vdqAllowed (TySynKindCtxt {}) = True
vdqAllowed (TyFamResKindCtxt {}) = True
-- ...but not in the types of terms.
vdqAllowed (ConArgCtxt {}) = False
-- We could envision allowing VDQ in data constructor types so long as the
-- constructor is only ever used at the type level, but for now, GHC adopts
-- the stance that VDQ is never allowed in data constructor types.
vdqAllowed (FunSigCtxt {}) = False
vdqAllowed (InfSigCtxt {}) = False
vdqAllowed (ExprSigCtxt {}) = False
vdqAllowed (TypeAppCtxt {}) = False
vdqAllowed (PatSynCtxt {}) = False
vdqAllowed (PatSigCtxt {}) = False
vdqAllowed (RuleSigCtxt {}) = False
vdqAllowed (ResSigCtxt {}) = False
vdqAllowed (ForSigCtxt {}) = False
vdqAllowed (DefaultDeclCtxt {}) = False
-- We count class constraints as "types of terms". All of the cases below deal
-- with class constraints.
vdqAllowed (InstDeclCtxt {}) = False
vdqAllowed (SpecInstCtxt {}) = False
vdqAllowed (GenSigCtxt {}) = False
vdqAllowed (ClassSCCtxt {}) = False
vdqAllowed (SigmaCtxt {}) = False
vdqAllowed (DataTyCtxt {}) = False
vdqAllowed (DerivClauseCtxt {}) = False
{-
Note [Correctness and performance of type synonym validity checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the type A arg1 arg2, where A is a type synonym. How should we check
this type for validity? We have three distinct choices, corresponding to the
three constructors of ExpandMode:
1. Expand the application of A, and check the resulting type (`Expand`).
2. Don't expand the application of A. Only check the arguments (`NoExpand`).
3. Check the arguments *and* check the expanded type (`Both`).
It's tempting to think that we could always just pick choice (3), but this
results in serious performance issues when checking a type like in the
signature for `f` below:
type S = ...
f :: S (S (S (S (S (S ....(S Int)...))))
When checking the type of `f`, we'll check the outer `S` application with and
without expansion, and in *each* of those checks, we'll check the next `S`
application with and without expansion... the result is exponential blowup! So
clearly we don't want to use `Both` 100% of the time.
On the other hand, neither is it correct to use exclusively `Expand` or
exclusively `NoExpand` 100% of the time:
* If one always expands, then one can miss erroneous programs like the one in
the `tcfail129` test case:
type Foo a = String -> Maybe a
type Bar m = m Int
blah = undefined :: Bar Foo
If we expand `Bar Foo` immediately, we'll miss the fact that the `Foo` type
synonyms is unsaturated.
* If one never expands and only checks the arguments, then one can miss
erroneous programs like the one in #16059:
type Foo b = Eq b => b
f :: forall b (a :: Foo b). Int
The kind of `a` contains a constraint, which is illegal, but this will only
be caught if `Foo b` is expanded.
Therefore, it's impossible to have these validity checks be simultaneously
correct and performant if one sticks exclusively to a single `ExpandMode`. In
that case, the solution is to vary the `ExpandMode`s! In more detail:
1. When we start validity checking, we start with `Expand` if
LiberalTypeSynonyms is enabled (see Note [Liberal type synonyms] for why we
do this), and we start with `Both` otherwise. The `initialExpandMode`
function is responsible for this.
2. When expanding an application of a type synonym (in `check_syn_tc_app`), we
determine which things to check based on the current `ExpandMode` argument.
Importantly, if the current mode is `Both`, then we check the arguments in
`NoExpand` mode and check the expanded type in `Both` mode.
Switching to `NoExpand` when checking the arguments is vital to avoid
exponential blowup. One consequence of this choice is that if you have
the following type synonym in one module (with RankNTypes enabled):
{-# LANGUAGE RankNTypes #-}
module A where
type A = forall a. a
And you define the following in a separate module *without* RankNTypes
enabled:
module B where
import A
type Const a b = a
f :: Const Int A -> Int
Then `f` will be accepted, even though `A` (which is technically a rank-n
type) appears in its type. We view this as an acceptable compromise, since
`A` never appears in the type of `f` post-expansion. If `A` _did_ appear in
a type post-expansion, such as in the following variant:
g :: Const A A -> Int
Then that would be rejected unless RankNTypes were enabled.
-}
-- | When validity-checking an application of a type synonym, should we
-- check the arguments, check the expanded type, or both?
-- See Note [Correctness and performance of type synonym validity checking]
data ExpandMode
= Expand -- ^ Only check the expanded type.
| NoExpand -- ^ Only check the arguments.
| Both -- ^ Check both the arguments and the expanded type.
instance Outputable ExpandMode where
ppr e = text $ case e of
Expand -> "Expand"
NoExpand -> "NoExpand"
Both -> "Both"
-- | If @LiberalTypeSynonyms@ is enabled, we start in 'Expand' mode for the
-- reasons explained in @Note [Liberal type synonyms]@. Otherwise, we start
-- in 'Both' mode.
initialExpandMode :: TcM ExpandMode
initialExpandMode = do
liberal_flag <- xoptM LangExt.LiberalTypeSynonyms
pure $ if liberal_flag then Expand else Both
-- | Information about a type being validity-checked.
data ValidityEnv = ValidityEnv
{ ve_tidy_env :: TidyEnv
, ve_ctxt :: UserTypeCtxt
, ve_rank :: Rank
, ve_expand :: ExpandMode }
instance Outputable ValidityEnv where
ppr (ValidityEnv{ ve_tidy_env = env, ve_ctxt = ctxt
, ve_rank = rank, ve_expand = expand }) =
hang (text "ValidityEnv")
2 (vcat [ text "ve_tidy_env" <+> ppr env
, text "ve_ctxt" <+> pprUserTypeCtxt ctxt
, text "ve_rank" <+> ppr rank
, text "ve_expand" <+> ppr expand ])
----------------------------------------
check_type :: ValidityEnv -> Type -> TcM ()
-- The args say what the *type context* requires, independent
-- of *flag* settings. You test the flag settings at usage sites.
--
-- Rank is allowed rank for function args
-- Rank 0 means no for-alls anywhere
check_type _ (TyVarTy _) = return ()
check_type ve (AppTy ty1 ty2)
= do { check_type ve ty1
; check_arg_type False ve ty2 }
check_type ve ty@(TyConApp tc tys)
| isTypeSynonymTyCon tc || isTypeFamilyTyCon tc
= check_syn_tc_app ve ty tc tys
| isUnboxedTupleTyCon tc = check_ubx_tuple ve ty tys
| otherwise = mapM_ (check_arg_type False ve) tys
check_type _ (LitTy {}) = return ()
check_type ve (CastTy ty _) = check_type ve ty
-- Check for rank-n types, such as (forall x. x -> x) or (Show x => x).
--
-- Critically, this case must come *after* the case for TyConApp.
-- See Note [Liberal type synonyms].
check_type ve@(ValidityEnv{ ve_tidy_env = env, ve_ctxt = ctxt
, ve_rank = rank, ve_expand = expand }) ty
| not (null tvbs && null theta)
= do { traceTc "check_type" (ppr ty $$ ppr rank)
; checkTcM (forAllAllowed rank) (forAllTyErr env rank ty)
-- Reject e.g. (Maybe (?x::Int => Int)),
-- with a decent error message
; checkConstraintsOK ve theta ty
-- Reject forall (a :: Eq b => b). blah
-- In a kind signature we don't allow constraints
; checkTcM (all (isInvisibleArgFlag . binderArgFlag) tvbs
|| vdqAllowed ctxt)
(illegalVDQTyErr env ty)
-- Reject visible, dependent quantification in the type of a
-- term (e.g., `f :: forall a -> a -> Maybe a`)
; check_valid_theta env' SigmaCtxt expand theta
-- Allow type T = ?x::Int => Int -> Int
-- but not type T = ?x::Int
; check_type (ve{ve_tidy_env = env'}) tau
-- Allow foralls to right of arrow
; checkEscapingKind env' tvbs' theta tau }
where
(tvbs, phi) = tcSplitForAllVarBndrs ty
(theta, tau) = tcSplitPhiTy phi
(env', tvbs') = tidyTyCoVarBinders env tvbs
check_type (ve@ValidityEnv{ve_rank = rank}) (FunTy _ arg_ty res_ty)
= do { check_type (ve{ve_rank = arg_rank}) arg_ty
; check_type (ve{ve_rank = res_rank}) res_ty }
where
(arg_rank, res_rank) = funArgResRank rank
check_type _ ty = pprPanic "check_type" (ppr ty)
----------------------------------------
check_syn_tc_app :: ValidityEnv
-> KindOrType -> TyCon -> [KindOrType] -> TcM ()
-- Used for type synonyms and type synonym families,
-- which must be saturated,
-- but not data families, which need not be saturated
check_syn_tc_app (ve@ValidityEnv{ ve_ctxt = ctxt, ve_expand = expand })
ty tc tys
| tys `lengthAtLeast` tc_arity -- Saturated
-- Check that the synonym has enough args
-- This applies equally to open and closed synonyms
-- It's OK to have an *over-applied* type synonym
-- data Tree a b = ...
-- type Foo a = Tree [a]
-- f :: Foo a b -> ...
= case expand of
_ | isTypeFamilyTyCon tc
-> check_args_only expand
-- See Note [Correctness and performance of type synonym validity
-- checking]
Expand -> check_expansion_only expand
NoExpand -> check_args_only expand
Both -> check_args_only NoExpand *> check_expansion_only Both
| GhciCtxt True <- ctxt -- Accept outermost under-saturated type synonym or
-- type family constructors in GHCi :kind commands.
-- See Note [Unsaturated type synonyms in GHCi]
= check_args_only expand
| otherwise
= failWithTc (tyConArityErr tc tys)
where
tc_arity = tyConArity tc
check_arg :: ExpandMode -> KindOrType -> TcM ()
check_arg expand =
check_arg_type (isTypeSynonymTyCon tc) (ve{ve_expand = expand})
check_args_only, check_expansion_only :: ExpandMode -> TcM ()
check_args_only expand = mapM_ (check_arg expand) tys
check_expansion_only expand
= ASSERT2( isTypeSynonymTyCon tc, ppr tc )
case tcView ty of
Just ty' -> let err_ctxt = text "In the expansion of type synonym"
<+> quotes (ppr tc)
in addErrCtxt err_ctxt $
check_type (ve{ve_expand = expand}) ty'
Nothing -> pprPanic "check_syn_tc_app" (ppr ty)
{-
Note [Unsaturated type synonyms in GHCi]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking, GHC disallows unsaturated uses of type synonyms or type
families. For instance, if one defines `type Const a b = a`, then GHC will not
permit using `Const` unless it is applied to (at least) two arguments. There is
an exception to this rule, however: GHCi's :kind command. For instance, it
is quite common to look up the kind of a type constructor like so:
λ> :kind Const
Const :: j -> k -> j
λ> :kind Const Int
Const Int :: k -> Type
Strictly speaking, the two uses of `Const` above are unsaturated, but this
is an extremely benign (and useful) example of unsaturation, so we allow it
here as a special case.
That being said, we do not allow unsaturation carte blanche in GHCi. Otherwise,
this GHCi interaction would be possible:
λ> newtype Fix f = MkFix (f (Fix f))
λ> type Id a = a
λ> :kind Fix Id
Fix Id :: Type
This is rather dodgy, so we move to disallow this. We only permit unsaturated
synonyms in GHCi if they are *top-level*—that is, if the synonym is the
outermost type being applied. This allows `Const` and `Const Int` in the
first example, but not `Fix Id` in the second example, as `Id` is not the
outermost type being applied (`Fix` is).
