1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
This module converts Template Haskell syntax into Hs syntax
-}
module GHC.ThToHs
( convertToHsExpr
, convertToPat
, convertToHsDecls
, convertToHsType
, thRdrNameGuesses
)
where
import GHC.Prelude
import GHC.Hs as Hs
import GHC.Builtin.Names
import GHC.Types.Name.Reader
import qualified GHC.Types.Name as Name
import GHC.Unit.Module
import GHC.Parser.PostProcess
import GHC.Types.Name.Occurrence as OccName
import GHC.Types.SrcLoc
import GHC.Core.Type as Hs
import qualified GHC.Core.Coercion as Coercion ( Role(..) )
import GHC.Builtin.Types
import GHC.Types.Basic as Hs
import GHC.Types.Fixity as Hs
import GHC.Types.ForeignCall
import GHC.Types.Unique
import GHC.Types.SourceText
import GHC.Utils.Error
import GHC.Data.Bag
import GHC.Utils.Lexeme
import GHC.Utils.Misc
import GHC.Data.FastString
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import qualified Data.ByteString as BS
import Control.Monad( unless, ap )
import Control.Applicative( (<|>) )
import Data.Maybe( catMaybes, isNothing )
import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH
import Foreign.ForeignPtr
import Foreign.Ptr
import System.IO.Unsafe
-------------------------------------------------------------------
-- The external interface
convertToHsDecls :: Origin -> SrcSpan -> [TH.Dec] -> Either SDoc [LHsDecl GhcPs]
convertToHsDecls origin loc ds = initCvt origin loc (fmap catMaybes (mapM cvt_dec ds))
where
cvt_dec d = wrapMsg "declaration" d (cvtDec d)
convertToHsExpr :: Origin -> SrcSpan -> TH.Exp -> Either SDoc (LHsExpr GhcPs)
convertToHsExpr origin loc e
= initCvt origin loc $ wrapMsg "expression" e $ cvtl e
convertToPat :: Origin -> SrcSpan -> TH.Pat -> Either SDoc (LPat GhcPs)
convertToPat origin loc p
= initCvt origin loc $ wrapMsg "pattern" p $ cvtPat p
convertToHsType :: Origin -> SrcSpan -> TH.Type -> Either SDoc (LHsType GhcPs)
convertToHsType origin loc t
= initCvt origin loc $ wrapMsg "type" t $ cvtType t
-------------------------------------------------------------------
newtype CvtM a = CvtM { unCvtM :: Origin -> SrcSpan -> Either SDoc (SrcSpan, a) }
deriving (Functor)
-- Push down the Origin (that is configurable by
-- -fenable-th-splice-warnings) and source location;
-- Can fail, with a single error message
-- NB: If the conversion succeeds with (Right x), there should
-- be no exception values hiding in x
-- Reason: so a (head []) in TH code doesn't subsequently
-- make GHC crash when it tries to walk the generated tree
-- Use the SrcSpan everywhere, for lack of anything better.
-- See Note [Source locations within TH splices].
instance Applicative CvtM where
pure x = CvtM $ \_ loc -> Right (loc,x)
(<*>) = ap
instance Monad CvtM where
(CvtM m) >>= k = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc',v) -> unCvtM (k v) origin loc'
initCvt :: Origin -> SrcSpan -> CvtM a -> Either SDoc a
initCvt origin loc (CvtM m) = fmap snd (m origin loc)
force :: a -> CvtM ()
force a = a `seq` return ()
failWith :: SDoc -> CvtM a
failWith m = CvtM (\_ _ -> Left m)
getOrigin :: CvtM Origin
getOrigin = CvtM (\origin loc -> Right (loc,origin))
getL :: CvtM SrcSpan
getL = CvtM (\_ loc -> Right (loc,loc))
-- NB: This is only used in conjunction with LineP pragmas.
-- See Note [Source locations within TH splices].
setL :: SrcSpan -> CvtM ()
setL loc = CvtM (\_ _ -> Right (loc, ()))
returnLA :: e -> CvtM (LocatedAn ann e)
returnLA x = CvtM (\_ loc -> Right (loc, L (noAnnSrcSpan loc) x))
returnJustLA :: a -> CvtM (Maybe (LocatedA a))
returnJustLA = fmap Just . returnLA
wrapParLA :: (LocatedAn ann a -> b) -> a -> CvtM b
wrapParLA add_par x = CvtM (\_ loc -> Right (loc, add_par (L (noAnnSrcSpan loc) x)))
wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
-- E.g wrapMsg "declaration" dec thing
wrapMsg what item (CvtM m)
= CvtM $ \origin loc -> case m origin loc of
Left err -> Left (err $$ msg)
Right v -> Right v
where
-- Show the item in pretty syntax normally,
-- but with all its constructors if you say -dppr-debug
msg = hang (text "When splicing a TH" <+> text what <> colon)
2 (getPprDebug $ \case
True -> text (show item)
False -> text (pprint item))
wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc', v) -> Right (loc', L loc v)
wrapLN :: CvtM a -> CvtM (LocatedN a)
wrapLN (CvtM m) = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc', v) -> Right (loc', L (noAnnSrcSpan loc) v)
wrapLA :: CvtM a -> CvtM (LocatedA a)
wrapLA (CvtM m) = CvtM $ \origin loc -> case m origin loc of
Left err -> Left err
Right (loc', v) -> Right (loc', L (noAnnSrcSpan loc) v)
{-
Note [Source locations within TH splices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a TH splice such as $(x), where `x` evaluates to `id True`. What
source locations should we use for subexpressions within the splice, such as
`id` and `True`? We basically have two options:
1. Don't give anything within the splice a SrcSpan. That is, use the `noLoc`
everywhere.
2. Give everything within the splice the same `SrcSpan` as where the splice
occurs (i.e., where $(x) occurs).
We implement option (2) for the following reasons:
* We want SrcSpans on binding locations so that variables bound in the
spliced-in declarations get a location that at least relates to the splice
point.
* Generally speaking, having *some* SrcSpan for each sub-expression in the AST
in better than having no SrcSpan at all. This extra information can be useful
for programs that walk over the AST directly.
Because of our choice of option (2), we are very careful not to use the noLoc
function anywhere in GHC.ThToHs. Instead, we thread around a SrcSpan in CvtM
and allow retrieving the SrcSpan through combinators such as getL, returnLA,
wrapParLA, etc.
Note that CvtM is actually a *state* monad vis-Ã -vis SrcSpan, not just a
reader monad. This is because LineP pragmas can change the source location
within a splice—see testsuite/tests/th/TH_linePragma.hs for an example. This
is a bit unusual, since it changes the source location from that of the splice
point to that of the code being spliced in. Nevertheless, LineP is *the* reason
why CvtM is a state monad.
-}
-------------------------------------------------------------------
cvtDecs :: [TH.Dec] -> CvtM [LHsDecl GhcPs]
cvtDecs = fmap catMaybes . mapM cvtDec
cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl GhcPs))
cvtDec (TH.ValD pat body ds)
| TH.VarP s <- pat
= do { s' <- vNameN s
; cl' <- cvtClause (mkPrefixFunRhs s') (Clause [] body ds)
; th_origin <- getOrigin
; returnJustLA $ Hs.ValD noExtField $ mkFunBind th_origin s' [cl'] }
| otherwise
= do { pat' <- cvtPat pat
; body' <- cvtGuard body
; ds' <- cvtLocalDecs (text "a where clause") ds
; returnJustLA $ Hs.ValD noExtField $
PatBind { pat_lhs = pat'
, pat_rhs = GRHSs emptyComments body' ds'
, pat_ext = noAnn
} }
cvtDec (TH.FunD nm cls)
| null cls
= failWith (text "Function binding for"
<+> quotes (text (TH.pprint nm))
<+> text "has no equations")
| otherwise
= do { nm' <- vNameN nm
; cls' <- mapM (cvtClause (mkPrefixFunRhs nm')) cls
; th_origin <- getOrigin
; returnJustLA $ Hs.ValD noExtField $ mkFunBind th_origin nm' cls' }
cvtDec (TH.SigD nm typ)
= do { nm' <- vNameN nm
; ty' <- cvtSigType typ
; returnJustLA $ Hs.SigD noExtField
(TypeSig noAnn [nm'] (mkHsWildCardBndrs ty')) }
cvtDec (TH.KiSigD nm ki)
= do { nm' <- tconNameN nm
; ki' <- cvtSigKind ki
; let sig' = StandaloneKindSig noAnn nm' ki'
; returnJustLA $ Hs.KindSigD noExtField sig' }
cvtDec (TH.InfixD fx nm)
-- Fixity signatures are allowed for variables, constructors, and types
-- the renamer automatically looks for types during renaming, even when
-- the RdrName says it's a variable or a constructor. So, just assume
-- it's a variable or constructor and proceed.