We track this outermost property in the GhciCtxt constructor of UserTypeCtxt.
A field of True in GhciCtxt indicates that we're in an outermost position. Any
time we invoke `check_arg` to check the validity of an argument, we switch the
field to False.
-}
----------------------------------------
check_ubx_tuple :: ValidityEnv -> KindOrType -> [KindOrType] -> TcM ()
check_ubx_tuple (ve@ValidityEnv{ve_tidy_env = env}) ty tys
= do { ub_tuples_allowed <- xoptM LangExt.UnboxedTuples
; checkTcM ub_tuples_allowed (ubxArgTyErr env ty)
; impred <- xoptM LangExt.ImpredicativeTypes
; let rank' = if impred then ArbitraryRank else tyConArgMonoType
-- c.f. check_arg_type
-- However, args are allowed to be unlifted, or
-- more unboxed tuples, so can't use check_arg_ty
; mapM_ (check_type (ve{ve_rank = rank'})) tys }
----------------------------------------
check_arg_type
:: Bool -- ^ Is this the argument to a type synonym?
-> ValidityEnv -> KindOrType -> TcM ()
-- The sort of type that can instantiate a type variable,
-- or be the argument of a type constructor.
-- Not an unboxed tuple, but now *can* be a forall (since impredicativity)
-- Other unboxed types are very occasionally allowed as type
-- arguments depending on the kind of the type constructor
--
-- For example, we want to reject things like:
--
-- instance Ord a => Ord (forall s. T s a)
-- and
-- g :: T s (forall b.b)
--
-- NB: unboxed tuples can have polymorphic or unboxed args.
-- This happens in the workers for functions returning
-- product types with polymorphic components.
-- But not in user code.
-- Anyway, they are dealt with by a special case in check_tau_type
check_arg_type _ _ (CoercionTy {}) = return ()
check_arg_type type_syn (ve@ValidityEnv{ve_ctxt = ctxt, ve_rank = rank}) ty
= do { impred <- xoptM LangExt.ImpredicativeTypes
; let rank' = case rank of -- Predictive => must be monotype
-- Rank-n arguments to type synonyms are OK, provided
-- that LiberalTypeSynonyms is enabled.
_ | type_syn -> synArgMonoType
MustBeMonoType -> MustBeMonoType -- Monotype, regardless
_other | impred -> ArbitraryRank
| otherwise -> tyConArgMonoType
-- Make sure that MustBeMonoType is propagated,
-- so that we don't suggest -XImpredicativeTypes in
-- (Ord (forall a.a)) => a -> a
-- and so that if it Must be a monotype, we check that it is!
ctxt' :: UserTypeCtxt
ctxt'
| GhciCtxt _ <- ctxt = GhciCtxt False
-- When checking an argument, set the field of GhciCtxt to
-- False to indicate that we are no longer in an outermost
-- position (and thus unsaturated synonyms are no longer
-- allowed).
-- See Note [Unsaturated type synonyms in GHCi]
| otherwise = ctxt
; check_type (ve{ve_ctxt = ctxt', ve_rank = rank'}) ty }
----------------------------------------
forAllTyErr :: TidyEnv -> Rank -> Type -> (TidyEnv, SDoc)
forAllTyErr env rank ty
= ( env
, vcat [ hang herald 2 (ppr_tidy env ty)
, suggestion ] )
where
(tvs, _theta, _tau) = tcSplitSigmaTy ty
herald | null tvs = text "Illegal qualified type:"
| otherwise = text "Illegal polymorphic type:"
suggestion = case rank of
LimitedRank {} -> text "Perhaps you intended to use RankNTypes"
MonoType d -> d
_ -> Outputable.empty -- Polytype is always illegal
-- | Reject type variables that would escape their escape through a kind.
-- See @Note [Type variables escaping through kinds]@.
checkEscapingKind :: TidyEnv -> [TyVarBinder] -> ThetaType -> Type -> TcM ()
checkEscapingKind env tvbs theta tau =
case occCheckExpand (binderVars tvbs) phi_kind of
-- Ensure that none of the tvs occur in the kind of the forall
-- /after/ expanding type synonyms.
-- See Note [Phantom type variables in kinds] in GHC.Core.Type
Nothing -> failWithTcM $ forAllEscapeErr env tvbs theta tau tau_kind
Just _ -> pure ()
where
tau_kind = tcTypeKind tau
phi_kind | null theta = tau_kind
| otherwise = liftedTypeKind
-- If there are any constraints, the kind is *. (#11405)
forAllEscapeErr :: TidyEnv -> [TyVarBinder] -> ThetaType -> Type -> Kind
-> (TidyEnv, SDoc)
forAllEscapeErr env tvbs theta tau tau_kind
= ( env
, vcat [ hang (text "Quantified type's kind mentions quantified type variable")
2 (text "type:" <+> quotes (ppr (mkSigmaTy tvbs theta tau)))
-- NB: Don't tidy this type since the tvbs were already tidied
-- previously, and re-tidying them will make the names of type
-- variables different from tau_kind.
, hang (text "where the body of the forall has this kind:")
2 (quotes (ppr_tidy env tau_kind)) ] )
{-
Note [Type variables escaping through kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider:
type family T (r :: RuntimeRep) :: TYPE r
foo :: forall r. T r
Something smells funny about the type of `foo`. If you spell out the kind
explicitly, it becomes clearer from where the smell originates:
foo :: ((forall r. T r) :: TYPE r)
The type variable `r` appears in the result kind, which escapes the scope of
its binding site! This is not desirable, so we establish a validity check
(`checkEscapingKind`) to catch any type variables that might escape through
kinds in this way.
-}
ubxArgTyErr :: TidyEnv -> Type -> (TidyEnv, SDoc)
ubxArgTyErr env ty
= ( env, vcat [ sep [ text "Illegal unboxed tuple type as function argument:"
, ppr_tidy env ty ]
, text "Perhaps you intended to use UnboxedTuples" ] )
checkConstraintsOK :: ValidityEnv -> ThetaType -> Type -> TcM ()
checkConstraintsOK ve theta ty
| null theta = return ()
| allConstraintsAllowed (ve_ctxt ve) = return ()
| otherwise
= -- We are in a kind, where we allow only equality predicates
-- See Note [Constraints in kinds] in GHC.Core.TyCo.Rep, and #16263
checkTcM (all isEqPred theta) $
constraintTyErr (ve_tidy_env ve) ty
constraintTyErr :: TidyEnv -> Type -> (TidyEnv, SDoc)
constraintTyErr env ty
= (env, text "Illegal constraint in a kind:" <+> ppr_tidy env ty)
-- | Reject a use of visible, dependent quantification in the type of a term.
illegalVDQTyErr :: TidyEnv -> Type -> (TidyEnv, SDoc)
illegalVDQTyErr env ty =
(env, vcat
[ hang (text "Illegal visible, dependent quantification" <+>
text "in the type of a term:")
2 (ppr_tidy env ty)
, text "(GHC does not yet support this)" ] )
{-
Note [Liberal type synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If -XLiberalTypeSynonyms is on, expand closed type synonyms *before*
doing validity checking. This allows us to instantiate a synonym defn
with a for-all type, or with a partially-applied type synonym.
e.g. type T a b = a
type S m = m ()
f :: S (T Int)
Here, T is partially applied, so it's illegal in H98. But if you
expand S first, then T we get just
f :: Int
which is fine.
IMPORTANT: suppose T is a type synonym. Then we must do validity
checking on an application (T ty1 ty2)
*either* before expansion (i.e. check ty1, ty2)
*or* after expansion (i.e. expand T ty1 ty2, and then check)
BUT NOT BOTH
If we do both, we get exponential behaviour!!
data TIACons1 i r c = c i ::: r c
type TIACons2 t x = TIACons1 t (TIACons1 t x)
type TIACons3 t x = TIACons2 t (TIACons1 t x)
type TIACons4 t x = TIACons2 t (TIACons2 t x)
type TIACons7 t x = TIACons4 t (TIACons3 t x)
The order in which you do validity checking is also somewhat delicate. Consider
the `check_type` function, which drives the validity checking for unsaturated
uses of type synonyms. There is a special case for rank-n types, such as
(forall x. x -> x) or (Show x => x), since those require at least one language
extension to use. It used to be the case that this case came before every other
case, but this can lead to bugs. Imagine you have this scenario (from #15954):
type A a = Int
type B (a :: Type -> Type) = forall x. x -> x
type C = B A
If the rank-n case came first, then in the process of checking for `forall`s
or contexts, we would expand away `B A` to `forall x. x -> x`. This is because
the functions that split apart `forall`s/contexts
(tcSplitForAllVarBndrs/tcSplitPhiTy) expand type synonyms! If `B A` is expanded
away to `forall x. x -> x` before the actually validity checks occur, we will
have completely obfuscated the fact that we had an unsaturated application of
the `A` type synonym.
We have since learned from our mistakes and now put this rank-n case /after/
the case for TyConApp, which ensures that an unsaturated `A` TyConApp will be
caught properly. But be careful! We can't make the rank-n case /last/ either,
as the FunTy case must came after the rank-n case. Otherwise, something like
(Eq a => Int) would be treated as a function type (FunTy), which just
wouldn't do.
************************************************************************
* *
\subsection{Checking a theta or source type}
* *
************************************************************************
Note [Implicit parameters in instance decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Implicit parameters _only_ allowed in type signatures; not in instance
decls, superclasses etc. The reason for not allowing implicit params in
instances is a bit subtle. If we allowed
instance (?x::Int, Eq a) => Foo [a] where ...
then when we saw
(e :: (?x::Int) => t)
it would be unclear how to discharge all the potential uses of the ?x
in e. For example, a constraint Foo [Int] might come out of e, and
applying the instance decl would show up two uses of ?x. #8912.
-}
checkValidTheta :: UserTypeCtxt -> ThetaType -> TcM ()
-- Assumes argument is fully zonked
checkValidTheta ctxt theta
= addErrCtxtM (checkThetaCtxt ctxt theta) $
do { env <- tcInitOpenTidyEnv (tyCoVarsOfTypesList theta)
; expand <- initialExpandMode
; check_valid_theta env ctxt expand theta }
-------------------------
check_valid_theta :: TidyEnv -> UserTypeCtxt -> ExpandMode
-> [PredType] -> TcM ()
check_valid_theta _ _ _ []
= return ()
check_valid_theta env ctxt expand theta
= do { dflags <- getDynFlags
; warnTcM (Reason Opt_WarnDuplicateConstraints)
(wopt Opt_WarnDuplicateConstraints dflags && notNull dups)
(dupPredWarn env dups)
; traceTc "check_valid_theta" (ppr theta)
; mapM_ (check_pred_ty env dflags ctxt expand) theta }
where
(_,dups) = removeDups nonDetCmpType theta
-- It's OK to use nonDetCmpType because dups only appears in the
-- warning
-------------------------
{- Note [Validity checking for constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We look through constraint synonyms so that we can see the underlying
constraint(s). For example
type Foo = ?x::Int
instance Foo => C T
We should reject the instance because it has an implicit parameter in
the context.
But we record, in 'under_syn', whether we have looked under a synonym
to avoid requiring language extensions at the use site. Main example
(#9838):
{-# LANGUAGE ConstraintKinds #-}
module A where
type EqShow a = (Eq a, Show a)
module B where
import A
foo :: EqShow a => a -> String
We don't want to require ConstraintKinds in module B.
-}
check_pred_ty :: TidyEnv -> DynFlags -> UserTypeCtxt -> ExpandMode
-> PredType -> TcM ()
-- Check the validity of a predicate in a signature
-- See Note [Validity checking for constraints]
check_pred_ty env dflags ctxt expand pred
= do { check_type ve pred
; check_pred_help False env dflags ctxt pred }
where
rank | xopt LangExt.QuantifiedConstraints dflags
= ArbitraryRank
| otherwise
= constraintMonoType
ve :: ValidityEnv
ve = ValidityEnv{ ve_tidy_env = env
, ve_ctxt = SigmaCtxt
, ve_rank = rank
, ve_expand = expand }
check_pred_help :: Bool -- True <=> under a type synonym
-> TidyEnv
-> DynFlags -> UserTypeCtxt
-> PredType -> TcM ()
check_pred_help under_syn env dflags ctxt pred
| Just pred' <- tcView pred -- Switch on under_syn when going under a
-- synonym (#9838, yuk)
= check_pred_help True env dflags ctxt pred'
| otherwise -- A bit like classifyPredType, but not the same
-- E.g. we treat (~) like (~#); and we look inside tuples
= case classifyPredType pred of
ClassPred cls tys
| isCTupleClass cls -> check_tuple_pred under_syn env dflags ctxt pred tys
| otherwise -> check_class_pred env dflags ctxt pred cls tys
EqPred _ _ _ -> pprPanic "check_pred_help" (ppr pred)
-- EqPreds, such as (t1 ~ #t2) or (t1 ~R# t2), don't even have kind Constraint
-- and should never appear before the '=>' of a type. Thus
-- f :: (a ~# b) => blah
-- is wrong. For user written signatures, it'll be rejected by kind-checking
-- well before we get to validity checking. For inferred types we are careful
-- to box such constraints in GHC.Tc.Utils.TcType.pickQuantifiablePreds, as described
-- in Note [Lift equality constraints when quantifying] in GHC.Tc.Utils.TcType
ForAllPred _ theta head -> check_quant_pred env dflags ctxt pred theta head
IrredPred {} -> check_irred_pred under_syn env dflags ctxt pred
check_eq_pred :: TidyEnv -> DynFlags -> PredType -> TcM ()
check_eq_pred env dflags pred
= -- Equational constraints are valid in all contexts if type
-- families are permitted
checkTcM (xopt LangExt.TypeFamilies dflags
|| xopt LangExt.GADTs dflags)
(eqPredTyErr env pred)
check_quant_pred :: TidyEnv -> DynFlags -> UserTypeCtxt
-> PredType -> ThetaType -> PredType -> TcM ()
check_quant_pred env dflags ctxt pred theta head_pred
= addErrCtxt (text "In the quantified constraint" <+> quotes (ppr pred)) $
do { -- Check the instance head
case classifyPredType head_pred of
-- SigmaCtxt tells checkValidInstHead that
-- this is the head of a quantified constraint
ClassPred cls tys -> do { checkValidInstHead SigmaCtxt cls tys
; check_pred_help False env dflags ctxt head_pred }
-- need check_pred_help to do extra pred-only validity
-- checks, such as for (~). Otherwise, we get #17563
-- NB: checks for the context are covered by the check_type
-- in check_pred_ty
IrredPred {} | hasTyVarHead head_pred
-> return ()
_ -> failWithTcM (badQuantHeadErr env pred)
-- Check for termination
; unless (xopt LangExt.UndecidableInstances dflags) $
checkInstTermination theta head_pred
}
check_tuple_pred :: Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> [PredType] -> TcM ()
check_tuple_pred under_syn env dflags ctxt pred ts
= do { -- See Note [ConstraintKinds in predicates]
checkTcM (under_syn || xopt LangExt.ConstraintKinds dflags)
(predTupleErr env pred)
; mapM_ (check_pred_help under_syn env dflags ctxt) ts }
-- This case will not normally be executed because without
-- -XConstraintKinds tuple types are only kind-checked as *
check_irred_pred :: Bool -> TidyEnv -> DynFlags -> UserTypeCtxt -> PredType -> TcM ()
check_irred_pred under_syn env dflags ctxt pred
-- The predicate looks like (X t1 t2) or (x t1 t2) :: Constraint
-- where X is a type function
= do { -- If it looks like (x t1 t2), require ConstraintKinds
-- see Note [ConstraintKinds in predicates]
-- But (X t1 t2) is always ok because we just require ConstraintKinds
-- at the definition site (#9838)
failIfTcM (not under_syn && not (xopt LangExt.ConstraintKinds dflags)
&& hasTyVarHead pred)
(predIrredErr env pred)
-- Make sure it is OK to have an irred pred in this context
-- See Note [Irreducible predicates in superclasses]
; failIfTcM (is_superclass ctxt
&& not (xopt LangExt.UndecidableInstances dflags)
&& has_tyfun_head pred)
(predSuperClassErr env pred) }
where
is_superclass ctxt = case ctxt of { ClassSCCtxt _ -> True; _ -> False }
has_tyfun_head ty
= case tcSplitTyConApp_maybe ty of
Just (tc, _) -> isTypeFamilyTyCon tc
Nothing -> False
{- Note [ConstraintKinds in predicates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Don't check for -XConstraintKinds under a type synonym, because that
was done at the type synonym definition site; see #9838
e.g. module A where
type C a = (Eq a, Ix a) -- Needs -XConstraintKinds
module B where
import A
f :: C a => a -> a -- Does *not* need -XConstraintKinds
Note [Irreducible predicates in superclasses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Allowing type-family calls in class superclasses is somewhat dangerous
because we can write:
type family Fooish x :: * -> Constraint
type instance Fooish () = Foo
class Fooish () a => Foo a where
This will cause the constraint simplifier to loop because every time we canonicalise a
(Foo a) class constraint we add a (Fooish () a) constraint which will be immediately
solved to add+canonicalise another (Foo a) constraint. -}
-------------------------
check_class_pred :: TidyEnv -> DynFlags -> UserTypeCtxt
-> PredType -> Class -> [TcType] -> TcM ()
check_class_pred env dflags ctxt pred cls tys
| isEqPredClass cls -- (~) and (~~) are classified as classes,
-- but here we want to treat them as equalities
= check_eq_pred env dflags pred
| isIPClass cls
= do { check_arity
; checkTcM (okIPCtxt ctxt) (badIPPred env pred) }
| otherwise -- Includes Coercible
= do { check_arity
; checkSimplifiableClassConstraint env dflags ctxt cls tys
; checkTcM arg_tys_ok (predTyVarErr env pred) }
where
check_arity = checkTc (tys `lengthIs` classArity cls)
(tyConArityErr (classTyCon cls) tys)
-- Check the arguments of a class constraint
flexible_contexts = xopt LangExt.FlexibleContexts dflags
undecidable_ok = xopt LangExt.UndecidableInstances dflags
arg_tys_ok = case ctxt of
SpecInstCtxt -> True -- {-# SPECIALISE instance Eq (T Int) #-} is fine
InstDeclCtxt {} -> checkValidClsArgs (flexible_contexts || undecidable_ok) cls tys
-- Further checks on head and theta
-- in checkInstTermination
_ -> checkValidClsArgs flexible_contexts cls tys
checkSimplifiableClassConstraint :: TidyEnv -> DynFlags -> UserTypeCtxt
-> Class -> [TcType] -> TcM ()
-- See Note [Simplifiable given constraints]
checkSimplifiableClassConstraint env dflags ctxt cls tys
| not (wopt Opt_WarnSimplifiableClassConstraints dflags)
= return ()
| xopt LangExt.MonoLocalBinds dflags
= return ()
| DataTyCtxt {} <- ctxt -- Don't do this check for the "stupid theta"
= return () -- of a data type declaration
| cls `hasKey` coercibleTyConKey
= return () -- Oddly, we treat (Coercible t1 t2) as unconditionally OK
-- matchGlobalInst will reply "yes" because we can reduce
-- (Coercible a b) to (a ~R# b)
| otherwise
= do { result <- matchGlobalInst dflags False cls tys
; case result of
OneInst { cir_what = what }
-> addWarnTc (Reason Opt_WarnSimplifiableClassConstraints)
(simplifiable_constraint_warn what)
_ -> return () }
where
pred = mkClassPred cls tys
simplifiable_constraint_warn :: InstanceWhat -> SDoc
simplifiable_constraint_warn what
= vcat [ hang (text "The constraint" <+> quotes (ppr (tidyType env pred))
<+> text "matches")
2 (ppr what)
, hang (text "This makes type inference for inner bindings fragile;")
2 (text "either use MonoLocalBinds, or simplify it using the instance") ]
{- Note [Simplifiable given constraints]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A type signature like
f :: Eq [(a,b)] => a -> b
is very fragile, for reasons described at length in GHC.Tc.Solver.Interact
Note [Instance and Given overlap]. As that Note discusses, for the
most part the clever stuff in GHC.Tc.Solver.Interact means that we don't use a
top-level instance if a local Given might fire, so there is no
fragility. But if we /infer/ the type of a local let-binding, things
can go wrong (#11948 is an example, discussed in the Note).
So this warning is switched on only if we have NoMonoLocalBinds; in
that case the warning discourages users from writing simplifiable
class constraints.
The warning only fires if the constraint in the signature
matches the top-level instances in only one way, and with no
unifiers -- that is, under the same circumstances that
GHC.Tc.Solver.Interact.matchInstEnv fires an interaction with the top
level instances. For example (#13526), consider
instance {-# OVERLAPPABLE #-} Eq (T a) where ...
instance Eq (T Char) where ..
f :: Eq (T a) => ...
We don't want to complain about this, even though the context
(Eq (T a)) matches an instance, because the user may be
deliberately deferring the choice so that the Eq (T Char)
has a chance to fire when 'f' is called. And the fragility
only matters when there's a risk that the instance might
fire instead of the local 'given'; and there is no such
risk in this case. Just use the same rules as for instance
firing!
-}
-------------------------
okIPCtxt :: UserTypeCtxt -> Bool
-- See Note [Implicit parameters in instance decls]
okIPCtxt (FunSigCtxt {}) = True
okIPCtxt (InfSigCtxt {}) = True
okIPCtxt ExprSigCtxt = True
okIPCtxt TypeAppCtxt = True
okIPCtxt PatSigCtxt = True
okIPCtxt ResSigCtxt = True
okIPCtxt GenSigCtxt = True
okIPCtxt (ConArgCtxt {}) = True
okIPCtxt (ForSigCtxt {}) = True -- ??
okIPCtxt ThBrackCtxt = True
okIPCtxt (GhciCtxt {}) = True
okIPCtxt SigmaCtxt = True
okIPCtxt (DataTyCtxt {}) = True
okIPCtxt (PatSynCtxt {}) = True
okIPCtxt (TySynCtxt {}) = True -- e.g. type Blah = ?x::Int
-- #11466
okIPCtxt (KindSigCtxt {}) = False
okIPCtxt (StandaloneKindSigCtxt {}) = False
okIPCtxt (ClassSCCtxt {}) = False
okIPCtxt (InstDeclCtxt {}) = False
okIPCtxt (SpecInstCtxt {}) = False
okIPCtxt (RuleSigCtxt {}) = False
okIPCtxt DefaultDeclCtxt = False
okIPCtxt DerivClauseCtxt = False
okIPCtxt (TyVarBndrKindCtxt {}) = False
okIPCtxt (DataKindCtxt {}) = False
okIPCtxt (TySynKindCtxt {}) = False
okIPCtxt (TyFamResKindCtxt {}) = False
{-
Note [Kind polymorphic type classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MultiParam check:
class C f where... -- C :: forall k. k -> Constraint
instance C Maybe where...