= do { nm' <- vcNameN nm
; returnJustLA (Hs.SigD noExtField (FixSig noAnn
(FixitySig noExtField [nm'] (cvtFixity fx)))) }
cvtDec (TH.DefaultD tys)
= do { tys' <- traverse cvtType tys
; returnJustLA (Hs.DefD noExtField $ DefaultDecl noAnn tys') }
cvtDec (PragmaD prag)
= cvtPragmaD prag
cvtDec (TySynD tc tvs rhs)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; rhs' <- cvtType rhs
; returnJustLA $ TyClD noExtField $
SynDecl { tcdSExt = noAnn, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdRhs = rhs' } }
cvtDec (DataD ctxt tc tvs ksig constrs derivs)
= do { let isGadtCon (GadtC _ _ _) = True
isGadtCon (RecGadtC _ _ _) = True
isGadtCon (ForallC _ _ c) = isGadtCon c
isGadtCon _ = False
isGadtDecl = all isGadtCon constrs
isH98Decl = all (not . isGadtCon) constrs
; unless (isGadtDecl || isH98Decl)
(failWith (text "Cannot mix GADT constructors with Haskell 98"
<+> text "constructors"))
; unless (isNothing ksig || isGadtDecl)
(failWith (text "Kind signatures are only allowed on GADTs"))
; (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; ksig' <- cvtKind `traverse` ksig
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExtField
, dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = mkHsContextMaybe ctxt'
, dd_kindSig = ksig'
, dd_cons = cons', dd_derivs = derivs' }
; returnJustLA $ TyClD noExtField $
DataDecl { tcdDExt = noAnn
, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdDataDefn = defn } }
cvtDec (NewtypeD ctxt tc tvs ksig constr derivs)
= do { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; ksig' <- cvtKind `traverse` ksig
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExtField
, dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = mkHsContextMaybe ctxt'
, dd_kindSig = ksig'
, dd_cons = [con']
, dd_derivs = derivs' }
; returnJustLA $ TyClD noExtField $
DataDecl { tcdDExt = noAnn
, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdDataDefn = defn } }
cvtDec (ClassD ctxt cl tvs fds decs)
= do { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
; fds' <- mapM cvt_fundep fds
; (binds', sigs', fams', at_defs', adts') <- cvt_ci_decs (text "a class declaration") decs
; unless (null adts')
(failWith $ (text "Default data instance declarations"
<+> text "are not allowed:")
$$ (Outputable.ppr adts'))
; returnJustLA $ TyClD noExtField $
ClassDecl { tcdCExt = (noAnn, NoAnnSortKey, NoLayoutInfo)
, tcdCtxt = mkHsContextMaybe cxt', tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdFDs = fds', tcdSigs = Hs.mkClassOpSigs sigs'
, tcdMeths = binds'
, tcdATs = fams', tcdATDefs = at_defs', tcdDocs = [] }
-- no docs in TH ^^
}
cvtDec (InstanceD o ctxt ty decs)
= do { let doc = text "an instance declaration"
; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs
; unless (null fams') (failWith (mkBadDecMsg doc fams'))
; ctxt' <- cvtContext funPrec ctxt
; (L loc ty') <- cvtType ty
; let inst_ty' = L loc $ mkHsImplicitSigType $
mkHsQualTy ctxt loc ctxt' $ L loc ty'
; returnJustLA $ InstD noExtField $ ClsInstD noExtField $
ClsInstDecl { cid_ext = (noAnn, NoAnnSortKey), cid_poly_ty = inst_ty'
, cid_binds = binds'
, cid_sigs = Hs.mkClassOpSigs sigs'
, cid_tyfam_insts = ats', cid_datafam_insts = adts'
, cid_overlap_mode
= fmap (L (l2l loc) . overlap) o } }
where
overlap pragma =
case pragma of
TH.Overlaps -> Hs.Overlaps (SourceText "OVERLAPS")
TH.Overlappable -> Hs.Overlappable (SourceText "OVERLAPPABLE")
TH.Overlapping -> Hs.Overlapping (SourceText "OVERLAPPING")
TH.Incoherent -> Hs.Incoherent (SourceText "INCOHERENT")
cvtDec (ForeignD ford)
= do { ford' <- cvtForD ford
; returnJustLA $ ForD noExtField ford' }
cvtDec (DataFamilyD tc tvs kind)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; result <- cvtMaybeKindToFamilyResultSig kind
; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
FamilyDecl noAnn DataFamily TopLevel tc' tvs' Prefix result Nothing }
cvtDec (DataInstD ctxt bndrs tys ksig constrs derivs)
= do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys
; ksig' <- cvtKind `traverse` ksig
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExtField
, dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = mkHsContextMaybe ctxt'
, dd_kindSig = ksig'
, dd_cons = cons', dd_derivs = derivs' }
; returnJustLA $ InstD noExtField $ DataFamInstD
{ dfid_ext = noExtField
, dfid_inst = DataFamInstDecl { dfid_eqn =
FamEqn { feqn_ext = noAnn
, feqn_tycon = tc'
, feqn_bndrs = bndrs'
, feqn_pats = typats'
, feqn_rhs = defn
, feqn_fixity = Prefix } }}}
cvtDec (NewtypeInstD ctxt bndrs tys ksig constr derivs)
= do { (ctxt', tc', bndrs', typats') <- cvt_datainst_hdr ctxt bndrs tys
; ksig' <- cvtKind `traverse` ksig
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExtField
, dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = mkHsContextMaybe ctxt'
, dd_kindSig = ksig'
, dd_cons = [con'], dd_derivs = derivs' }
; returnJustLA $ InstD noExtField $ DataFamInstD
{ dfid_ext = noExtField
, dfid_inst = DataFamInstDecl { dfid_eqn =
FamEqn { feqn_ext = noAnn
, feqn_tycon = tc'
, feqn_bndrs = bndrs'
, feqn_pats = typats'
, feqn_rhs = defn
, feqn_fixity = Prefix } }}}
cvtDec (TySynInstD eqn)
= do { (L _ eqn') <- cvtTySynEqn eqn
; returnJustLA $ InstD noExtField $ TyFamInstD
{ tfid_ext = noExtField
, tfid_inst = TyFamInstDecl { tfid_xtn = noAnn, tfid_eqn = eqn' } }}
cvtDec (OpenTypeFamilyD head)
= do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
FamilyDecl noAnn OpenTypeFamily TopLevel tc' tyvars' Prefix result' injectivity'
}
cvtDec (ClosedTypeFamilyD head eqns)
= do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
; eqns' <- mapM cvtTySynEqn eqns
; returnJustLA $ TyClD noExtField $ FamDecl noExtField $
FamilyDecl noAnn (ClosedTypeFamily (Just eqns')) TopLevel tc' tyvars' Prefix
result' injectivity' }
cvtDec (TH.RoleAnnotD tc roles)
= do { tc' <- tconNameN tc
; roles' <- traverse (returnLA . cvtRole) roles
; returnJustLA
$ Hs.RoleAnnotD noExtField (RoleAnnotDecl noAnn tc' roles') }
cvtDec (TH.StandaloneDerivD ds cxt ty)
= do { cxt' <- cvtContext funPrec cxt
; ds' <- traverse cvtDerivStrategy ds
; (L loc ty') <- cvtType ty
; let inst_ty' = L loc $ mkHsImplicitSigType $
mkHsQualTy cxt loc cxt' $ L loc ty'
; returnJustLA $ DerivD noExtField $
DerivDecl { deriv_ext = noAnn
, deriv_strategy = ds'
, deriv_type = mkHsWildCardBndrs inst_ty'
, deriv_overlap_mode = Nothing } }
cvtDec (TH.DefaultSigD nm typ)
= do { nm' <- vNameN nm
; ty' <- cvtSigType typ
; returnJustLA $ Hs.SigD noExtField
$ ClassOpSig noAnn True [nm'] ty'}
cvtDec (TH.PatSynD nm args dir pat)
= do { nm' <- cNameN nm
; args' <- cvtArgs args
; dir' <- cvtDir nm' dir
; pat' <- cvtPat pat
; returnJustLA $ Hs.ValD noExtField $ PatSynBind noExtField $
PSB noAnn nm' args' pat' dir' }
where
cvtArgs (TH.PrefixPatSyn args) = Hs.PrefixCon noTypeArgs <$> mapM vNameN args
cvtArgs (TH.InfixPatSyn a1 a2) = Hs.InfixCon <$> vNameN a1 <*> vNameN a2
cvtArgs (TH.RecordPatSyn sels)
= do { sels' <- mapM (fmap (\ (L li i) -> FieldOcc noExtField (L li i)) . vNameN) sels
; vars' <- mapM (vNameN . mkNameS . nameBase) sels
; return $ Hs.RecCon $ zipWith RecordPatSynField sels' vars' }
-- cvtDir :: LocatedN RdrName -> (PatSynDir -> CvtM (HsPatSynDir RdrName))
cvtDir _ Unidir = return Unidirectional
cvtDir _ ImplBidir = return ImplicitBidirectional
cvtDir n (ExplBidir cls) =
do { ms <- mapM (cvtClause (mkPrefixFunRhs n)) cls
; th_origin <- getOrigin
; wrapParLA (ExplicitBidirectional . mkMatchGroup th_origin) ms }
cvtDec (TH.PatSynSigD nm ty)
= do { nm' <- cNameN nm
; ty' <- cvtPatSynSigTy ty
; returnJustLA $ Hs.SigD noExtField $ PatSynSig noAnn [nm'] ty'}
-- Implicit parameter bindings are handled in cvtLocalDecs and
-- cvtImplicitParamBind. They are not allowed in any other scope, so
-- reaching this case indicates an error.
cvtDec (TH.ImplicitParamBindD _ _)
= failWith (text "Implicit parameter binding only allowed in let or where")
----------------
cvtTySynEqn :: TySynEqn -> CvtM (LTyFamInstEqn GhcPs)
cvtTySynEqn (TySynEqn mb_bndrs lhs rhs)
= do { mb_bndrs' <- traverse (mapM cvt_tv) mb_bndrs
; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs mb_bndrs'
; (head_ty, args) <- split_ty_app lhs
; case head_ty of
ConT nm -> do { nm' <- tconNameN nm
; rhs' <- cvtType rhs
; let args' = map wrap_tyarg args
; returnLA
$ FamEqn { feqn_ext = noAnn
, feqn_tycon = nm'
, feqn_bndrs = outer_bndrs
, feqn_pats = args'
, feqn_fixity = Prefix
, feqn_rhs = rhs' } }
InfixT t1 nm t2 -> do { nm' <- tconNameN nm
; args' <- mapM cvtType [t1,t2]
; rhs' <- cvtType rhs
; returnLA
$ FamEqn { feqn_ext = noAnn
, feqn_tycon = nm'
, feqn_bndrs = outer_bndrs
, feqn_pats =
(map HsValArg args') ++ args
, feqn_fixity = Hs.Infix
, feqn_rhs = rhs' } }
_ -> failWith $ text "Invalid type family instance LHS:"
<+> text (show lhs)
}
----------------
cvt_ci_decs :: SDoc -> [TH.Dec]
-> CvtM (LHsBinds GhcPs,
[LSig GhcPs],
[LFamilyDecl GhcPs],
[LTyFamInstDecl GhcPs],
[LDataFamInstDecl GhcPs])
-- Convert the declarations inside a class or instance decl
-- ie signatures, bindings, and associated types
cvt_ci_decs doc decs
= do { decs' <- cvtDecs decs
; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs'
; let (adts', no_ats') = partitionWith is_datafam_inst bind_sig_decs'
; let (sigs', prob_binds') = partitionWith is_sig no_ats'
; let (binds', prob_fams') = partitionWith is_bind prob_binds'
; let (fams', bads) = partitionWith is_fam_decl prob_fams'
; unless (null bads) (failWith (mkBadDecMsg doc bads))
; return (listToBag binds', sigs', fams', ats', adts') }
----------------
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr ()]
-> CvtM ( LHsContext GhcPs
, LocatedN RdrName
, LHsQTyVars GhcPs)
cvt_tycl_hdr cxt tc tvs
= do { cxt' <- cvtContext funPrec cxt
; tc' <- tconNameN tc
; tvs' <- cvtTvs tvs
; return (cxt', tc', mkHsQTvs tvs')
}
cvt_datainst_hdr :: TH.Cxt -> Maybe [TH.TyVarBndr ()] -> TH.Type
-> CvtM ( LHsContext GhcPs
, LocatedN RdrName
, HsOuterFamEqnTyVarBndrs GhcPs
, HsTyPats GhcPs)
cvt_datainst_hdr cxt bndrs tys
= do { cxt' <- cvtContext funPrec cxt
; bndrs' <- traverse (mapM cvt_tv) bndrs
; let outer_bndrs = mkHsOuterFamEqnTyVarBndrs bndrs'
; (head_ty, args) <- split_ty_app tys
; case head_ty of
ConT nm -> do { nm' <- tconNameN nm
; let args' = map wrap_tyarg args
; return (cxt', nm', outer_bndrs, args') }
InfixT t1 nm t2 -> do { nm' <- tconNameN nm