The dictionary gets type [C * Maybe] even if it's not a MultiParam
type class.
Flexibility check:
class C f where... -- C :: forall k. k -> Constraint
data D a = D a
instance C D where
The dictionary gets type [C * (D *)]. IA0_TODO it should be
generalized actually.
-}
checkThetaCtxt :: UserTypeCtxt -> ThetaType -> TidyEnv -> TcM (TidyEnv, SDoc)
checkThetaCtxt ctxt theta env
= return ( env
, vcat [ text "In the context:" <+> pprTheta (tidyTypes env theta)
, text "While checking" <+> pprUserTypeCtxt ctxt ] )
eqPredTyErr, predTupleErr, predIrredErr,
predSuperClassErr, badQuantHeadErr :: TidyEnv -> PredType -> (TidyEnv, SDoc)
badQuantHeadErr env pred
= ( env
, hang (text "Quantified predicate must have a class or type variable head:")
2 (ppr_tidy env pred) )
eqPredTyErr env pred
= ( env
, text "Illegal equational constraint" <+> ppr_tidy env pred $$
parens (text "Use GADTs or TypeFamilies to permit this") )
predTupleErr env pred
= ( env
, hang (text "Illegal tuple constraint:" <+> ppr_tidy env pred)
2 (parens constraintKindsMsg) )
predIrredErr env pred
= ( env
, hang (text "Illegal constraint:" <+> ppr_tidy env pred)
2 (parens constraintKindsMsg) )
predSuperClassErr env pred
= ( env
, hang (text "Illegal constraint" <+> quotes (ppr_tidy env pred)
<+> text "in a superclass context")
2 (parens undecidableMsg) )
predTyVarErr :: TidyEnv -> PredType -> (TidyEnv, SDoc)
predTyVarErr env pred
= (env
, vcat [ hang (text "Non type-variable argument")
2 (text "in the constraint:" <+> ppr_tidy env pred)
, parens (text "Use FlexibleContexts to permit this") ])
badIPPred :: TidyEnv -> PredType -> (TidyEnv, SDoc)
badIPPred env pred
= ( env
, text "Illegal implicit parameter" <+> quotes (ppr_tidy env pred) )
constraintSynErr :: TidyEnv -> Type -> (TidyEnv, SDoc)
constraintSynErr env kind
= ( env
, hang (text "Illegal constraint synonym of kind:" <+> quotes (ppr_tidy env kind))
2 (parens constraintKindsMsg) )
dupPredWarn :: TidyEnv -> [NE.NonEmpty PredType] -> (TidyEnv, SDoc)
dupPredWarn env dups
= ( env
, text "Duplicate constraint" <> plural primaryDups <> text ":"
<+> pprWithCommas (ppr_tidy env) primaryDups )
where
primaryDups = map NE.head dups
tyConArityErr :: TyCon -> [TcType] -> SDoc
-- For type-constructor arity errors, be careful to report
-- the number of /visible/ arguments required and supplied,
-- ignoring the /invisible/ arguments, which the user does not see.
-- (e.g. #10516)
tyConArityErr tc tks
= arityErr (ppr (tyConFlavour tc)) (tyConName tc)
tc_type_arity tc_type_args
where
vis_tks = filterOutInvisibleTypes tc tks
-- tc_type_arity = number of *type* args expected
-- tc_type_args = number of *type* args encountered
tc_type_arity = count isVisibleTyConBinder (tyConBinders tc)
tc_type_args = length vis_tks
arityErr :: Outputable a => SDoc -> a -> Int -> Int -> SDoc
arityErr what name n m
= hsep [ text "The" <+> what, quotes (ppr name), text "should have",
n_arguments <> comma, text "but has been given",
if m==0 then text "none" else int m]
where
n_arguments | n == 0 = text "no arguments"
| n == 1 = text "1 argument"
| True = hsep [int n, text "arguments"]
{-
************************************************************************
* *
\subsection{Checking for a decent instance head type}
* *
************************************************************************
@checkValidInstHead@ checks the type {\em and} its syntactic constraints:
it must normally look like: @instance Foo (Tycon a b c ...) ...@
The exceptions to this syntactic checking: (1)~if the @GlasgowExts@
flag is on, or (2)~the instance is imported (they must have been
compiled elsewhere). In these cases, we let them go through anyway.
We can also have instances for functions: @instance Foo (a -> b) ...@.
-}
checkValidInstHead :: UserTypeCtxt -> Class -> [Type] -> TcM ()
checkValidInstHead ctxt clas cls_args
= do { dflags <- getDynFlags
; is_boot <- tcIsHsBootOrSig
; is_sig <- tcIsHsig
; check_special_inst_head dflags is_boot is_sig ctxt clas cls_args
; checkValidTypePats (classTyCon clas) cls_args
}
{-
Note [Instances of built-in classes in signature files]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
User defined instances for KnownNat, KnownSymbol and Typeable are
disallowed -- they are generated when needed by GHC itself on-the-fly.
However, if they occur in a Backpack signature file, they have an
entirely different meaning. Suppose in M.hsig we see
signature M where
data T :: Nat
instance KnownNat T
That says that any module satisfying M.hsig must provide a KnownNat
instance for T. We absolultely need that instance when compiling a
module that imports M.hsig: see #15379 and
Note [Fabricating Evidence for Literals in Backpack] in GHC.Tc.Instance.Class.
Hence, checkValidInstHead accepts a user-written instance declaration
in hsig files, where `is_sig` is True.
-}
check_special_inst_head :: DynFlags -> Bool -> Bool
-> UserTypeCtxt -> Class -> [Type] -> TcM ()
-- Wow! There are a surprising number of ad-hoc special cases here.
check_special_inst_head dflags is_boot is_sig ctxt clas cls_args
-- If not in an hs-boot file, abstract classes cannot have instances
| isAbstractClass clas
, not is_boot
= failWithTc abstract_class_msg
-- For Typeable, don't complain about instances for
-- standalone deriving; they are no-ops, and we warn about
-- it in GHC.Tc.Deriv.deriveStandalone.
| clas_nm == typeableClassName
, not is_sig
-- Note [Instances of built-in classes in signature files]
, hand_written_bindings
= failWithTc rejected_class_msg
-- Handwritten instances of KnownNat/KnownSymbol class
-- are always forbidden (#12837)
| clas_nm `elem` [ knownNatClassName, knownSymbolClassName ]
, not is_sig
-- Note [Instances of built-in classes in signature files]
, hand_written_bindings
= failWithTc rejected_class_msg
-- For the most part we don't allow
-- instances for (~), (~~), or Coercible;
-- but we DO want to allow them in quantified constraints:
-- f :: (forall a b. Coercible a b => Coercible (m a) (m b)) => ...m...
| clas_nm `elem` [ heqTyConName, eqTyConName, coercibleTyConName ]
, not quantified_constraint
= failWithTc rejected_class_msg
-- Check for hand-written Generic instances (disallowed in Safe Haskell)
| clas_nm `elem` genericClassNames
, hand_written_bindings
= do { failIfTc (safeLanguageOn dflags) gen_inst_err
; when (safeInferOn dflags) (recordUnsafeInfer emptyBag) }
| clas_nm == hasFieldClassName
= checkHasFieldInst clas cls_args
| isCTupleClass clas
= failWithTc tuple_class_msg
-- Check language restrictions on the args to the class
| check_h98_arg_shape
, Just msg <- mb_ty_args_msg
= failWithTc (instTypeErr clas cls_args msg)
| otherwise
= pure ()
where
clas_nm = getName clas
ty_args = filterOutInvisibleTypes (classTyCon clas) cls_args
hand_written_bindings
= case ctxt of
InstDeclCtxt stand_alone -> not stand_alone
SpecInstCtxt -> False
DerivClauseCtxt -> False
_ -> True
check_h98_arg_shape = case ctxt of
SpecInstCtxt -> False
DerivClauseCtxt -> False
SigmaCtxt -> False
_ -> True
-- SigmaCtxt: once we are in quantified-constraint land, we
-- aren't so picky about enforcing H98-language restrictions
-- E.g. we want to allow a head like Coercible (m a) (m b)
-- When we are looking at the head of a quantified constraint,
-- check_quant_pred sets ctxt to SigmaCtxt
quantified_constraint = case ctxt of
SigmaCtxt -> True
_ -> False
head_type_synonym_msg = parens (
text "All instance types must be of the form (T t1 ... tn)" $$
text "where T is not a synonym." $$
text "Use TypeSynonymInstances if you want to disable this.")
head_type_args_tyvars_msg = parens (vcat [
text "All instance types must be of the form (T a1 ... an)",
text "where a1 ... an are *distinct type variables*,",
text "and each type variable appears at most once in the instance head.",
text "Use FlexibleInstances if you want to disable this."])
head_one_type_msg = parens $
text "Only one type can be given in an instance head." $$
text "Use MultiParamTypeClasses if you want to allow more, or zero."
rejected_class_msg = text "Class" <+> quotes (ppr clas_nm)
<+> text "does not support user-specified instances"
tuple_class_msg = text "You can't specify an instance for a tuple constraint"
gen_inst_err = rejected_class_msg $$ nest 2 (text "(in Safe Haskell)")
abstract_class_msg = text "Cannot define instance for abstract class"
<+> quotes (ppr clas_nm)
mb_ty_args_msg
| not (xopt LangExt.TypeSynonymInstances dflags)
, not (all tcInstHeadTyNotSynonym ty_args)
= Just head_type_synonym_msg
| not (xopt LangExt.FlexibleInstances dflags)
, not (all tcInstHeadTyAppAllTyVars ty_args)
= Just head_type_args_tyvars_msg
| length ty_args /= 1
, not (xopt LangExt.MultiParamTypeClasses dflags)
, not (xopt LangExt.NullaryTypeClasses dflags && null ty_args)
= Just head_one_type_msg
| otherwise
= Nothing
tcInstHeadTyNotSynonym :: Type -> Bool
-- Used in Haskell-98 mode, for the argument types of an instance head
-- These must not be type synonyms, but everywhere else type synonyms
-- are transparent, so we need a special function here
tcInstHeadTyNotSynonym ty
= case ty of -- Do not use splitTyConApp,
-- because that expands synonyms!
TyConApp tc _ -> not (isTypeSynonymTyCon tc)
_ -> True
tcInstHeadTyAppAllTyVars :: Type -> Bool
-- Used in Haskell-98 mode, for the argument types of an instance head
-- These must be a constructor applied to type variable arguments
-- or a type-level literal.
-- But we allow kind instantiations.
tcInstHeadTyAppAllTyVars ty
| Just (tc, tys) <- tcSplitTyConApp_maybe (dropCasts ty)
= ok (filterOutInvisibleTypes tc tys) -- avoid kinds
| LitTy _ <- ty = True -- accept type literals (#13833)
| otherwise
= False
where
-- Check that all the types are type variables,
-- and that each is distinct
ok tys = equalLength tvs tys && hasNoDups tvs
where
tvs = mapMaybe tcGetTyVar_maybe tys
dropCasts :: Type -> Type
-- See Note [Casts during validity checking]
-- This function can turn a well-kinded type into an ill-kinded
-- one, so I've kept it local to this module
-- To consider: drop only HoleCo casts
dropCasts (CastTy ty _) = dropCasts ty
dropCasts (AppTy t1 t2) = mkAppTy (dropCasts t1) (dropCasts t2)
dropCasts ty@(FunTy _ t1 t2) = ty { ft_arg = dropCasts t1, ft_res = dropCasts t2 }
dropCasts (TyConApp tc tys) = mkTyConApp tc (map dropCasts tys)
dropCasts (ForAllTy b ty) = ForAllTy (dropCastsB b) (dropCasts ty)
dropCasts ty = ty -- LitTy, TyVarTy, CoercionTy
dropCastsB :: TyVarBinder -> TyVarBinder
dropCastsB b = b -- Don't bother in the kind of a forall
instTypeErr :: Class -> [Type] -> SDoc -> SDoc
instTypeErr cls tys msg
= hang (hang (text "Illegal instance declaration for")
2 (quotes (pprClassPred cls tys)))
2 msg
-- | See Note [Validity checking of HasField instances]
checkHasFieldInst :: Class -> [Type] -> TcM ()
checkHasFieldInst cls tys@[_k_ty, x_ty, r_ty, _a_ty] =
case splitTyConApp_maybe r_ty of
Nothing -> whoops (text "Record data type must be specified")
Just (tc, _)
| isFamilyTyCon tc
-> whoops (text "Record data type may not be a data family")
| otherwise -> case isStrLitTy x_ty of
Just lbl
| isJust (lookupTyConFieldLabel lbl tc)
-> whoops (ppr tc <+> text "already has a field"
<+> quotes (ppr lbl))
| otherwise -> return ()
Nothing
| null (tyConFieldLabels tc) -> return ()
| otherwise -> whoops (ppr tc <+> text "has fields")
where
whoops = addErrTc . instTypeErr cls tys
checkHasFieldInst _ tys = pprPanic "checkHasFieldInst" (ppr tys)
{- Note [Casts during validity checking]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the (bogus)
instance Eq Char#
We elaborate to 'Eq (Char# |> UnivCo(hole))' where the hole is an
insoluble equality constraint for * ~ #. We'll report the insoluble
constraint separately, but we don't want to *also* complain that Eq is
not applied to a type constructor. So we look gaily look through
CastTys here.
Another example: Eq (Either a). Then we actually get a cast in
the middle:
Eq ((Either |> g) a)
Note [Validity checking of HasField instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The HasField class has magic constraint solving behaviour (see Note
[HasField instances] in GHC.Tc.Solver.Interact). However, we permit users to
declare their own instances, provided they do not clash with the
built-in behaviour. In particular, we forbid:
1. `HasField _ r _` where r is a variable
2. `HasField _ (T ...) _` if T is a data family
(because it might have fields introduced later)
3. `HasField x (T ...) _` where x is a variable,
if T has any fields at all
4. `HasField "foo" (T ...) _` if T has a "foo" field
The usual functional dependency checks also apply.
Note [Valid 'deriving' predicate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
validDerivPred checks for OK 'deriving' context. See Note [Exotic
derived instance contexts] in GHC.Tc.Deriv. However the predicate is
here because it uses sizeTypes, fvTypes.
It checks for three things
* No repeated variables (hasNoDups fvs)
* No type constructors. This is done by comparing
sizeTypes tys == length (fvTypes tys)
sizeTypes counts variables and constructors; fvTypes returns variables.
So if they are the same, there must be no constructors. But there
might be applications thus (f (g x)).
Note that tys only includes the visible arguments of the class type
constructor. Including the non-visible arguments can cause the following,
perfectly valid instance to be rejected:
class Category (cat :: k -> k -> *) where ...
newtype T (c :: * -> * -> *) a b = MkT (c a b)
instance Category c => Category (T c) where ...
since the first argument to Category is a non-visible *, which sizeTypes
would count as a constructor! See #11833.
* Also check for a bizarre corner case, when the derived instance decl
would look like
instance C a b => D (T a) where ...
Note that 'b' isn't a parameter of T. This gives rise to all sorts of
problems; in particular, it's hard to compare solutions for equality
when finding the fixpoint, and that means the inferContext loop does
not converge. See #5287.
Note [Equality class instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We can't have users writing instances for the equality classes. But we
still need to be able to write instances for them ourselves. So we allow
instances only in the defining module.
-}
validDerivPred :: TyVarSet -> PredType -> Bool
-- See Note [Valid 'deriving' predicate]
validDerivPred tv_set pred
= case classifyPredType pred of
ClassPred cls tys -> cls `hasKey` typeableClassKey
-- Typeable constraints are bigger than they appear due
-- to kind polymorphism, but that's OK
|| check_tys cls tys
EqPred {} -> False -- reject equality constraints
_ -> True -- Non-class predicates are ok
where
check_tys cls tys
= hasNoDups fvs
-- use sizePred to ignore implicit args
&& lengthIs fvs (sizePred pred)
&& all (`elemVarSet` tv_set) fvs
where tys' = filterOutInvisibleTypes (classTyCon cls) tys
fvs = fvTypes tys'
{-
************************************************************************
* *
\subsection{Checking instance for termination}
* *
************************************************************************
-}
{- Note [Instances and constraint synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Currently, we don't allow instances for constraint synonyms at all.
Consider these (#13267):
type C1 a = Show (a -> Bool)
instance C1 Int where -- I1
show _ = "ur"
This elicits "show is not a (visible) method of class C1", which isn't
a great message. But it comes from the renamer, so it's hard to improve.
This needs a bit more care:
type C2 a = (Show a, Show Int)
instance C2 Int -- I2
If we use (splitTyConApp_maybe tau) in checkValidInstance to decompose
the instance head, we'll expand the synonym on fly, and it'll look like
instance (%,%) (Show Int, Show Int)
and we /really/ don't want that. So we carefully do /not/ expand
synonyms, by matching on TyConApp directly.
-}
checkValidInstance :: UserTypeCtxt -> LHsSigType GhcRn -> Type -> TcM ()
checkValidInstance ctxt hs_type ty
| not is_tc_app
= failWithTc (hang (text "Instance head is not headed by a class:")
2 ( ppr tau))
| isNothing mb_cls
= failWithTc (vcat [ text "Illegal instance for a" <+> ppr (tyConFlavour tc)
, text "A class instance must be for a class" ])
| not arity_ok
= failWithTc (text "Arity mis-match in instance head")
| otherwise
= do { setSrcSpan head_loc $
checkValidInstHead ctxt clas inst_tys
; traceTc "checkValidInstance {" (ppr ty)
; env0 <- tcInitTidyEnv
; expand <- initialExpandMode
; check_valid_theta env0 ctxt expand theta
-- The Termination and Coverate Conditions
-- Check that instance inference will terminate (if we care)
-- For Haskell 98 this will already have been done by checkValidTheta,
-- but as we may be using other extensions we need to check.
--
-- Note that the Termination Condition is *more conservative* than
-- the checkAmbiguity test we do on other type signatures
-- e.g. Bar a => Bar Int is ambiguous, but it also fails
-- the termination condition, because 'a' appears more often
-- in the constraint than in the head
; undecidable_ok <- xoptM LangExt.UndecidableInstances
; if undecidable_ok
then checkAmbiguity ctxt ty
else checkInstTermination theta tau
; traceTc "cvi 2" (ppr ty)
; case (checkInstCoverage undecidable_ok clas theta inst_tys) of
IsValid -> return () -- Check succeeded
NotValid msg -> addErrTc (instTypeErr clas inst_tys msg)
; traceTc "End checkValidInstance }" empty
; return () }
where
(_tvs, theta, tau) = tcSplitSigmaTy ty
is_tc_app = case tau of { TyConApp {} -> True; _ -> False }
TyConApp tc inst_tys = tau -- See Note [Instances and constraint synonyms]
mb_cls = tyConClass_maybe tc
Just clas = mb_cls
arity_ok = inst_tys `lengthIs` classArity clas
-- The location of the "head" of the instance
head_loc = getLoc (getLHsInstDeclHead hs_type)
{-
Note [Paterson conditions]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Termination test: the so-called "Paterson conditions" (see Section 5 of
"Understanding functional dependencies via Constraint Handling Rules,
JFP Jan 2007).
We check that each assertion in the context satisfies:
(1) no variable has more occurrences in the assertion than in the head, and
(2) the assertion has fewer constructors and variables (taken together
and counting repetitions) than the head.
This is only needed with -fglasgow-exts, as Haskell 98 restrictions
(which have already been checked) guarantee termination.
The underlying idea is that
for any ground substitution, each assertion in the
context has fewer type constructors than the head.
-}
checkInstTermination :: ThetaType -> TcPredType -> TcM ()
-- See Note [Paterson conditions]
checkInstTermination theta head_pred
= check_preds emptyVarSet theta
where
head_fvs = fvType head_pred
head_size = sizeType head_pred
check_preds :: VarSet -> [PredType] -> TcM ()
check_preds foralld_tvs preds = mapM_ (check foralld_tvs) preds
check :: VarSet -> PredType -> TcM ()
check foralld_tvs pred
= case classifyPredType pred of
EqPred {} -> return () -- See #4200.
IrredPred {} -> check2 foralld_tvs pred (sizeType pred)
ClassPred cls tys
| isTerminatingClass cls
-> return ()
| isCTupleClass cls -- Look inside tuple predicates; #8359
-> check_preds foralld_tvs tys
| otherwise -- Other ClassPreds
-> check2 foralld_tvs pred bogus_size
where
bogus_size = 1 + sizeTypes (filterOutInvisibleTypes (classTyCon cls) tys)
-- See Note [Invisible arguments and termination]
ForAllPred tvs _ head_pred'
-> check (foralld_tvs `extendVarSetList` tvs) head_pred'
-- Termination of the quantified predicate itself is checked
-- when the predicates are individually checked for validity
check2 foralld_tvs pred pred_size
| not (null bad_tvs) = failWithTc (noMoreMsg bad_tvs what (ppr head_pred))
| not (isTyFamFree pred) = failWithTc (nestedMsg what)
| pred_size >= head_size = failWithTc (smallerMsg what (ppr head_pred))
| otherwise = return ()
-- isTyFamFree: see Note [Type families in instance contexts]
where
what = text "constraint" <+> quotes (ppr pred)
bad_tvs = filterOut (`elemVarSet` foralld_tvs) (fvType pred)
\\ head_fvs
smallerMsg :: SDoc -> SDoc -> SDoc
smallerMsg what inst_head
= vcat [ hang (text "The" <+> what)
2 (sep [ text "is no smaller than"
, text "the instance head" <+> quotes inst_head ])
, parens undecidableMsg ]
noMoreMsg :: [TcTyVar] -> SDoc -> SDoc -> SDoc
noMoreMsg tvs what inst_head
= vcat [ hang (text "Variable" <> plural tvs1 <+> quotes (pprWithCommas ppr tvs1)
<+> occurs <+> text "more often")
2 (sep [ text "in the" <+> what
, text "than in the instance head" <+> quotes inst_head ])
, parens undecidableMsg ]
where
tvs1 = nub tvs
occurs = if isSingleton tvs1 then text "occurs"
else text "occur"
undecidableMsg, constraintKindsMsg :: SDoc
undecidableMsg = text "Use UndecidableInstances to permit this"
constraintKindsMsg = text "Use ConstraintKinds to permit this"
{- Note [Type families in instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Are these OK?
type family F a
instance F a => C (Maybe [a]) where ...
instance C (F a) => C [[[a]]] where ...
No: the type family in the instance head might blow up to an
arbitrarily large type, depending on how 'a' is instantiated.
So we require UndecidableInstances if we have a type family
in the instance head. #15172.
Note [Invisible arguments and termination]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When checking the ​Paterson conditions for termination an instance
declaration, we check for the number of "constructors and variables"
in the instance head and constraints. Question: Do we look at
* All the arguments, visible or invisible?