; args' <- mapM cvtType [t1,t2]
; return (cxt', nm', outer_bndrs,
((map HsValArg args') ++ args)) }
_ -> failWith $ text "Invalid type instance header:"
<+> text (show tys) }
----------------
cvt_tyfam_head :: TypeFamilyHead
-> CvtM ( LocatedN RdrName
, LHsQTyVars GhcPs
, Hs.LFamilyResultSig GhcPs
, Maybe (Hs.LInjectivityAnn GhcPs))
cvt_tyfam_head (TypeFamilyHead tc tyvars result injectivity)
= do {(_, tc', tyvars') <- cvt_tycl_hdr [] tc tyvars
; result' <- cvtFamilyResultSig result
; injectivity' <- traverse cvtInjectivityAnnotation injectivity
; return (tc', tyvars', result', injectivity') }
-------------------------------------------------------------------
-- Partitioning declarations
-------------------------------------------------------------------
is_fam_decl :: LHsDecl GhcPs -> Either (LFamilyDecl GhcPs) (LHsDecl GhcPs)
is_fam_decl (L loc (TyClD _ (FamDecl { tcdFam = d }))) = Left (L loc d)
is_fam_decl decl = Right decl
is_tyfam_inst :: LHsDecl GhcPs -> Either (LTyFamInstDecl GhcPs) (LHsDecl GhcPs)
is_tyfam_inst (L loc (Hs.InstD _ (TyFamInstD { tfid_inst = d })))
= Left (L loc d)
is_tyfam_inst decl
= Right decl
is_datafam_inst :: LHsDecl GhcPs
-> Either (LDataFamInstDecl GhcPs) (LHsDecl GhcPs)
is_datafam_inst (L loc (Hs.InstD _ (DataFamInstD { dfid_inst = d })))
= Left (L loc d)
is_datafam_inst decl
= Right decl
is_sig :: LHsDecl GhcPs -> Either (LSig GhcPs) (LHsDecl GhcPs)
is_sig (L loc (Hs.SigD _ sig)) = Left (L loc sig)
is_sig decl = Right decl
is_bind :: LHsDecl GhcPs -> Either (LHsBind GhcPs) (LHsDecl GhcPs)
is_bind (L loc (Hs.ValD _ bind)) = Left (L loc bind)
is_bind decl = Right decl
is_ip_bind :: TH.Dec -> Either (String, TH.Exp) TH.Dec
is_ip_bind (TH.ImplicitParamBindD n e) = Left (n, e)
is_ip_bind decl = Right decl
mkBadDecMsg :: Outputable a => SDoc -> [a] -> SDoc
mkBadDecMsg doc bads
= sep [ text "Illegal declaration(s) in" <+> doc <> colon
, nest 2 (vcat (map Outputable.ppr bads)) ]
---------------------------------------------------
-- Data types
---------------------------------------------------
cvtConstr :: TH.Con -> CvtM (LConDecl GhcPs)
cvtConstr (NormalC c strtys)
= do { c' <- cNameN c
; tys' <- mapM cvt_arg strtys
; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing (PrefixCon noTypeArgs (map hsLinear tys')) }
cvtConstr (RecC c varstrtys)
= do { c' <- cNameN c
; args' <- mapM cvt_id_arg varstrtys
; con_decl <- wrapParLA (mkConDeclH98 noAnn c' Nothing Nothing . RecCon) args'
; returnLA con_decl }
cvtConstr (InfixC st1 c st2)
= do { c' <- cNameN c
; st1' <- cvt_arg st1
; st2' <- cvt_arg st2
; returnLA $ mkConDeclH98 noAnn c' Nothing Nothing
(InfixCon (hsLinear st1') (hsLinear st2')) }
cvtConstr (ForallC tvs ctxt con)
= do { tvs' <- cvtTvs tvs
; ctxt' <- cvtContext funPrec ctxt
; L _ con' <- cvtConstr con
; returnLA $ add_forall tvs' ctxt' con' }
where
add_cxt lcxt Nothing = mkHsContextMaybe lcxt
add_cxt (L loc cxt1) (Just (L _ cxt2))
= Just (L loc (cxt1 ++ cxt2))
add_forall :: [LHsTyVarBndr Hs.Specificity GhcPs] -> LHsContext GhcPs
-> ConDecl GhcPs -> ConDecl GhcPs
add_forall tvs' cxt' con@(ConDeclGADT { con_bndrs = L l outer_bndrs, con_mb_cxt = cxt })
= con { con_bndrs = L l outer_bndrs'
, con_mb_cxt = add_cxt cxt' cxt }
where
outer_bndrs'
| null all_tvs = mkHsOuterImplicit
| otherwise = mkHsOuterExplicit noAnn all_tvs
all_tvs = tvs' ++ outer_exp_tvs
outer_exp_tvs = hsOuterExplicitBndrs outer_bndrs
add_forall tvs' cxt' con@(ConDeclH98 { con_ex_tvs = ex_tvs, con_mb_cxt = cxt })
= con { con_forall = not (null all_tvs)
, con_ex_tvs = all_tvs
, con_mb_cxt = add_cxt cxt' cxt }
where
all_tvs = tvs' ++ ex_tvs
cvtConstr (GadtC [] _strtys _ty)
= failWith (text "GadtC must have at least one constructor name")
cvtConstr (GadtC c strtys ty)
= do { c' <- mapM cNameN c
; args <- mapM cvt_arg strtys
; ty' <- cvtType ty
; mk_gadt_decl c' (PrefixConGADT $ map hsLinear args) ty'}
cvtConstr (RecGadtC [] _varstrtys _ty)
= failWith (text "RecGadtC must have at least one constructor name")
cvtConstr (RecGadtC c varstrtys ty)
= do { c' <- mapM cNameN c
; ty' <- cvtType ty
; rec_flds <- mapM cvt_id_arg varstrtys
; lrec_flds <- returnLA rec_flds
; mk_gadt_decl c' (RecConGADT lrec_flds noHsUniTok) ty' }
mk_gadt_decl :: [LocatedN RdrName] -> HsConDeclGADTDetails GhcPs -> LHsType GhcPs
-> CvtM (LConDecl GhcPs)
mk_gadt_decl names args res_ty
= do bndrs <- returnLA mkHsOuterImplicit
returnLA $ ConDeclGADT
{ con_g_ext = noAnn
, con_names = names
, con_dcolon = noHsUniTok
, con_bndrs = bndrs
, con_mb_cxt = Nothing
, con_g_args = args
, con_res_ty = res_ty
, con_doc = Nothing }
cvtSrcUnpackedness :: TH.SourceUnpackedness -> SrcUnpackedness
cvtSrcUnpackedness NoSourceUnpackedness = NoSrcUnpack
cvtSrcUnpackedness SourceNoUnpack = SrcNoUnpack
cvtSrcUnpackedness SourceUnpack = SrcUnpack
cvtSrcStrictness :: TH.SourceStrictness -> SrcStrictness
cvtSrcStrictness NoSourceStrictness = NoSrcStrict
cvtSrcStrictness SourceLazy = SrcLazy
cvtSrcStrictness SourceStrict = SrcStrict
cvt_arg :: (TH.Bang, TH.Type) -> CvtM (LHsType GhcPs)
cvt_arg (Bang su ss, ty)
= do { ty'' <- cvtType ty
; let ty' = parenthesizeHsType appPrec ty''
su' = cvtSrcUnpackedness su
ss' = cvtSrcStrictness ss
; returnLA $ HsBangTy noAnn (HsSrcBang NoSourceText su' ss') ty' }
cvt_id_arg :: (TH.Name, TH.Bang, TH.Type) -> CvtM (LConDeclField GhcPs)
cvt_id_arg (i, str, ty)
= do { L li i' <- vNameN i
; ty' <- cvt_arg (str,ty)
; returnLA $ ConDeclField
{ cd_fld_ext = noAnn
, cd_fld_names
= [L (l2l li) $ FieldOcc noExtField (L li i')]
, cd_fld_type = ty'
, cd_fld_doc = Nothing} }
cvtDerivs :: [TH.DerivClause] -> CvtM (HsDeriving GhcPs)
cvtDerivs cs = do { mapM cvtDerivClause cs }
cvt_fundep :: TH.FunDep -> CvtM (LHsFunDep GhcPs)
cvt_fundep (TH.FunDep xs ys) = do { xs' <- mapM tNameN xs
; ys' <- mapM tNameN ys
; returnLA (Hs.FunDep noAnn xs' ys') }
------------------------------------------
-- Foreign declarations
------------------------------------------
cvtForD :: Foreign -> CvtM (ForeignDecl GhcPs)
cvtForD (ImportF callconv safety from nm ty) =
do { l <- getL
; if -- the prim and javascript calling conventions do not support headers
-- and are inserted verbatim, analogous to mkImport in GHC.Parser.PostProcess
| callconv == TH.Prim || callconv == TH.JavaScript
-> mk_imp (CImport (L l $ quotedSourceText from) (L l (cvt_conv callconv)) (L l safety') Nothing
(CFunction (StaticTarget (SourceText from)
(mkFastString from) Nothing
True)))
| Just impspec <- parseCImport (L l (cvt_conv callconv)) (L l safety')
(mkFastString (TH.nameBase nm))
from (L l $ quotedSourceText from)
-> mk_imp impspec
| otherwise
-> failWith $ text (show from) <+> text "is not a valid ccall impent" }
where
mk_imp impspec
= do { nm' <- vNameN nm
; ty' <- cvtSigType ty
; return (ForeignImport { fd_i_ext = noAnn
, fd_name = nm'
, fd_sig_ty = ty'
, fd_fi = impspec })
}
safety' = case safety of
Unsafe -> PlayRisky
Safe -> PlaySafe
Interruptible -> PlayInterruptible
cvtForD (ExportF callconv as nm ty)
= do { nm' <- vNameN nm
; ty' <- cvtSigType ty
; l <- getL
; let e = CExport (L l (SourceText as)) (L l (CExportStatic (SourceText as)
(mkFastString as)
(cvt_conv callconv)))
; return $ ForeignExport { fd_e_ext = noAnn
, fd_name = nm'
, fd_sig_ty = ty'
, fd_fe = e } }
cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall = CCallConv
cvt_conv TH.StdCall = StdCallConv
cvt_conv TH.CApi = CApiConv
cvt_conv TH.Prim = PrimCallConv
cvt_conv TH.JavaScript = JavaScriptCallConv
------------------------------------------
-- Pragmas
------------------------------------------
cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl GhcPs))
cvtPragmaD (InlineP nm inline rm phases)
= do { nm' <- vNameN nm
; let dflt = dfltActivation inline
; let src TH.NoInline = "{-# NOINLINE"
src TH.Inline = "{-# INLINE"
src TH.Inlinable = "{-# INLINABLE"
; let ip = InlinePragma { inl_src = toSrcTxt inline
, inl_inline = cvtInline inline (toSrcTxt inline)
, inl_rule = cvtRuleMatch rm
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
where
toSrcTxt a = SourceText $ src a
; returnJustLA $ Hs.SigD noExtField $ InlineSig noAnn nm' ip }
cvtPragmaD (OpaqueP nm)
= do { nm' <- vNameN nm
; let ip = InlinePragma { inl_src = srcTxt
, inl_inline = Opaque srcTxt
, inl_rule = Hs.FunLike
, inl_act = NeverActive
, inl_sat = Nothing }
where
srcTxt = SourceText "{-# OPAQUE"
; returnJustLA $ Hs.SigD noExtField $ InlineSig noAnn nm' ip }
cvtPragmaD (SpecialiseP nm ty inline phases)
= do { nm' <- vNameN nm
; ty' <- cvtSigType ty
; let src TH.NoInline = "{-# SPECIALISE NOINLINE"
src TH.Inline = "{-# SPECIALISE INLINE"
src TH.Inlinable = "{-# SPECIALISE INLINE"
; let (inline', dflt, srcText) = case inline of
Just inline1 -> (cvtInline inline1 (toSrcTxt inline1), dfltActivation inline1,
toSrcTxt inline1)
Nothing -> (NoUserInlinePrag, AlwaysActive,
SourceText "{-# SPECIALISE")
where
toSrcTxt a = SourceText $ src a
; let ip = InlinePragma { inl_src = srcText
, inl_inline = inline'
, inl_rule = Hs.FunLike
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustLA $ Hs.SigD noExtField $ SpecSig noAnn nm' [ty'] ip }
cvtPragmaD (SpecialiseInstP ty)
= do { ty' <- cvtSigType ty
; returnJustLA $ Hs.SigD noExtField $
SpecInstSig (noAnn, (SourceText "{-# SPECIALISE")) ty' }
cvtPragmaD (RuleP nm ty_bndrs tm_bndrs lhs rhs phases)
= do { let nm' = mkFastString nm
; rd_name' <- returnLA nm'
; let act = cvtPhases phases AlwaysActive
; ty_bndrs' <- traverse cvtTvs ty_bndrs
; tm_bndrs' <- mapM cvtRuleBndr tm_bndrs
; lhs' <- cvtl lhs
; rhs' <- cvtl rhs
; rule <- returnLA $
HsRule { rd_ext = (noAnn, quotedSourceText nm)
, rd_name = rd_name'
, rd_act = act
, rd_tyvs = ty_bndrs'
, rd_tmvs = tm_bndrs'
, rd_lhs = lhs'
, rd_rhs = rhs' }
; returnJustLA $ Hs.RuleD noExtField
$ HsRules { rds_ext = (noAnn, SourceText "{-# RULES")
, rds_rules = [rule] }
}
cvtPragmaD (AnnP target exp)
= do { exp' <- cvtl exp
; target' <- case target of
ModuleAnnotation -> return ModuleAnnProvenance
TypeAnnotation n -> do
n' <- tconName n
wrapParLA TypeAnnProvenance n'
ValueAnnotation n -> do
n' <- vcName n
wrapParLA ValueAnnProvenance n'
; returnJustLA $ Hs.AnnD noExtField
$ HsAnnotation (noAnn, (SourceText "{-# ANN")) target' exp'
}
-- NB: This is the only place in GHC.ThToHs that makes use of the `setL`
-- function. See Note [Source locations within TH splices].