* Just the visible arguments?
I think both will ensure termination, provided we are consistent.
Currently we are /not/ consistent, which is really a bug. It's
described in #15177, which contains a number of examples.
The suspicious bits are the calls to filterOutInvisibleTypes.
-}
{-
************************************************************************
* *
Checking type instance well-formedness and termination
* *
************************************************************************
-}
checkValidCoAxiom :: CoAxiom Branched -> TcM ()
checkValidCoAxiom ax@(CoAxiom { co_ax_tc = fam_tc, co_ax_branches = branches })
= do { mapM_ (checkValidCoAxBranch fam_tc) branch_list
; foldlM_ check_branch_compat [] branch_list }
where
branch_list = fromBranches branches
injectivity = tyConInjectivityInfo fam_tc
check_branch_compat :: [CoAxBranch] -- previous branches in reverse order
-> CoAxBranch -- current branch
-> TcM [CoAxBranch]-- current branch : previous branches
-- Check for
-- (a) this branch is dominated by previous ones
-- (b) failure of injectivity
check_branch_compat prev_branches cur_branch
| cur_branch `isDominatedBy` prev_branches
= do { addWarnAt NoReason (coAxBranchSpan cur_branch) $
inaccessibleCoAxBranch fam_tc cur_branch
; return prev_branches }
| otherwise
= do { check_injectivity prev_branches cur_branch
; return (cur_branch : prev_branches) }
-- Injectivity check: check whether a new (CoAxBranch) can extend
-- already checked equations without violating injectivity
-- annotation supplied by the user.
-- See Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv
check_injectivity prev_branches cur_branch
| Injective inj <- injectivity
= do { dflags <- getDynFlags
; let conflicts =
fst $ foldl' (gather_conflicts inj prev_branches cur_branch)
([], 0) prev_branches
; reportConflictingInjectivityErrs fam_tc conflicts cur_branch
; reportInjectivityErrors dflags ax cur_branch inj }
| otherwise
= return ()
gather_conflicts inj prev_branches cur_branch (acc, n) branch
-- n is 0-based index of branch in prev_branches
= case injectiveBranches inj cur_branch branch of
-- Case 1B2 in Note [Verifying injectivity annotation] in GHC.Core.FamInstEnv
InjectivityUnified ax1 ax2
| ax1 `isDominatedBy` (replace_br prev_branches n ax2)
-> (acc, n + 1)
| otherwise
-> (branch : acc, n + 1)
InjectivityAccepted -> (acc, n + 1)
-- Replace n-th element in the list. Assumes 0-based indexing.
replace_br :: [CoAxBranch] -> Int -> CoAxBranch -> [CoAxBranch]
replace_br brs n br = take n brs ++ [br] ++ drop (n+1) brs
-- Check that a "type instance" is well-formed (which includes decidability
-- unless -XUndecidableInstances is given).
--
checkValidCoAxBranch :: TyCon -> CoAxBranch -> TcM ()
checkValidCoAxBranch fam_tc
(CoAxBranch { cab_tvs = tvs, cab_cvs = cvs
, cab_lhs = typats
, cab_rhs = rhs, cab_loc = loc })
= setSrcSpan loc $
checkValidTyFamEqn fam_tc (tvs++cvs) typats rhs
-- | Do validity checks on a type family equation, including consistency
-- with any enclosing class instance head, termination, and lack of
-- polytypes.
checkValidTyFamEqn :: TyCon -- ^ of the type family
-> [Var] -- ^ Bound variables in the equation
-> [Type] -- ^ Type patterns
-> Type -- ^ Rhs
-> TcM ()
checkValidTyFamEqn fam_tc qvs typats rhs
= do { checkValidTypePats fam_tc typats
-- Check for things used on the right but not bound on the left
; checkFamPatBinders fam_tc qvs typats rhs
-- Check for oversaturated visible kind arguments in a type family
-- equation.
-- See Note [Oversaturated type family equations]
; when (isTypeFamilyTyCon fam_tc) $
case drop (tyConArity fam_tc) typats of
[] -> pure ()
spec_arg:_ ->
addErr $ text "Illegal oversaturated visible kind argument:"
<+> quotes (char '@' <> pprParendType spec_arg)
-- The argument patterns, and RHS, are all boxed tau types
-- E.g Reject type family F (a :: k1) :: k2
-- type instance F (forall a. a->a) = ...
-- type instance F Int# = ...
-- type instance F Int = forall a. a->a
-- type instance F Int = Int#
-- See #9357
; checkValidMonoType rhs
-- We have a decidable instance unless otherwise permitted
; undecidable_ok <- xoptM LangExt.UndecidableInstances
; traceTc "checkVTFE" (ppr fam_tc $$ ppr rhs $$ ppr (tcTyFamInsts rhs))
; unless undecidable_ok $
mapM_ addErrTc (checkFamInstRhs fam_tc typats (tcTyFamInsts rhs)) }
-- Make sure that each type family application is
-- (1) strictly smaller than the lhs,
-- (2) mentions no type variable more often than the lhs, and
-- (3) does not contain any further type family instances.
--
checkFamInstRhs :: TyCon -> [Type] -- LHS
-> [(TyCon, [Type])] -- type family calls in RHS
-> [MsgDoc]
checkFamInstRhs lhs_tc lhs_tys famInsts
= mapMaybe check famInsts
where
lhs_size = sizeTyConAppArgs lhs_tc lhs_tys
inst_head = pprType (TyConApp lhs_tc lhs_tys)
lhs_fvs = fvTypes lhs_tys
check (tc, tys)
| not (all isTyFamFree tys) = Just (nestedMsg what)
| not (null bad_tvs) = Just (noMoreMsg bad_tvs what inst_head)
| lhs_size <= fam_app_size = Just (smallerMsg what inst_head)
| otherwise = Nothing
where
what = text "type family application"
<+> quotes (pprType (TyConApp tc tys))
fam_app_size = sizeTyConAppArgs tc tys
bad_tvs = fvTypes tys \\ lhs_fvs
-- The (\\) is list difference; e.g.
-- [a,b,a,a] \\ [a,a] = [b,a]
-- So we are counting repetitions
-----------------
checkFamPatBinders :: TyCon
-> [TcTyVar] -- Bound on LHS of family instance
-> [TcType] -- LHS patterns
-> Type -- RHS
-> TcM ()
-- We do these binder checks now, in tcFamTyPatsAndGen, rather
-- than later, in checkValidFamEqn, for two reasons:
-- - We have the implicitly and explicitly
-- bound type variables conveniently to hand
-- - If implicit variables are out of scope it may
-- cause a crash; notably in tcConDecl in tcDataFamInstDecl
checkFamPatBinders fam_tc qtvs pats rhs
= do { traceTc "checkFamPatBinders" $
vcat [ debugPprType (mkTyConApp fam_tc pats)
, ppr (mkTyConApp fam_tc pats)
, text "qtvs:" <+> ppr qtvs
, text "rhs_tvs:" <+> ppr (fvVarSet rhs_fvs)
, text "pat_tvs:" <+> ppr pat_tvs
, text "inj_pat_tvs:" <+> ppr inj_pat_tvs ]
-- Check for implicitly-bound tyvars, mentioned on the
-- RHS but not bound on the LHS
-- data T = MkT (forall (a::k). blah)
-- data family D Int = MkD (forall (a::k). blah)
-- In both cases, 'k' is not bound on the LHS, but is used on the RHS
-- We catch the former in kcDeclHeader, and the latter right here
-- See Note [Check type-family instance binders]
; check_tvs bad_rhs_tvs (text "mentioned in the RHS")
(text "bound on the LHS of")
-- Check for explicitly forall'd variable that is not bound on LHS
-- data instance forall a. T Int = MkT Int
-- See Note [Unused explicitly bound variables in a family pattern]
-- See Note [Check type-family instance binders]
; check_tvs bad_qtvs (text "bound by a forall")
(text "used in")
}
where
pat_tvs = tyCoVarsOfTypes pats
inj_pat_tvs = fvVarSet $ injectiveVarsOfTypes False pats
-- The type variables that are in injective positions.
-- See Note [Dodgy binding sites in type family instances]
-- NB: The False above is irrelevant, as we never have type families in
-- patterns.
--
-- NB: It's OK to use the nondeterministic `fvVarSet` function here,
-- since the order of `inj_pat_tvs` is never revealed in an error
-- message.
rhs_fvs = tyCoFVsOfType rhs
used_tvs = pat_tvs `unionVarSet` fvVarSet rhs_fvs
bad_qtvs = filterOut (`elemVarSet` used_tvs) qtvs
-- Bound but not used at all
bad_rhs_tvs = filterOut (`elemVarSet` inj_pat_tvs) (fvVarList rhs_fvs)
-- Used on RHS but not bound on LHS
dodgy_tvs = pat_tvs `minusVarSet` inj_pat_tvs
check_tvs tvs what what2
= unless (null tvs) $ addErrAt (getSrcSpan (head tvs)) $
hang (text "Type variable" <> plural tvs <+> pprQuotedList tvs
<+> isOrAre tvs <+> what <> comma)
2 (vcat [ text "but not" <+> what2 <+> text "the family instance"
, mk_extra tvs ])
-- mk_extra: #7536: give a decent error message for
-- type T a = Int
-- type instance F (T a) = a
mk_extra tvs = ppWhen (any (`elemVarSet` dodgy_tvs) tvs) $
hang (text "The real LHS (expanding synonyms) is:")
2 (pprTypeApp fam_tc (map expandTypeSynonyms pats))
-- | Checks that a list of type patterns is valid in a matching (LHS)
-- position of a class instances or type/data family instance.
--
-- Specifically:
-- * All monotypes
-- * No type-family applications
checkValidTypePats :: TyCon -> [Type] -> TcM ()
checkValidTypePats tc pat_ty_args
= do { -- Check that each of pat_ty_args is a monotype.
-- One could imagine generalising to allow
-- instance C (forall a. a->a)
-- but we don't know what all the consequences might be.
traverse_ checkValidMonoType pat_ty_args
-- Ensure that no type family applications occur a type pattern
; case tcTyConAppTyFamInstsAndVis tc pat_ty_args of
[] -> pure ()
((tf_is_invis_arg, tf_tc, tf_args):_) -> failWithTc $
ty_fam_inst_illegal_err tf_is_invis_arg
(mkTyConApp tf_tc tf_args) }
where
inst_ty = mkTyConApp tc pat_ty_args
ty_fam_inst_illegal_err :: Bool -> Type -> SDoc
ty_fam_inst_illegal_err invis_arg ty
= pprWithExplicitKindsWhen invis_arg $
hang (text "Illegal type synonym family application"
<+> quotes (ppr ty) <+> text "in instance" <> colon)
2 (ppr inst_ty)
-- Error messages
inaccessibleCoAxBranch :: TyCon -> CoAxBranch -> SDoc
inaccessibleCoAxBranch fam_tc cur_branch
= text "Type family instance equation is overlapped:" $$
nest 2 (pprCoAxBranchUser fam_tc cur_branch)
nestedMsg :: SDoc -> SDoc
nestedMsg what
= sep [ text "Illegal nested" <+> what
, parens undecidableMsg ]
badATErr :: Name -> Name -> SDoc
badATErr clas op
= hsep [text "Class", quotes (ppr clas),
text "does not have an associated type", quotes (ppr op)]
-------------------------
checkConsistentFamInst :: AssocInstInfo
-> TyCon -- ^ Family tycon
-> CoAxBranch
-> TcM ()
-- See Note [Checking consistent instantiation]
checkConsistentFamInst NotAssociated _ _
= return ()
checkConsistentFamInst (InClsInst { ai_class = clas
, ai_tyvars = inst_tvs
, ai_inst_env = mini_env })
fam_tc branch
= do { traceTc "checkConsistentFamInst" (vcat [ ppr inst_tvs
, ppr arg_triples
, ppr mini_env
, ppr ax_tvs
, ppr ax_arg_tys
, ppr arg_triples ])
-- Check that the associated type indeed comes from this class
-- See [Mismatched class methods and associated type families]
-- in TcInstDecls.