cvtPragmaD (LineP line file)
= do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1))
; return Nothing
}
cvtPragmaD (CompleteP cls mty)
= do { cls' <- wrapL $ mapM cNameN cls
; mty' <- traverse tconNameN mty
; returnJustLA $ Hs.SigD noExtField
$ CompleteMatchSig (noAnn, NoSourceText) cls' mty' }
dfltActivation :: TH.Inline -> Activation
dfltActivation TH.NoInline = NeverActive
dfltActivation _ = AlwaysActive
cvtInline :: TH.Inline -> SourceText -> Hs.InlineSpec
cvtInline TH.NoInline srcText = Hs.NoInline srcText
cvtInline TH.Inline srcText = Hs.Inline srcText
cvtInline TH.Inlinable srcText = Hs.Inlinable srcText
cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo
cvtRuleMatch TH.ConLike = Hs.ConLike
cvtRuleMatch TH.FunLike = Hs.FunLike
cvtPhases :: TH.Phases -> Activation -> Activation
cvtPhases AllPhases dflt = dflt
cvtPhases (FromPhase i) _ = ActiveAfter NoSourceText i
cvtPhases (BeforePhase i) _ = ActiveBefore NoSourceText i
cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr GhcPs)
cvtRuleBndr (RuleVar n)
= do { n' <- vNameN n
; returnLA $ Hs.RuleBndr noAnn n' }
cvtRuleBndr (TypedRuleVar n ty)
= do { n' <- vNameN n
; ty' <- cvtType ty
; returnLA $ Hs.RuleBndrSig noAnn n' $ mkHsPatSigType noAnn ty' }
---------------------------------------------------
-- Declarations
---------------------------------------------------
cvtLocalDecs :: SDoc -> [TH.Dec] -> CvtM (HsLocalBinds GhcPs)
cvtLocalDecs doc ds
= case partitionWith is_ip_bind ds of
([], []) -> return (EmptyLocalBinds noExtField)
([], _) -> do
ds' <- cvtDecs ds
let (binds, prob_sigs) = partitionWith is_bind ds'
let (sigs, bads) = partitionWith is_sig prob_sigs
unless (null bads) (failWith (mkBadDecMsg doc bads))
return (HsValBinds noAnn (ValBinds NoAnnSortKey (listToBag binds) sigs))
(ip_binds, []) -> do
binds <- mapM (uncurry cvtImplicitParamBind) ip_binds
return (HsIPBinds noAnn (IPBinds noExtField binds))
((_:_), (_:_)) ->
failWith (text "Implicit parameters mixed with other bindings")
cvtClause :: HsMatchContext GhcPs
-> TH.Clause -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtClause ctxt (Clause ps body wheres)
= do { ps' <- cvtPats ps
; let pps = map (parenthesizePat appPrec) ps'
; g' <- cvtGuard body
; ds' <- cvtLocalDecs (text "a where clause") wheres
; returnLA $ Hs.Match noAnn ctxt pps (GRHSs emptyComments g' ds') }
cvtImplicitParamBind :: String -> TH.Exp -> CvtM (LIPBind GhcPs)
cvtImplicitParamBind n e = do
n' <- wrapL (ipName n)
e' <- cvtl e
returnLA (IPBind noAnn (reLocA n') e')
-------------------------------------------------------------------
-- Expressions
-------------------------------------------------------------------
cvtl :: TH.Exp -> CvtM (LHsExpr GhcPs)
cvtl e = wrapLA (cvt e)
where
cvt (VarE s) = do { s' <- vName s; wrapParLA (HsVar noExtField) s' }
cvt (ConE s) = do { s' <- cName s; wrapParLA (HsVar noExtField) s' }
cvt (LitE l)
| overloadedLit l = go cvtOverLit (HsOverLit noComments)
(hsOverLitNeedsParens appPrec)
| otherwise = go cvtLit (HsLit noComments)
(hsLitNeedsParens appPrec)
where
go :: (Lit -> CvtM (l GhcPs))
-> (l GhcPs -> HsExpr GhcPs)
-> (l GhcPs -> Bool)
-> CvtM (HsExpr GhcPs)
go cvt_lit mk_expr is_compound_lit = do
l' <- cvt_lit l
let e' = mk_expr l'
if is_compound_lit l' then wrapParLA gHsPar e' else pure e'
cvt (AppE x@(LamE _ _) y) = do { x' <- cvtl x; y' <- cvtl y
; return $ HsApp noComments (mkLHsPar x')
(mkLHsPar y')}
cvt (AppE x y) = do { x' <- cvtl x; y' <- cvtl y
; return $ HsApp noComments (mkLHsPar x')
(mkLHsPar y')}
cvt (AppTypeE e t) = do { e' <- cvtl e
; t' <- cvtType t
; let tp = parenthesizeHsType appPrec t'
; return $ HsAppType noExtField e' noHsTok
$ mkHsWildCardBndrs tp }
cvt (LamE [] e) = cvt e -- Degenerate case. We convert the body as its
-- own expression to avoid pretty-printing
-- oddities that can result from zero-argument
-- lambda expressions. See #13856.
cvt (LamE ps e) = do { ps' <- cvtPats ps; e' <- cvtl e
; let pats = map (parenthesizePat appPrec) ps'
; th_origin <- getOrigin
; wrapParLA (HsLam noExtField . mkMatchGroup th_origin)
[mkSimpleMatch LambdaExpr pats e']}
cvt (LamCaseE ms) = do { ms' <- mapM (cvtMatch $ LamCaseAlt LamCase) ms
; th_origin <- getOrigin
; wrapParLA (HsLamCase noAnn LamCase . mkMatchGroup th_origin) ms'
}
cvt (LamCasesE ms)
| null ms = failWith (text "\\cases expression with no alternatives")
| otherwise = do { ms' <- mapM (cvtClause $ LamCaseAlt LamCases) ms
; th_origin <- getOrigin
; wrapParLA (HsLamCase noAnn LamCases . mkMatchGroup th_origin) ms'
}
cvt (TupE es) = cvt_tup es Boxed
cvt (UnboxedTupE es) = cvt_tup es Unboxed
cvt (UnboxedSumE e alt arity) = do { e' <- cvtl e
; unboxedSumChecks alt arity
; return $ ExplicitSum noAnn alt arity e'}
cvt (CondE x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
; return $ mkHsIf x' y' z' noAnn }
cvt (MultiIfE alts)
| null alts = failWith (text "Multi-way if-expression with no alternatives")
| otherwise = do { alts' <- mapM cvtpair alts
; return $ HsMultiIf noAnn alts' }
cvt (LetE ds e) = do { ds' <- cvtLocalDecs (text "a let expression") ds
; e' <- cvtl e; return $ HsLet noAnn noHsTok ds' noHsTok e'}
cvt (CaseE e ms) = do { e' <- cvtl e; ms' <- mapM (cvtMatch CaseAlt) ms
; th_origin <- getOrigin
; wrapParLA (HsCase noAnn e' . mkMatchGroup th_origin) ms' }
cvt (DoE m ss) = cvtHsDo (DoExpr (mk_mod <$> m)) ss
cvt (MDoE m ss) = cvtHsDo (MDoExpr (mk_mod <$> m)) ss
cvt (CompE ss) = cvtHsDo ListComp ss
cvt (ArithSeqE dd) = do { dd' <- cvtDD dd
; return $ ArithSeq noAnn Nothing dd' }
cvt (ListE xs)
| Just s <- allCharLs xs = do { l' <- cvtLit (StringL s)
; return (HsLit noComments l') }
-- Note [Converting strings]
| otherwise = do { xs' <- mapM cvtl xs
; return $ ExplicitList noAnn xs'
}
-- Infix expressions
cvt (InfixE (Just x) s (Just y)) = ensureValidOpExp s $
do { x' <- cvtl x
; s' <- cvtl s
; y' <- cvtl y
; let px = parenthesizeHsExpr opPrec x'
py = parenthesizeHsExpr opPrec y'
; wrapParLA gHsPar
$ OpApp noAnn px s' py }
-- Parenthesise both arguments and result,
-- to ensure this operator application does
-- does not get re-associated
-- See Note [Operator association]
cvt (InfixE Nothing s (Just y)) = ensureValidOpExp s $
do { s' <- cvtl s; y' <- cvtl y
; wrapParLA gHsPar $
SectionR noComments s' y' }
-- See Note [Sections in HsSyn] in GHC.Hs.Expr
cvt (InfixE (Just x) s Nothing ) = ensureValidOpExp s $
do { x' <- cvtl x; s' <- cvtl s
; wrapParLA gHsPar $
SectionL noComments x' s' }
cvt (InfixE Nothing s Nothing ) = ensureValidOpExp s $
do { s' <- cvtl s
; return $ gHsPar s' }
-- Can I indicate this is an infix thing?
-- Note [Dropping constructors]
cvt (UInfixE x s y) = ensureValidOpExp s $
do { x' <- cvtl x
; let x'' = case unLoc x' of
OpApp {} -> x'
_ -> mkLHsPar x'
; cvtOpApp x'' s y } -- Note [Converting UInfix]
cvt (ParensE e) = do { e' <- cvtl e; return $ gHsPar e' }
cvt (SigE e t) = do { e' <- cvtl e; t' <- cvtSigType t
; let pe = parenthesizeHsExpr sigPrec e'
; return $ ExprWithTySig noAnn pe (mkHsWildCardBndrs t') }
cvt (RecConE c flds) = do { c' <- cNameN c
; flds' <- mapM (cvtFld (wrapParLA mkFieldOcc)) flds
; return $ mkRdrRecordCon c' (HsRecFields flds' Nothing) noAnn }
cvt (RecUpdE e flds) = do { e' <- cvtl e
; flds'
<- mapM (cvtFld (wrapParLA mkAmbiguousFieldOcc))
flds
; return $ RecordUpd noAnn e' (Left flds') }
cvt (StaticE e) = fmap (HsStatic noAnn) $ cvtl e
cvt (UnboundVarE s) = do -- Use of 'vcName' here instead of 'vName' is
-- important, because UnboundVarE may contain
-- constructor names - see #14627.
{ s' <- vcName s
; wrapParLA (HsVar noExtField) s' }
cvt (LabelE s) = return $ HsOverLabel noComments (fsLit s)
cvt (ImplicitParamVarE n) = do { n' <- ipName n; return $ HsIPVar noComments n' }
cvt (GetFieldE exp f) = do { e' <- cvtl exp
; return $ HsGetField noComments e' (L noSrcSpanA (DotFieldOcc noAnn (L noSrcSpanA (fsLit f)))) }
cvt (ProjectionE xs) = return $ HsProjection noAnn $ fmap (L noSrcSpanA . DotFieldOcc noAnn . L noSrcSpanA . fsLit) xs
{- | #16895 Ensure an infix expression's operator is a variable/constructor.
Consider this example:
$(uInfixE [|1|] [|id id|] [|2|])
This infix expression is obviously ill-formed so we use this helper function
to reject such programs outright.
The constructors `ensureValidOpExp` permits should be in sync with `pprInfixExp`
in Language.Haskell.TH.Ppr from the template-haskell library.
-}
ensureValidOpExp :: TH.Exp -> CvtM a -> CvtM a
ensureValidOpExp (VarE _n) m = m
ensureValidOpExp (ConE _n) m = m
ensureValidOpExp (UnboundVarE _n) m = m
ensureValidOpExp _e _m =
failWith (text "Non-variable expression is not allowed in an infix expression")
{- Note [Dropping constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we drop constructors from the input, we must insert parentheses around the
argument. For example:
UInfixE x * (AppE (InfixE (Just y) + Nothing) z)
If we convert the InfixE expression to an operator section but don't insert
parentheses, the above expression would be reassociated to
OpApp (OpApp x * y) + z
which we don't want.
-}
cvtFld :: (RdrName -> CvtM t) -> (TH.Name, TH.Exp)
-> CvtM (LHsFieldBind GhcPs (LocatedAn NoEpAnns t) (LHsExpr GhcPs))
cvtFld f (v,e)
= do { v' <- vNameL v
; lhs' <- traverse f v'
; e' <- cvtl e
; returnLA $ HsFieldBind { hfbAnn = noAnn
, hfbLHS = la2la lhs'
, hfbRHS = e'
, hfbPun = False} }
cvtDD :: Range -> CvtM (ArithSeqInfo GhcPs)
cvtDD (FromR x) = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }
cvt_tup :: [Maybe Exp] -> Boxity -> CvtM (HsExpr GhcPs)
cvt_tup es boxity = do { let cvtl_maybe Nothing = return (missingTupArg noAnn)
cvtl_maybe (Just e) = fmap (Present noAnn) (cvtl e)
; es' <- mapM cvtl_maybe es
; return $ ExplicitTuple
noAnn
es'
boxity }
{- Note [Operator association]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We must be quite careful about adding parens:
* Infix (UInfix ...) op arg Needs parens round the first arg
* Infix (Infix ...) op arg Needs parens round the first arg
* UInfix (UInfix ...) op arg No parens for first arg
* UInfix (Infix ...) op arg Needs parens round first arg
Note [Converting UInfix]
~~~~~~~~~~~~~~~~~~~~~~~~
When converting @UInfixE@, @UInfixP@, @UInfixT@, and @PromotedUInfixT@ values,
we want to readjust the trees to reflect the fixities of the underlying
operators:
UInfixE x * (UInfixE y + z) ---> (x * y) + z
This is done by the renamer (see @mkOppAppRn@, @mkConOppPatRn@, and
@mkHsOpTyRn@ in GHC.Rename.HsType), which expects that the input will be
completely right-biased for types and left-biased for everything else. So we
left-bias the trees of @UInfixP@ and @UInfixE@ and right-bias the trees of
@UInfixT@ and @PromotedUnfixT@.
Sample input:
UInfixE
(UInfixE x op1 y)
op2
(UInfixE z op3 w)
Sample output:
OpApp
(OpApp
(OpApp x op1 y)
op2
z)
op3
w
The functions @cvtOpApp@, @cvtOpAppP@, and @cvtOpAppT@ are responsible for this
biasing.
-}
{- | @cvtOpApp x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix expressions will be left-biased, provided @x@ is.
We can see that @cvtOpApp@ is correct as follows. The inductive hypothesis
is that @cvtOpApp x op y@ is left-biased, provided @x@ is. It is clear that
this holds for both branches (of @cvtOpApp@), provided we assume it holds for
the recursive calls to @cvtOpApp@.
When we call @cvtOpApp@ from @cvtl@, the first argument will always be left-biased
since we have already run @cvtl@ on it.
-}
cvtOpApp :: LHsExpr GhcPs -> TH.Exp -> TH.Exp -> CvtM (HsExpr GhcPs)
cvtOpApp x op1 (UInfixE y op2 z)
= do { l <- wrapLA $ cvtOpApp x op1 y
; cvtOpApp l op2 z }
cvtOpApp x op y
= do { op' <- cvtl op
; y' <- cvtl y
; return (OpApp noAnn x op' y') }
-------------------------------------
-- Do notation and statements
-------------------------------------
cvtHsDo :: HsDoFlavour -> [TH.Stmt] -> CvtM (HsExpr GhcPs)
cvtHsDo do_or_lc stmts
| null stmts = failWith (text "Empty stmt list in do-block")
| otherwise
= do { stmts' <- cvtStmts stmts
; let Just (stmts'', last') = snocView stmts'
; last'' <- case last' of
(L loc (BodyStmt _ body _ _))
-> return (L loc (mkLastStmt body))
_ -> failWith (bad_last last')
; wrapParLA (HsDo noAnn do_or_lc) (stmts'' ++ [last'']) }
where
bad_last stmt = vcat [ text "Illegal last statement of" <+> pprAHsDoFlavour do_or_lc <> colon
, nest 2 $ Outputable.ppr stmt
, text "(It should be an expression.)" ]
cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt GhcPs (LHsExpr GhcPs)]
cvtStmts = mapM cvtStmt
cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt GhcPs (LHsExpr GhcPs))
cvtStmt (NoBindS e) = do { e' <- cvtl e; returnLA $ mkBodyStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnLA $ mkPsBindStmt noAnn p' e' }
cvtStmt (TH.LetS ds) = do { ds' <- cvtLocalDecs (text "a let binding") ds
; returnLA $ LetStmt noAnn ds' }
cvtStmt (TH.ParS dss) = do { dss' <- mapM cvt_one dss
; returnLA $ ParStmt noExtField dss' noExpr noSyntaxExpr }
where
cvt_one ds = do { ds' <- cvtStmts ds
; return (ParStmtBlock noExtField ds' undefined noSyntaxExpr) }
cvtStmt (TH.RecS ss) = do { ss' <- mapM cvtStmt ss
; rec_stmt <- wrapParLA (mkRecStmt noAnn) ss'
; returnLA rec_stmt }
cvtMatch :: HsMatchContext GhcPs
-> TH.Match -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtMatch ctxt (TH.Match p body decs)
= do { p' <- cvtPat p
; let lp = case p' of
(L loc SigPat{}) -> L loc (gParPat p') -- #14875
_ -> p'
; g' <- cvtGuard body
; decs' <- cvtLocalDecs (text "a where clause") decs
; returnLA $ Hs.Match noAnn ctxt [lp] (GRHSs emptyComments g' decs') }
cvtGuard :: TH.Body -> CvtM [LGRHS GhcPs (LHsExpr GhcPs)]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e) = do { e' <- cvtl e
; g' <- returnLA $ GRHS noAnn [] e'; return [g'] }
cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS GhcPs (LHsExpr GhcPs))
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
; g' <- returnLA $ mkBodyStmt ge'
; returnLA $ GRHS noAnn [g'] rhs' }
cvtpair (PatG gs,rhs) = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
; returnLA $ GRHS noAnn gs' rhs' }
cvtOverLit :: Lit -> CvtM (HsOverLit GhcPs)
cvtOverLit (IntegerL i)
= do { force i; return $ mkHsIntegral (mkIntegralLit i) }
cvtOverLit (RationalL r)
= do { force r; return $ mkHsFractional (mkTHFractionalLit r) }
cvtOverLit (StringL s)
= do { let { s' = mkFastString s }
; force s'
; return $ mkHsIsString (quotedSourceText s) s'
}
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
-- An Integer is like an (overloaded) '3' in a Haskell source program
-- Similarly 3.5 for fractionals
{- Note [Converting strings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we get (ListE [CharL 'x', CharL 'y']) we'd like to convert to
a string literal for "xy". Of course, we might hope to get
(LitE (StringL "xy")), but not always, and allCharLs fails quickly
if it isn't a literal string
-}
allCharLs :: [TH.Exp] -> Maybe String
-- Note [Converting strings]
-- NB: only fire up this setup for a non-empty list, else
-- there's a danger of returning "" for [] :: [Int]!
allCharLs xs
= case xs of
LitE (CharL c) : ys -> go [c] ys
_ -> Nothing
where
go cs [] = Just (reverse cs)
go cs (LitE (CharL c) : ys) = go (c:cs) ys
go _ _ = Nothing
cvtLit :: Lit -> CvtM (HsLit GhcPs)
cvtLit (IntPrimL i) = do { force i; return $ HsIntPrim NoSourceText i }
cvtLit (WordPrimL w) = do { force w; return $ HsWordPrim NoSourceText w }
cvtLit (FloatPrimL f)
= do { force f; return $ HsFloatPrim noExtField (mkTHFractionalLit f) }
cvtLit (DoublePrimL f)
= do { force f; return $ HsDoublePrim noExtField (mkTHFractionalLit f) }
cvtLit (CharL c) = do { force c; return $ HsChar NoSourceText c }
cvtLit (CharPrimL c) = do { force c; return $ HsCharPrim NoSourceText c }
cvtLit (StringL s) = do { let { s' = mkFastString s }
; force s'
; return $ HsString (quotedSourceText s) s' }
cvtLit (StringPrimL s) = do { let { !s' = BS.pack s }
; return $ HsStringPrim NoSourceText s' }
cvtLit (BytesPrimL (Bytes fptr off sz)) = do
let bs = unsafePerformIO $ withForeignPtr fptr $ \ptr ->
BS.packCStringLen (ptr `plusPtr` fromIntegral off, fromIntegral sz)
force bs
return $ HsStringPrim NoSourceText bs
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
-- cvtLit should not be called on IntegerL, RationalL
-- That precondition is established right here in
-- "GHC.ThToHs", hence panic
quotedSourceText :: String -> SourceText
quotedSourceText s = SourceText $ "\"" ++ s ++ "\""
cvtPats :: [TH.Pat] -> CvtM [Hs.LPat GhcPs]
cvtPats pats = mapM cvtPat pats
cvtPat :: TH.Pat -> CvtM (Hs.LPat GhcPs)
cvtPat pat = wrapLA (cvtp pat)
cvtp :: TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtp (TH.LitP l)
| overloadedLit l = do { l' <- cvtOverLit l
; l'' <- returnLA l'
; return (mkNPat l'' Nothing noAnn) }
-- Not right for negative patterns;
-- need to think about that!