; checkTc (Just (classTyCon clas) == tyConAssoc_maybe fam_tc)
(badATErr (className clas) (tyConName fam_tc))
; check_match arg_triples
}
where
(ax_tvs, ax_arg_tys, _) = etaExpandCoAxBranch branch
arg_triples :: [(Type,Type, ArgFlag)]
arg_triples = [ (cls_arg_ty, at_arg_ty, vis)
| (fam_tc_tv, vis, at_arg_ty)
<- zip3 (tyConTyVars fam_tc)
(tyConArgFlags fam_tc ax_arg_tys)
ax_arg_tys
, Just cls_arg_ty <- [lookupVarEnv mini_env fam_tc_tv] ]
pp_wrong_at_arg vis
= pprWithExplicitKindsWhen (isInvisibleArgFlag vis) $
vcat [ text "Type indexes must match class instance head"
, text "Expected:" <+> pp_expected_ty
, text " Actual:" <+> pp_actual_ty ]
-- Fiddling around to arrange that wildcards unconditionally print as "_"
-- We only need to print the LHS, not the RHS at all
-- See Note [Printing conflicts with class header]
(tidy_env1, _) = tidyVarBndrs emptyTidyEnv inst_tvs
(tidy_env2, _) = tidyCoAxBndrsForUser tidy_env1 (ax_tvs \\ inst_tvs)
pp_expected_ty = pprIfaceTypeApp topPrec (toIfaceTyCon fam_tc) $
toIfaceTcArgs fam_tc $
[ case lookupVarEnv mini_env at_tv of
Just cls_arg_ty -> tidyType tidy_env2 cls_arg_ty
Nothing -> mk_wildcard at_tv
| at_tv <- tyConTyVars fam_tc ]
pp_actual_ty = pprIfaceTypeApp topPrec (toIfaceTyCon fam_tc) $
toIfaceTcArgs fam_tc $
tidyTypes tidy_env2 ax_arg_tys
mk_wildcard at_tv = mkTyVarTy (mkTyVar tv_name (tyVarKind at_tv))
tv_name = mkInternalName (mkAlphaTyVarUnique 1) (mkTyVarOcc "_") noSrcSpan
-- For check_match, bind_me, see
-- Note [Matching in the consistent-instantiation check]
check_match :: [(Type,Type,ArgFlag)] -> TcM ()
check_match triples = go emptyTCvSubst emptyTCvSubst triples
go _ _ [] = return ()
go lr_subst rl_subst ((ty1,ty2,vis):triples)
| Just lr_subst1 <- tcMatchTyX_BM bind_me lr_subst ty1 ty2
, Just rl_subst1 <- tcMatchTyX_BM bind_me rl_subst ty2 ty1
= go lr_subst1 rl_subst1 triples
| otherwise
= addErrTc (pp_wrong_at_arg vis)
-- The /scoped/ type variables from the class-instance header
-- should not be alpha-renamed. Inferred ones can be.
no_bind_set = mkVarSet inst_tvs
bind_me tv | tv `elemVarSet` no_bind_set = Skolem
| otherwise = BindMe
{- Note [Check type-family instance binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a type family instance, we require (of course), type variables
used on the RHS are matched on the LHS. This is checked by
checkFamPatBinders. Here is an interesting example:
type family T :: k
type instance T = (Nothing :: Maybe a)
Upon a cursory glance, it may appear that the kind variable `a` is unbound
since there are no (visible) LHS patterns in `T`. However, there is an
*invisible* pattern due to the return kind, so inside of GHC, the instance
looks closer to this:
type family T @k :: k
type instance T @(Maybe a) = (Nothing :: Maybe a)
Here, we can see that `a` really is bound by a LHS type pattern, so `a` is in
fact not unbound. Contrast that with this example (#13985)
type instance T = Proxy (Nothing :: Maybe a)
This would looks like this inside of GHC:
type instance T @(*) = Proxy (Nothing :: Maybe a)
So this time, `a` is neither bound by a visible nor invisible type pattern on
the LHS, so `a` would be reported as not in scope.
Finally, here's one more brain-teaser (from #9574). In the example below:
class Funct f where
type Codomain f :: *
instance Funct ('KProxy :: KProxy o) where
type Codomain 'KProxy = NatTr (Proxy :: o -> *)
As it turns out, `o` is in scope in this example. That is because `o` is
bound by the kind signature of the LHS type pattern 'KProxy. To make this more
obvious, one can also write the instance like so:
instance Funct ('KProxy :: KProxy o) where
type Codomain ('KProxy :: KProxy o) = NatTr (Proxy :: o -> *)
Note [Dodgy binding sites in type family instances]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following example (from #7536):
type T a = Int
type instance F (T a) = a
This `F` instance is extremely fishy, since the RHS, `a`, purports to be
"bound" by the LHS pattern `T a`. "Bound" has scare quotes around it because
`T a` expands to `Int`, which doesn't mention at all, so it's as if one had
actually written:
type instance F Int = a
That is clearly bogus, so to reject this, we check that every type variable
that is mentioned on the RHS is /actually/ bound on the LHS. In other words,
we need to do something slightly more sophisticated that just compute the free
variables of the LHS patterns.
It's tempting to just expand all type synonyms on the LHS and then compute
their free variables, but even that isn't sophisticated enough. After all,
an impish user could write the following (#17008):
type family ConstType (a :: Type) :: Type where
ConstType _ = Type
type family F (x :: ConstType a) :: Type where
F (x :: ConstType a) = a
Just like in the previous example, the `a` on the RHS isn't actually bound
on the LHS, but this time a type family is responsible for the deception, not
a type synonym.
We avoid both issues by requiring that all RHS type variables are mentioned
in injective positions on the left-hand side (by way of
`injectiveVarsOfTypes`). For instance, the `a` in `T a` is not in an injective
position, as `T` is not an injective type constructor, so we do not count that.
Similarly for the `a` in `ConstType a`.
Note [Matching in the consistent-instantiation check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Matching the class-instance header to family-instance tyvars is
tricker than it sounds. Consider (#13972)
class C (a :: k) where
type T k :: Type
instance C Left where
type T (a -> Either a b) = Int
Here there are no lexically-scoped variables from (C Left).
Yet the real class-instance header is C @(p -> Either @p @q)) (Left @p @q)
while the type-family instance is T (a -> Either @a @b)
So we allow alpha-renaming of variables that don't come
from the class-instance header.
We track the lexically-scoped type variables from the
class-instance header in ai_tyvars.
Here's another example (#14045a)
class C (a :: k) where
data S (a :: k)
instance C (z :: Bool) where
data S :: Bool -> Type where
Again, there is no lexical connection, but we will get
class-instance header: C @Bool (z::Bool)
family instance S @Bool (a::Bool)
When looking for mis-matches, we check left-to-right,
kinds first. If we look at types first, we'll fail to
suggest -fprint-explicit-kinds for a mis-match with
T @k vs T @Type
somewhere deep inside the type
Note [Checking consistent instantiation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See #11450 for background discussion on this check.
class C a b where
type T a x b
With this class decl, if we have an instance decl
instance C ty1 ty2 where ...
then the type instance must look like
type T ty1 v ty2 = ...
with exactly 'ty1' for 'a', 'ty2' for 'b', and some type 'v' for 'x'.
For example:
instance C [p] Int
type T [p] y Int = (p,y,y)
Note that
* We used to allow completely different bound variables in the
associated type instance; e.g.
instance C [p] Int
type T [q] y Int = ...
But from GHC 8.2 onwards, we don't. It's much simpler this way.
See #11450.
* When the class variable isn't used on the RHS of the type instance,
it's tempting to allow wildcards, thus
instance C [p] Int
type T [_] y Int = (y,y)
But it's awkward to do the test, and it doesn't work if the
variable is repeated:
instance C (p,p) Int
type T (_,_) y Int = (y,y)
Even though 'p' is not used on the RHS, we still need to use 'p'
on the LHS to establish the repeated pattern. So to keep it simple
we just require equality.
* For variables in associated type families that are not bound by the class
itself, we do _not_ check if they are over-specific. In other words,
it's perfectly acceptable to have an instance like this:
instance C [p] Int where
type T [p] (Maybe x) Int = x
While the first and third arguments to T are required to be exactly [p] and
Int, respectively, since they are bound by C, the second argument is allowed
to be more specific than just a type variable. Furthermore, it is permissible
to define multiple equations for T that differ only in the non-class-bound
argument:
instance C [p] Int where
type T [p] (Maybe x) Int = x
type T [p] (Either x y) Int = x -> y
We once considered requiring that non-class-bound variables in associated
type family instances be instantiated with distinct type variables. However,
that requirement proved too restrictive in practice, as there were examples
of extremely simple associated type family instances that this check would
reject, and fixing them required tiresome boilerplate in the form of
auxiliary type families. For instance, you would have to define the above
example as:
instance C [p] Int where
type T [p] x Int = CAux x
type family CAux x where
CAux (Maybe x) = x
CAux (Either x y) = x -> y
We decided that this restriction wasn't buying us much, so we opted not
to pursue that design (see also GHC #13398).
Implementation
* Form the mini-envt from the class type variables a,b
to the instance decl types [p],Int: [a->[p], b->Int]
* Look at the tyvars a,x,b of the type family constructor T
(it shares tyvars with the class C)
* Apply the mini-evnt to them, and check that the result is
consistent with the instance types [p] y Int. (where y can be any type, as
it is not scoped over the class type variables.
We make all the instance type variables scope over the
type instances, of course, which picks up non-obvious kinds. Eg
class Foo (a :: k) where
type F a
instance Foo (b :: k -> k) where
type F b = Int
Here the instance is kind-indexed and really looks like
type F (k->k) (b::k->k) = Int
But if the 'b' didn't scope, we would make F's instance too
poly-kinded.
Note [Printing conflicts with class header]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's remarkably painful to give a decent error message for conflicts
with the class header. Consider
clase C b where
type F a b c
instance C [b] where
type F x Int _ _ = ...
Here we want to report a conflict between
Expected: F _ [b] _
Actual: F x Int _ _
But if the type instance shadows the class variable like this
(rename/should_fail/T15828):
instance C [b] where
type forall b. F x (Tree b) _ _ = ...
then we must use a fresh variable name
Expected: F _ [b] _
Actual: F x [b1] _ _
Notice that:
- We want to print an underscore in the "Expected" type in
positions where the class header has no influence over the
parameter. Hence the fancy footwork in pp_expected_ty
- Although the binders in the axiom are already tidy, we must
re-tidy them to get a fresh variable name when we shadow
- The (ax_tvs \\ inst_tvs) is to avoid tidying one of the
class-instance variables a second time, from 'a' to 'a1' say.
Remember, the ax_tvs of the axiom share identity with the
class-instance variables, inst_tvs..
- We use tidyCoAxBndrsForUser to get underscores rather than
_1, _2, etc in the axiom tyvars; see the definition of
tidyCoAxBndrsForUser
This all seems absurdly complicated.
Note [Unused explicitly bound variables in a family pattern]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Why is 'unusedExplicitForAllErr' not just a warning?