| otherwise = do { l' <- cvtLit l; return $ Hs.LitPat noExtField l' }
cvtp (TH.VarP s) = do { s' <- vName s
; wrapParLA (Hs.VarPat noExtField) s' }
cvtp (TupP ps) = do { ps' <- cvtPats ps
; return $ TuplePat noAnn ps' Boxed }
cvtp (UnboxedTupP ps) = do { ps' <- cvtPats ps
; return $ TuplePat noAnn ps' Unboxed }
cvtp (UnboxedSumP p alt arity)
= do { p' <- cvtPat p
; unboxedSumChecks alt arity
; return $ SumPat noAnn p' alt arity }
cvtp (ConP s ts ps) = do { s' <- cNameN s
; ps' <- cvtPats ps
; ts' <- mapM cvtType ts
; let pps = map (parenthesizePat appPrec) ps'
pts = map (\t -> HsConPatTyArg noHsTok (mkHsPatSigType noAnn t)) ts'
; return $ ConPat
{ pat_con_ext = noAnn
, pat_con = s'
, pat_args = PrefixCon pts pps
}
}
cvtp (InfixP p1 s p2) = do { s' <- cNameN s; p1' <- cvtPat p1; p2' <- cvtPat p2
; wrapParLA gParPat $
ConPat
{ pat_con_ext = noAnn
, pat_con = s'
, pat_args = InfixCon
(parenthesizePat opPrec p1')
(parenthesizePat opPrec p2')
}
}
-- See Note [Operator association]
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 } -- Note [Converting UInfix]
cvtp (ParensP p) = do { p' <- cvtPat p;
; case unLoc p' of -- may be wrapped ConPatIn
ParPat {} -> return $ unLoc p'
_ -> return $ gParPat p' }
cvtp (TildeP p) = do { p' <- cvtPat p; return $ LazyPat noAnn p' }
cvtp (BangP p) = do { p' <- cvtPat p; return $ BangPat noAnn p' }
cvtp (TH.AsP s p) = do { s' <- vNameN s; p' <- cvtPat p
; return $ AsPat noAnn s' noHsTok p' }
cvtp TH.WildP = return $ WildPat noExtField
cvtp (RecP c fs) = do { c' <- cNameN c; fs' <- mapM cvtPatFld fs
; return $ ConPat
{ pat_con_ext = noAnn
, pat_con = c'
, pat_args = Hs.RecCon $ HsRecFields fs' Nothing
}
}
cvtp (ListP ps) = do { ps' <- cvtPats ps
; return
$ ListPat noAnn ps'}
cvtp (SigP p t) = do { p' <- cvtPat p; t' <- cvtType t
; return $ SigPat noAnn p' (mkHsPatSigType noAnn t') }
cvtp (ViewP e p) = do { e' <- cvtl e; p' <- cvtPat p
; return $ ViewPat noAnn e' p'}
cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField GhcPs (LPat GhcPs))
cvtPatFld (s,p)
= do { L ls s' <- vNameN s
; p' <- cvtPat p
; returnLA $ HsFieldBind { hfbAnn = noAnn
, hfbLHS
= L (l2l ls) $ mkFieldOcc (L (l2l ls) s')
, hfbRHS = p'
, hfbPun = False} }
{- | @cvtOpAppP x op y@ converts @op@ and @y@ and produces the operator application @x `op` y@.
The produced tree of infix patterns will be left-biased, provided @x@ is.
See the @cvtOpApp@ documentation for how this function works.
-}
cvtOpAppP :: Hs.LPat GhcPs -> TH.Name -> TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtOpAppP x op1 (UInfixP y op2 z)
= do { l <- wrapLA $ cvtOpAppP x op1 y
; cvtOpAppP l op2 z }
cvtOpAppP x op y
= do { op' <- cNameN op
; y' <- cvtPat y
; return $ ConPat
{ pat_con_ext = noAnn
, pat_con = op'
, pat_args = InfixCon x y'
}
}
-----------------------------------------------------------
-- Types and type variables
class CvtFlag flag flag' | flag -> flag' where
cvtFlag :: flag -> flag'
instance CvtFlag () () where
cvtFlag () = ()
instance CvtFlag TH.Specificity Hs.Specificity where
cvtFlag TH.SpecifiedSpec = Hs.SpecifiedSpec
cvtFlag TH.InferredSpec = Hs.InferredSpec
cvtTvs :: CvtFlag flag flag' => [TH.TyVarBndr flag] -> CvtM [LHsTyVarBndr flag' GhcPs]
cvtTvs tvs = mapM cvt_tv tvs
cvt_tv :: CvtFlag flag flag' => (TH.TyVarBndr flag) -> CvtM (LHsTyVarBndr flag' GhcPs)
cvt_tv (TH.PlainTV nm fl)
= do { nm' <- tNameN nm
; let fl' = cvtFlag fl
; returnLA $ UserTyVar noAnn fl' nm' }
cvt_tv (TH.KindedTV nm fl ki)
= do { nm' <- tNameN nm
; let fl' = cvtFlag fl
; ki' <- cvtKind ki
; returnLA $ KindedTyVar noAnn fl' nm' ki' }
cvtRole :: TH.Role -> Maybe Coercion.Role
cvtRole TH.NominalR = Just Coercion.Nominal
cvtRole TH.RepresentationalR = Just Coercion.Representational
cvtRole TH.PhantomR = Just Coercion.Phantom
cvtRole TH.InferR = Nothing
cvtContext :: PprPrec -> TH.Cxt -> CvtM (LHsContext GhcPs)
cvtContext p tys = do { preds' <- mapM cvtPred tys
; parenthesizeHsContext p <$> returnLA preds' }
cvtPred :: TH.Pred -> CvtM (LHsType GhcPs)
cvtPred = cvtType
cvtDerivClauseTys :: TH.Cxt -> CvtM (LDerivClauseTys GhcPs)
cvtDerivClauseTys tys
= do { tys' <- mapM cvtSigType tys
-- Since TH.Cxt doesn't indicate the presence or absence of
-- parentheses in a deriving clause, we have to choose between
-- DctSingle and DctMulti somewhat arbitrarily. We opt to use DctMulti
-- unless the TH.Cxt is a singleton list whose type is a bare type
-- constructor with no arguments.
; case tys' of
[ty'@(L l (HsSig { sig_bndrs = HsOuterImplicit{}
, sig_body = L _ (HsTyVar _ NotPromoted _) }))]
-> return $ L (l2l l) $ DctSingle noExtField ty'
_ -> returnLA $ DctMulti noExtField tys' }
cvtDerivClause :: TH.DerivClause
-> CvtM (LHsDerivingClause GhcPs)
cvtDerivClause (TH.DerivClause ds tys)
= do { tys' <- cvtDerivClauseTys tys
; ds' <- traverse cvtDerivStrategy ds
; returnLA $ HsDerivingClause noAnn ds' tys' }
cvtDerivStrategy :: TH.DerivStrategy -> CvtM (Hs.LDerivStrategy GhcPs)
cvtDerivStrategy TH.StockStrategy = returnLA (Hs.StockStrategy noAnn)
cvtDerivStrategy TH.AnyclassStrategy = returnLA (Hs.AnyclassStrategy noAnn)
cvtDerivStrategy TH.NewtypeStrategy = returnLA (Hs.NewtypeStrategy noAnn)
cvtDerivStrategy (TH.ViaStrategy ty) = do
ty' <- cvtSigType ty
returnLA $ Hs.ViaStrategy (XViaStrategyPs noAnn ty')
cvtType :: TH.Type -> CvtM (LHsType GhcPs)
cvtType = cvtTypeKind "type"
cvtSigType :: TH.Type -> CvtM (LHsSigType GhcPs)
cvtSigType = cvtSigTypeKind "type"
-- | Convert a Template Haskell 'Type' to an 'LHsSigType'. To avoid duplicating
-- the logic in 'cvtTypeKind' here, we simply reuse 'cvtTypeKind' and perform
-- surgery on the 'LHsType' it returns to turn it into an 'LHsSigType'.
cvtSigTypeKind :: String -> TH.Type -> CvtM (LHsSigType GhcPs)
cvtSigTypeKind ty_str ty = do
ty' <- cvtTypeKind ty_str ty
pure $ hsTypeToHsSigType ty'
cvtTypeKind :: String -> TH.Type -> CvtM (LHsType GhcPs)
cvtTypeKind ty_str ty
= do { (head_ty, tys') <- split_ty_app ty
; let m_normals = mapM extract_normal tys'
where extract_normal (HsValArg ty) = Just ty
extract_normal _ = Nothing
; case head_ty of
TupleT n
| Just normals <- m_normals
, normals `lengthIs` n -- Saturated
-> returnLA (HsTupleTy noAnn HsBoxedOrConstraintTuple normals)
| otherwise
-> do { tuple_tc <- returnLA $ getRdrName $ tupleTyCon Boxed n
; mk_apps (HsTyVar noAnn NotPromoted tuple_tc) tys' }
UnboxedTupleT n
| Just normals <- m_normals
, normals `lengthIs` n -- Saturated
-> returnLA (HsTupleTy noAnn HsUnboxedTuple normals)
| otherwise
-> do { tuple_tc <- returnLA $ getRdrName $ tupleTyCon Unboxed n
; mk_apps (HsTyVar noAnn NotPromoted tuple_tc) tys' }
UnboxedSumT n
| n < 2
-> failWith $
vcat [ text "Illegal sum arity:" <+> text (show n)
, nest 2 $
text "Sums must have an arity of at least 2" ]
| Just normals <- m_normals
, normals `lengthIs` n -- Saturated
-> returnLA (HsSumTy noAnn normals)
| otherwise
-> do { sum_tc <- returnLA $ getRdrName $ sumTyCon n
; mk_apps (HsTyVar noAnn NotPromoted sum_tc) tys' }
ArrowT
| Just normals <- m_normals
, [x',y'] <- normals -> do
x'' <- case unLoc x' of
HsFunTy{} -> returnLA (HsParTy noAnn x')
HsForAllTy{} -> returnLA (HsParTy noAnn x') -- #14646
HsQualTy{} -> returnLA (HsParTy noAnn x') -- #15324
_ -> return $
parenthesizeHsType sigPrec x'
let y'' = parenthesizeHsType sigPrec y'
returnLA (HsFunTy noAnn (HsUnrestrictedArrow noHsUniTok) x'' y'')
| otherwise
-> do { fun_tc <- returnLA $ getRdrName unrestrictedFunTyCon
; mk_apps (HsTyVar noAnn NotPromoted fun_tc) tys' }
MulArrowT
| Just normals <- m_normals
, [w',x',y'] <- normals -> do
x'' <- case unLoc x' of
HsFunTy{} -> returnLA (HsParTy noAnn x')
HsForAllTy{} -> returnLA (HsParTy noAnn x') -- #14646
HsQualTy{} -> returnLA (HsParTy noAnn x') -- #15324
_ -> return $
parenthesizeHsType sigPrec x'
let y'' = parenthesizeHsType sigPrec y'
w'' = hsTypeToArrow w'
returnLA (HsFunTy noAnn w'' x'' y'')
| otherwise
-> do { fun_tc <- returnLA $ getRdrName funTyCon
; mk_apps (HsTyVar noAnn NotPromoted fun_tc) tys' }
ListT
| Just normals <- m_normals
, [x'] <- normals ->
returnLA (HsListTy noAnn x')
| otherwise
-> do { list_tc <- returnLA $ getRdrName listTyCon
; mk_apps (HsTyVar noAnn NotPromoted list_tc) tys' }
VarT nm -> do { nm' <- tNameN nm
; mk_apps (HsTyVar noAnn NotPromoted nm') tys' }
ConT nm -> do { nm' <- tconName nm
; let prom = name_promotedness nm'
; lnm' <- returnLA nm'
; mk_apps (HsTyVar noAnn prom lnm') tys'}
ForallT tvs cxt ty
| null tys'
-> do { tvs' <- cvtTvs tvs
; cxt' <- cvtContext funPrec cxt
; ty' <- cvtType ty
; loc <- getL
; let loc' = noAnnSrcSpan loc
; let tele = mkHsForAllInvisTele noAnn tvs'
hs_ty = mkHsForAllTy loc' tele rho_ty
rho_ty = mkHsQualTy cxt loc' cxt' ty'
; return hs_ty }
ForallVisT tvs ty
| null tys'
-> do { tvs' <- cvtTvs tvs
; ty' <- cvtType ty
; loc <- getL
; let loc' = noAnnSrcSpan loc
; let tele = mkHsForAllVisTele noAnn tvs'
; pure $ mkHsForAllTy loc' tele ty' }
SigT ty ki
-> do { ty' <- cvtType ty
; ki' <- cvtKind ki
; mk_apps (HsKindSig noAnn ty' ki') tys'
}
LitT lit
-> mk_apps (HsTyLit noExtField (cvtTyLit lit)) tys'
WildCardT
-> mk_apps mkAnonWildCardTy tys'
InfixT t1 s t2
-> do { s' <- tconName s
; t1' <- cvtType t1
; t2' <- cvtType t2
; let prom = name_promotedness s'
; ls' <- returnLA s'
; mk_apps
(HsTyVar noAnn prom ls')
([HsValArg t1', HsValArg t2'] ++ tys')
}
UInfixT t1 s t2
-> do { s' <- tconNameN s
; t2' <- cvtType t2
; t <- cvtOpAppT NotPromoted t1 s' t2'
; mk_apps (unLoc t) tys'
} -- Note [Converting UInfix]
PromotedInfixT t1 s t2
-> do { s' <- cNameN s
; t1' <- cvtType t1
; t2' <- cvtType t2
; mk_apps
(HsTyVar noAnn IsPromoted s')
([HsValArg t1', HsValArg t2'] ++ tys')
}
PromotedUInfixT t1 s t2
-> do { s' <- cNameN s
; t2' <- cvtType t2
; t <- cvtOpAppT IsPromoted t1 s' t2'
; mk_apps (unLoc t) tys'
} -- Note [Converting UInfix]
ParensT t
-> do { t' <- cvtType t
; mk_apps (HsParTy noAnn t') tys'
}
PromotedT nm -> do { nm' <- cNameN nm
; mk_apps (HsTyVar noAnn IsPromoted nm')
tys' }
-- Promoted data constructor; hence cName
PromotedTupleT n
| Just normals <- m_normals
, normals `lengthIs` n -- Saturated
-> returnLA (HsExplicitTupleTy noAnn normals)
| otherwise
-> do { tuple_tc <- returnLA $ getRdrName $ tupleDataCon Boxed n
; mk_apps (HsTyVar noAnn IsPromoted tuple_tc) tys' }
PromotedNilT
-> mk_apps (HsExplicitListTy noAnn IsPromoted []) tys'
PromotedConsT -- See Note [Representing concrete syntax in types]
-- in Language.Haskell.TH.Syntax
| Just normals <- m_normals
, [ty1, L _ (HsExplicitListTy _ ip tys2)] <- normals
-> returnLA (HsExplicitListTy noAnn ip (ty1:tys2))
| otherwise
-> do { cons_tc <- returnLA $ getRdrName consDataCon
; mk_apps (HsTyVar noAnn IsPromoted cons_tc) tys' }
StarT
-> do { type_tc <- returnLA $ getRdrName liftedTypeKindTyCon
; mk_apps (HsTyVar noAnn NotPromoted type_tc) tys' }
ConstraintT
-> do { constraint_tc <- returnLA $ getRdrName constraintKindTyCon
; mk_apps (HsTyVar noAnn NotPromoted constraint_tc) tys' }
EqualityT
| Just normals <- m_normals
, [x',y'] <- normals ->
let px = parenthesizeHsType opPrec x'
py = parenthesizeHsType opPrec y'
in do { eq_tc <- returnLA eqTyCon_RDR
; returnLA (HsOpTy noAnn NotPromoted px eq_tc py) }
-- The long-term goal is to remove the above case entirely and
-- subsume it under the case for InfixT. See #15815, comment:6,
-- for more details.
| otherwise ->
do { eq_tc <- returnLA eqTyCon_RDR
; mk_apps (HsTyVar noAnn NotPromoted eq_tc) tys' }
ImplicitParamT n t
-> do { n' <- wrapL $ ipName n
; t' <- cvtType t
; returnLA (HsIParamTy noAnn (reLocA n') t')
}
_ -> failWith (text "Malformed " <> text ty_str <+> text (show ty))
}
hsTypeToArrow :: LHsType GhcPs -> HsArrow GhcPs
hsTypeToArrow w = case unLoc w of
HsTyVar _ _ (L _ (isExact_maybe -> Just n))
| n == oneDataConName -> HsLinearArrow (HsPct1 noHsTok noHsUniTok)
| n == manyDataConName -> HsUnrestrictedArrow noHsUniTok
_ -> HsExplicitMult noHsTok w noHsUniTok
-- ConT/InfixT can contain both data constructor (i.e., promoted) names and
-- other (i.e, unpromoted) names, as opposed to PromotedT, which can only
-- contain data constructor names. See #15572/#17394. We use this function to
-- determine whether to mark a name as promoted/unpromoted when dealing with
-- ConT/InfixT.
name_promotedness :: RdrName -> Hs.PromotionFlag
name_promotedness nm
| isRdrDataCon nm = IsPromoted
| otherwise = NotPromoted
-- | Constructs an application of a type to arguments passed in a list.
mk_apps :: HsType GhcPs -> [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs)
mk_apps head_ty type_args = do
head_ty' <- returnLA head_ty
-- We must parenthesize the function type in case of an explicit
-- signature. For instance, in `(Maybe :: Type -> Type) Int`, there
-- _must_ be parentheses around `Maybe :: Type -> Type`.
let phead_ty :: LHsType GhcPs
phead_ty = parenthesizeHsType sigPrec head_ty'
go :: [LHsTypeArg GhcPs] -> CvtM (LHsType GhcPs)
go [] = pure head_ty'
go (arg:args) =
case arg of
HsValArg ty -> do p_ty <- add_parens ty
mk_apps (HsAppTy noExtField phead_ty p_ty) args
HsTypeArg l ki -> do p_ki <- add_parens ki
mk_apps (HsAppKindTy l phead_ty p_ki) args
HsArgPar _ -> mk_apps (HsParTy noAnn phead_ty) args
go type_args
where
-- See Note [Adding parens for splices]
add_parens lt@(L _ t)
| hsTypeNeedsParens appPrec t = returnLA (HsParTy noAnn lt)
| otherwise = return lt
wrap_tyarg :: LHsTypeArg GhcPs -> LHsTypeArg GhcPs
wrap_tyarg (HsValArg ty) = HsValArg $ parenthesizeHsType appPrec ty
wrap_tyarg (HsTypeArg l ki) = HsTypeArg l $ parenthesizeHsType appPrec ki
wrap_tyarg ta@(HsArgPar {}) = ta -- Already parenthesized
-- ---------------------------------------------------------------------
{-
Note [Adding parens for splices]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The hsSyn representation of parsed source explicitly contains all the original
parens, as written in the source.
When a Template Haskell (TH) splice is evaluated, the original splice is first
renamed and type checked and then finally converted to core in
GHC.HsToCore.Quote. This core is then run in the TH engine, and the result
comes back as a TH AST.
In the process, all parens are stripped out, as they are not needed.
This Convert module then converts the TH AST back to hsSyn AST.
In order to pretty-print this hsSyn AST, parens need to be adde back at certain
points so that the code is readable with its original meaning.
So scattered through "GHC.ThToHs" are various points where parens are added.
See (among other closed issues) https://gitlab.haskell.org/ghc/ghc/issues/14289
-}
-- ---------------------------------------------------------------------
split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsTypeArg GhcPs])
split_ty_app ty = go ty []
where
go (AppT f a) as' = do { a' <- cvtType a; go f (HsValArg a':as') }
go (AppKindT ty ki) as' = do { ki' <- cvtKind ki
; go ty (HsTypeArg noSrcSpan ki':as') }
go (ParensT t) as' = do { loc <- getL; go t (HsArgPar loc: as') }
go f as = return (f,as)
cvtTyLit :: TH.TyLit -> HsTyLit (GhcPass p)
cvtTyLit (TH.NumTyLit i) = HsNumTy NoSourceText i
cvtTyLit (TH.StrTyLit s) = HsStrTy NoSourceText (fsLit s)
cvtTyLit (TH.CharTyLit c) = HsCharTy NoSourceText c
{- | @cvtOpAppT x op y@ converts @op@ and @y@ and produces the operator
application @x `op` y@. The produced tree of infix types will be right-biased,
provided @y@ is.
See the @cvtOpApp@ documentation for how this function works.
-}
cvtOpAppT :: PromotionFlag -> TH.Type -> LocatedN RdrName -> LHsType GhcPs -> CvtM (LHsType GhcPs)
cvtOpAppT prom (UInfixT x op2 y) op1 z
= do { op2' <- tconNameN op2
; l <- cvtOpAppT prom y op1 z
; cvtOpAppT NotPromoted x op2' l }
cvtOpAppT prom (PromotedUInfixT x op2 y) op1 z
= do { op2' <- cNameN op2
; l <- cvtOpAppT prom y op1 z
; cvtOpAppT IsPromoted x op2' l }
cvtOpAppT prom x op y
= do { x' <- cvtType x
; returnLA (mkHsOpTy prom x' op y) }
cvtKind :: TH.Kind -> CvtM (LHsKind GhcPs)
cvtKind = cvtTypeKind "kind"
cvtSigKind :: TH.Kind -> CvtM (LHsSigType GhcPs)
cvtSigKind = cvtSigTypeKind "kind"
-- | Convert Maybe Kind to a type family result signature. Used with data
-- families where naming of the result is not possible (thus only kind or no
-- signature is possible).
cvtMaybeKindToFamilyResultSig :: Maybe TH.Kind
-> CvtM (LFamilyResultSig GhcPs)
cvtMaybeKindToFamilyResultSig Nothing = returnLA (Hs.NoSig noExtField)
cvtMaybeKindToFamilyResultSig (Just ki) = do { ki' <- cvtKind ki
; returnLA (Hs.KindSig noExtField ki') }
-- | Convert type family result signature. Used with both open and closed type
-- families.
cvtFamilyResultSig :: TH.FamilyResultSig -> CvtM (Hs.LFamilyResultSig GhcPs)
cvtFamilyResultSig TH.NoSig = returnLA (Hs.NoSig noExtField)
cvtFamilyResultSig (TH.KindSig ki) = do { ki' <- cvtKind ki
; returnLA (Hs.KindSig noExtField ki') }
cvtFamilyResultSig (TH.TyVarSig bndr) = do { tv <- cvt_tv bndr
; returnLA (Hs.TyVarSig noExtField tv) }
-- | Convert injectivity annotation of a type family.
cvtInjectivityAnnotation :: TH.InjectivityAnn
-> CvtM (Hs.LInjectivityAnn GhcPs)
cvtInjectivityAnnotation (TH.InjectivityAnn annLHS annRHS)
= do { annLHS' <- tNameN annLHS
; annRHS' <- mapM tNameN annRHS
; returnLA (Hs.InjectivityAnn noAnn annLHS' annRHS') }
cvtPatSynSigTy :: TH.Type -> CvtM (LHsSigType GhcPs)
-- pattern synonym types are of peculiar shapes, which is why we treat
-- them separately from regular types;
-- see Note [Pattern synonym type signatures and Template Haskell]
cvtPatSynSigTy (ForallT univs reqs (ForallT exis provs ty))
| null exis, null provs = cvtSigType (ForallT univs reqs ty)
| null univs, null reqs = do { ty' <- cvtType (ForallT exis provs ty)
; ctxt' <- returnLA []
; cxtTy <- wrapParLA mkHsImplicitSigType $
HsQualTy { hst_ctxt = ctxt'
, hst_xqual = noExtField
, hst_body = ty' }
; returnLA cxtTy }
| null reqs = do { univs' <- cvtTvs univs
; ty' <- cvtType (ForallT exis provs ty)
; ctxt' <- returnLA []
; let cxtTy = HsQualTy { hst_ctxt = ctxt'
, hst_xqual = noExtField
, hst_body = ty' }
; forTy <- wrapParLA (mkHsExplicitSigType noAnn univs') cxtTy
; returnLA forTy }
| otherwise = cvtSigType (ForallT univs reqs (ForallT exis provs ty))
cvtPatSynSigTy ty = cvtSigType ty
-----------------------------------------------------------
cvtFixity :: TH.Fixity -> Hs.Fixity
cvtFixity (TH.Fixity prec dir) = Hs.Fixity NoSourceText prec (cvt_dir dir)
where
cvt_dir TH.InfixL = Hs.InfixL
cvt_dir TH.InfixR = Hs.InfixR
cvt_dir TH.InfixN = Hs.InfixN
-----------------------------------------------------------
-----------------------------------------------------------
-- some useful things
overloadedLit :: Lit -> Bool
-- True for literals that Haskell treats as overloaded
overloadedLit (IntegerL _) = True
overloadedLit (RationalL _) = True
overloadedLit _ = False
-- Checks that are performed when converting unboxed sum expressions and
-- patterns alike.