Consider the following examples:
type instance F a = Maybe b
type instance forall b. F a = Bool
type instance forall b. F a = Maybe b
In every case, b is a type variable not determined by the LHS pattern. The
first is caught by the renamer, but we catch the last two here. Perhaps one
could argue that the second should be accepted, albeit with a warning, but
consider the fact that in a type family instance, there is no way to interact
with such a varable. At least with @x :: forall a. Int@ we can use visibile
type application, like @x \@Bool 1@. (Of course it does nothing, but it is
permissible.) In the type family case, the only sensible explanation is that
the user has made a mistake -- thus we throw an error.
Note [Oversaturated type family equations]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type family tycons have very rigid arities. We want to reject something like
this:
type family Foo :: Type -> Type where
Foo x = ...
Because Foo has arity zero (i.e., it doesn't bind anything to the left of the
double colon), we want to disallow any equation for Foo that has more than zero
arguments, such as `Foo x = ...`. The algorithm here is pretty simple: if an
equation has more arguments than the arity of the type family, reject.
Things get trickier when visible kind application enters the picture. Consider
the following example:
type family Bar (x :: j) :: forall k. Either j k where
Bar 5 @Symbol = ...
The arity of Bar is two, since it binds two variables, `j` and `x`. But even
though Bar's equation has two arguments, it's still invalid. Imagine the same
equation in Core:
Bar Nat 5 Symbol = ...
Here, it becomes apparent that Bar is actually taking /three/ arguments! So
we can't just rely on a simple counting argument to reject
`Bar 5 @Symbol = ...`, since it only has two user-written arguments.
Moreover, there's one explicit argument (5) and one visible kind argument
(@Symbol), which matches up perfectly with the fact that Bar has one required
binder (x) and one specified binder (j), so that's not a valid way to detect
oversaturation either.
To solve this problem in a robust way, we do the following:
1. When kind-checking, we count the number of user-written *required*
arguments and check if there is an equal number of required tycon binders.
If not, reject. (See `wrongNumberOfParmsErr` in GHC.Tc.TyCl.)
We perform this step during kind-checking, not during validity checking,
since we can give better error messages if we catch it early.
2. When validity checking, take all of the (Core) type patterns from on
equation, drop the first n of them (where n is the arity of the type family
tycon), and check if there are any types leftover. If so, reject.
Why does this work? We know that after dropping the first n type patterns,
none of the leftover types can be required arguments, since step (1) would
have already caught that. Moreover, the only places where visible kind
applications should be allowed are in the first n types, since those are the
only arguments that can correspond to binding forms. Therefore, the
remaining arguments must correspond to oversaturated uses of visible kind
applications, which are precisely what we want to reject.
Note that we only perform this check for type families, and not for data
families. This is because it is perfectly acceptable to oversaturate data
family instance equations: see Note [Arity of data families] in GHC.Core.FamInstEnv.
************************************************************************
* *
Telescope checking
* *
************************************************************************
Note [Bad TyCon telescopes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now that we can mix type and kind variables, there are an awful lot of
ways to shoot yourself in the foot. Here are some.
data SameKind :: k -> k -> * -- just to force unification
1. data T1 a k (b :: k) (x :: SameKind a b)
The problem here is that we discover that a and b should have the same
kind. But this kind mentions k, which is bound *after* a.
(Testcase: dependent/should_fail/BadTelescope)
2. data T2 a (c :: Proxy b) (d :: Proxy a) (x :: SameKind b d)
Note that b is not bound. Yet its kind mentions a. Because we have
a nice rule that all implicitly bound variables come before others,
this is bogus.
To catch these errors, we call checkTyConTelescope during kind-checking
datatype declarations. This checks for
* Ill-scoped binders. From (1) and (2) above we can get putative
kinds like
T1 :: forall (a:k) (k:*) (b:k). SameKind a b -> *
where 'k' is mentioned a's kind before k is bound
This is easy to check for: just look for
out-of-scope variables in the kind
* We should arguably also check for ambiguous binders
but we don't. See Note [Ambiguous kind vars].
See also
* Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl.
* Note [Checking telescopes] in GHC.Tc.Types.Constraint discusses how
this check works for `forall x y z.` written in a type.
Note [Ambiguous kind vars]
~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to be concerned about ambiguous binders. Suppose we have the kind
S1 :: forall k -> * -> *
S2 :: forall k. * -> *
Here S1 is OK, because k is Required, and at a use of S1 we will
see (S1 *) or (S1 (*->*)) or whatever.
But S2 is /not/ OK because 'k' is Specfied (and hence invisible) and
we have no way (ever) to figure out how 'k' should be instantiated.
For example if we see (S2 Int), that tells us nothing about k's
instantiation. (In this case we'll instantiate it to Any, but that
seems wrong.) This is really the same test as we make for ambiguous
type in term type signatures.
Now, it's impossible for a Specified variable not to occur
at all in the kind -- after all, it is Specified so it must have
occurred. (It /used/ to be possible; see tests T13983 and T7873. But
with the advent of the forall-or-nothing rule for kind variables,
those strange cases went away.)
But one might worry about
type v k = *
S3 :: forall k. V k -> *
which appears to mention 'k' but doesn't really. Or
S4 :: forall k. F k -> *
where F is a type function. But we simply don't check for
those cases of ambiguity, yet anyway. The worst that can happen
is ambiguity at the call sites.
Historical note: this test used to be called reportFloatingKvs.
-}
-- | Check a list of binders to see if they make a valid telescope.
-- See Note [Bad TyCon telescopes]
type TelescopeAcc
= ( TyVarSet -- Bound earlier in the telescope
, Bool -- At least one binder occurred (in a kind) before
-- it was bound in the telescope. E.g.
) -- T :: forall (a::k) k. blah
checkTyConTelescope :: TyCon -> TcM ()
checkTyConTelescope tc
| bad_scope
= -- See "Ill-scoped binders" in Note [Bad TyCon telescopes]
addErr $
vcat [ hang (text "The kind of" <+> quotes (ppr tc) <+> text "is ill-scoped")
2 pp_tc_kind
, extra
, hang (text "Perhaps try this order instead:")
2 (pprTyVars sorted_tvs) ]
| otherwise
= return ()
where
tcbs = tyConBinders tc
tvs = binderVars tcbs
sorted_tvs = scopedSort tvs
(_, bad_scope) = foldl add_one (emptyVarSet, False) tcbs
add_one :: TelescopeAcc -> TyConBinder -> TelescopeAcc
add_one (bound, bad_scope) tcb
= ( bound `extendVarSet` tv
, bad_scope || not (isEmptyVarSet (fkvs `minusVarSet` bound)) )
where
tv = binderVar tcb
fkvs = tyCoVarsOfType (tyVarKind tv)
inferred_tvs = [ binderVar tcb
| tcb <- tcbs, Inferred == tyConBinderArgFlag tcb ]
specified_tvs = [ binderVar tcb
| tcb <- tcbs, Specified == tyConBinderArgFlag tcb ]
pp_inf = parens (text "namely:" <+> pprTyVars inferred_tvs)
pp_spec = parens (text "namely:" <+> pprTyVars specified_tvs)
pp_tc_kind = text "Inferred kind:" <+> ppr tc <+> dcolon <+> ppr_untidy (tyConKind tc)
ppr_untidy ty = pprIfaceType (toIfaceType ty)
-- We need ppr_untidy here because pprType will tidy the type, which
-- will turn the bogus kind we are trying to report
-- T :: forall (a::k) k (b::k) -> blah
-- into a misleadingly sanitised version
-- T :: forall (a::k) k1 (b::k1) -> blah
extra
| null inferred_tvs && null specified_tvs
= empty
| null inferred_tvs
= hang (text "NB: Specified variables")
2 (sep [pp_spec, text "always come first"])
| null specified_tvs
= hang (text "NB: Inferred variables")
2 (sep [pp_inf, text "always come first"])
| otherwise
= hang (text "NB: Inferred variables")
2 (vcat [ sep [ pp_inf, text "always come first"]
, sep [text "then Specified variables", pp_spec]])
{-
************************************************************************
* *
\subsection{Auxiliary functions}
* *
************************************************************************
-}
-- Free variables of a type, retaining repetitions, and expanding synonyms
-- This ignores coercions, as coercions aren't user-written
fvType :: Type -> [TyCoVar]
fvType ty | Just exp_ty <- tcView ty = fvType exp_ty
fvType (TyVarTy tv) = [tv]
fvType (TyConApp _ tys) = fvTypes tys
fvType (LitTy {}) = []
fvType (AppTy fun arg) = fvType fun ++ fvType arg
fvType (FunTy _ arg res) = fvType arg ++ fvType res
fvType (ForAllTy (Bndr tv _) ty)
= fvType (tyVarKind tv) ++
filter (/= tv) (fvType ty)
fvType (CastTy ty _) = fvType ty
fvType (CoercionTy {}) = []
fvTypes :: [Type] -> [TyVar]
fvTypes tys = concatMap fvType tys
sizeType :: Type -> Int
-- Size of a type: the number of variables and constructors
sizeType ty | Just exp_ty <- tcView ty = sizeType exp_ty
sizeType (TyVarTy {}) = 1
sizeType (TyConApp tc tys) = 1 + sizeTyConAppArgs tc tys
sizeType (LitTy {}) = 1
sizeType (AppTy fun arg) = sizeType fun + sizeType arg
sizeType (FunTy _ arg res) = sizeType arg + sizeType res + 1
sizeType (ForAllTy _ ty) = sizeType ty
sizeType (CastTy ty _) = sizeType ty
sizeType (CoercionTy _) = 0
sizeTypes :: [Type] -> Int
sizeTypes = foldr ((+) . sizeType) 0
sizeTyConAppArgs :: TyCon -> [Type] -> Int
sizeTyConAppArgs _tc tys = sizeTypes tys -- (filterOutInvisibleTypes tc tys)
-- See Note [Invisible arguments and termination]
-- Size of a predicate
--
-- We are considering whether class constraints terminate.
-- Equality constraints and constraints for the implicit
-- parameter class always terminate so it is safe to say "size 0".
-- See #4200.
sizePred :: PredType -> Int
sizePred ty = goClass ty
where
goClass p = go (classifyPredType p)
go (ClassPred cls tys')
| isTerminatingClass cls = 0
| otherwise = sizeTypes (filterOutInvisibleTypes (classTyCon cls) tys')
-- The filtering looks bogus
-- See Note [Invisible arguments and termination]
go (EqPred {}) = 0
go (IrredPred ty) = sizeType ty
go (ForAllPred _ _ pred) = goClass pred
-- | When this says "True", ignore this class constraint during
-- a termination check
isTerminatingClass :: Class -> Bool
isTerminatingClass cls
= isIPClass cls -- Implicit parameter constraints always terminate because
-- there are no instances for them --- they are only solved
-- by "local instances" in expressions
|| isEqPredClass cls
|| cls `hasKey` typeableClassKey
|| cls `hasKey` coercibleTyConKey
-- | Tidy before printing a type
ppr_tidy :: TidyEnv -> Type -> SDoc
ppr_tidy env ty = pprType (tidyType env ty)
allDistinctTyVars :: TyVarSet -> [KindOrType] -> Bool
-- (allDistinctTyVars tvs tys) returns True if tys are
-- a) all tyvars
-- b) all distinct
-- c) disjoint from tvs
allDistinctTyVars _ [] = True
allDistinctTyVars tkvs (ty : tys)
= case getTyVar_maybe ty of
Nothing -> False
Just tv | tv `elemVarSet` tkvs -> False
| otherwise -> allDistinctTyVars (tkvs `extendVarSet` tv) tys
|