unboxedSumChecks :: TH.SumAlt -> TH.SumArity -> CvtM ()
unboxedSumChecks alt arity
| alt > arity
= failWith $ text "Sum alternative" <+> text (show alt)
<+> text "exceeds its arity," <+> text (show arity)
| alt <= 0
= failWith $ vcat [ text "Illegal sum alternative:" <+> text (show alt)
, nest 2 $ text "Sum alternatives must start from 1" ]
| arity < 2
= failWith $ vcat [ text "Illegal sum arity:" <+> text (show arity)
, nest 2 $ text "Sums must have an arity of at least 2" ]
| otherwise
= return ()
-- | If passed an empty list of 'LHsTyVarBndr's, this simply returns the
-- third argument (an 'LHsType'). Otherwise, return an 'HsForAllTy'
-- using the provided 'LHsQTyVars' and 'LHsType'.
mkHsForAllTy :: SrcSpanAnnA
-- ^ The location of the returned 'LHsType' if it needs an
-- explicit forall
-> HsForAllTelescope GhcPs
-- ^ The converted type variable binders
-> LHsType GhcPs
-- ^ The converted rho type
-> LHsType GhcPs
-- ^ The complete type, quantified with a forall if necessary
mkHsForAllTy loc tele rho_ty
| no_tvs = rho_ty
| otherwise = L loc $ HsForAllTy { hst_tele = tele
, hst_xforall = noExtField
, hst_body = rho_ty }
where
no_tvs = case tele of
HsForAllVis { hsf_vis_bndrs = bndrs } -> null bndrs
HsForAllInvis { hsf_invis_bndrs = bndrs } -> null bndrs
-- | If passed an empty 'TH.Cxt', this simply returns the third argument
-- (an 'LHsType'). Otherwise, return an 'HsQualTy' using the provided
-- 'LHsContext' and 'LHsType'.
-- It's important that we don't build an HsQualTy if the context is empty,
-- as the pretty-printer for HsType _always_ prints contexts, even if
-- they're empty. See #13183.
mkHsQualTy :: TH.Cxt
-- ^ The original Template Haskell context
-> SrcSpanAnnA
-- ^ The location of the returned 'LHsType' if it needs an
-- explicit context
-> LHsContext GhcPs
-- ^ The converted context
-> LHsType GhcPs
-- ^ The converted tau type
-> LHsType GhcPs
-- ^ The complete type, qualified with a context if necessary
mkHsQualTy ctxt loc ctxt' ty
| null ctxt = ty
| otherwise = L loc $ HsQualTy { hst_xqual = noExtField
, hst_ctxt = ctxt'
, hst_body = ty }
-- | @'mkHsContextMaybe' lc@ returns 'Nothing' if @lc@ is empty and @'Just' lc@
-- otherwise.
--
-- This is much like 'mkHsQualTy', except that it returns a
-- @'Maybe' ('LHsContext' 'GhcPs')@. This is used specifically for constructing
-- superclasses, datatype contexts (#20011), and contexts in GADT constructor
-- types (#20590). We wish to avoid using @'Just' []@ in the case of an empty
-- contexts, as the pretty-printer always prints 'Just' contexts, even if
-- they're empty.
mkHsContextMaybe :: LHsContext GhcPs -> Maybe (LHsContext GhcPs)
mkHsContextMaybe lctxt@(L _ ctxt)
| null ctxt = Nothing
| otherwise = Just lctxt
mkHsOuterFamEqnTyVarBndrs :: Maybe [LHsTyVarBndr () GhcPs] -> HsOuterFamEqnTyVarBndrs GhcPs
mkHsOuterFamEqnTyVarBndrs = maybe mkHsOuterImplicit (mkHsOuterExplicit noAnn)
--------------------------------------------------------------------
-- Turning Name back into RdrName
--------------------------------------------------------------------
-- variable names
vNameN, cNameN, vcNameN, tNameN, tconNameN :: TH.Name -> CvtM (LocatedN RdrName)
vNameL :: TH.Name -> CvtM (LocatedA RdrName)
vName, cName, vcName, tName, tconName :: TH.Name -> CvtM RdrName
-- Variable names
vNameN n = wrapLN (vName n)
vNameL n = wrapLA (vName n)
vName n = cvtName OccName.varName n
-- Constructor function names; this is Haskell source, hence srcDataName
cNameN n = wrapLN (cName n)
cName n = cvtName OccName.dataName n
-- Variable *or* constructor names; check by looking at the first char
vcNameN n = wrapLN (vcName n)
vcName n = if isVarName n then vName n else cName n
-- Type variable names
tNameN n = wrapLN (tName n)
tName n = cvtName OccName.tvName n
-- Type Constructor names
tconNameN n = wrapLN (tconName n)
tconName n = cvtName OccName.tcClsName n
ipName :: String -> CvtM HsIPName
ipName n
= do { unless (okVarOcc n) (failWith (badOcc OccName.varName n))
; return (HsIPName (fsLit n)) }
cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
| not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
| otherwise
= do { loc <- getL
; let rdr_name = thRdrName loc ctxt_ns occ_str flavour
; force rdr_name
; return rdr_name }
where
occ_str = TH.occString occ
okOcc :: OccName.NameSpace -> String -> Bool
okOcc ns str
| OccName.isVarNameSpace ns = okVarOcc str
| OccName.isDataConNameSpace ns = okConOcc str
| otherwise = okTcOcc str
-- Determine the name space of a name in a type
--
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
= case TH.occString occ of
"" -> False
(c:_) -> startsVarId c || startsVarSym c
badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ
= text "Illegal" <+> pprNameSpace ctxt_ns
<+> text "name:" <+> quotes (text occ)
thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
-- This turns a TH Name into a RdrName; used for both binders and occurrences
-- See Note [Binders in Template Haskell]
-- The passed-in name space tells what the context is expecting;
-- use it unless the TH name knows what name-space it comes
-- from, in which case use the latter
--
-- We pass in a SrcSpan (gotten from the monad) because this function
-- is used for *binders* and if we make an Exact Name we want it
-- to have a binding site inside it. (cf #5434)
--
-- ToDo: we may generate silly RdrNames, by passing a name space
-- that doesn't match the string, like VarName ":+",
-- which will give confusing error messages later
--
-- The strict applications ensure that any buried exceptions get forced
thRdrName loc ctxt_ns th_occ th_name
= case th_name of
TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
TH.NameQ mod -> (mkRdrQual $! mk_mod mod) $! occ
TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq (fromInteger uniq)) $! occ) loc)
TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq (fromInteger uniq)) $! occ) loc)
TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name
| otherwise -> mkRdrUnqual $! occ
-- We check for built-in syntax here, because the TH
-- user might have written a (NameS "(,,)"), for example
where
occ :: OccName.OccName
occ = mk_occ ctxt_ns th_occ
-- Return an unqualified exact RdrName if we're dealing with built-in syntax.
-- See #13776.
thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod =
let occ' = mk_occ (mk_ghc_ns th_ns) occ
mod' = mkModule (mk_pkg pkg) (mk_mod mod)
in case isBuiltInOcc_maybe occ' <|> isPunOcc_maybe mod' occ' of
Just name -> nameRdrName name
Nothing -> (mkOrig $! mod') $! occ'
thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
-- This special case for NameG ensures that we don't generate duplicates in the output list
| TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
| otherwise = [ thRdrName noSrcSpan gns occ_str flavour
| gns <- guessed_nss]
where
-- guessed_ns are the name spaces guessed from looking at the TH name
guessed_nss
| isLexCon (mkFastString occ_str) = [OccName.tcName, OccName.dataName]
| otherwise = [OccName.varName, OccName.tvName]
occ_str = TH.occString occ
-- The packing and unpacking is rather turgid :-(
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ
mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName = OccName.varName
mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)
mk_pkg :: TH.PkgName -> Unit
mk_pkg pkg = stringToUnit (TH.pkgString pkg)
mk_uniq :: Int -> Unique
mk_uniq u = mkUniqueGrimily u
{-
Note [Binders in Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this TH term construction:
do { x1 <- TH.newName "x" -- newName :: String -> Q TH.Name
; x2 <- TH.newName "x" -- Builds a NameU
; x3 <- TH.newName "x"
; let x = mkName "x" -- mkName :: String -> TH.Name
-- Builds a NameS
; return (LamE (..pattern [x1,x2]..) $
LamE (VarPat x3) $
..tuple (x1,x2,x3,x)) }
It represents the term \[x1,x2]. \x3. (x1,x2,x3,x)
a) We don't want to complain about "x" being bound twice in
the pattern [x1,x2]
b) We don't want x3 to shadow the x1,x2
c) We *do* want 'x' (dynamically bound with mkName) to bind
to the innermost binding of "x", namely x3.
d) When pretty printing, we want to print a unique with x1,x2
etc, else they'll all print as "x" which isn't very helpful
When we convert all this to HsSyn, the TH.Names are converted with
thRdrName. To achieve (b) we want the binders to be Exact RdrNames.
Achieving (a) is a bit awkward, because
- We must check for duplicate and shadowed names on Names,
not RdrNames, *after* renaming.
See Note [Collect binders only after renaming] in GHC.Hs.Utils
- But to achieve (a) we must distinguish between the Exact
RdrNames arising from TH and the Unqual RdrNames that would
come from a user writing \[x,x] -> blah
So in Convert.thRdrName we translate
TH Name RdrName
--------------------------------------------------------
NameU (arising from newName) --> Exact (Name{ System })
NameS (arising from mkName) --> Unqual
Notice that the NameUs generate *System* Names. Then, when
figuring out shadowing and duplicates, we can filter out
System Names.
This use of System Names fits with other uses of System Names, eg for
temporary variables "a". Since there are lots of things called "a" we
usually want to print the name with the unique, and that is indeed
the way System Names are printed.
There's a small complication of course; see Note [Looking up Exact
RdrNames] in GHC.Rename.Env.
-}
{-
Note [Pattern synonym type signatures and Template Haskell]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, the type signature of a pattern synonym
pattern P x1 x2 .. xn = <some-pattern>
is of the form
forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t
with the following parts:
1) the (possibly empty lists of) universally quantified type
variables `univs` and required constraints `reqs` on them.
2) the (possibly empty lists of) existentially quantified type
variables `exis` and the provided constraints `provs` on them.
3) the types `t1`, `t2`, .., `tn` of the pattern synonym's arguments x1,
x2, .., xn, respectively
4) the type `t` of <some-pattern>, mentioning only universals from `univs`.
Due to the two forall quantifiers and constraint contexts (either of
which might be empty), pattern synonym type signatures are treated
specially in `GHC.HsToCore.Quote`, `GHC.ThToHs`, and
`GHC.Tc.Gen.Splice`:
(a) When desugaring a pattern synonym from HsSyn to TH.Dec in
`GHC.HsToCore.Quote`, we represent its *full* type signature in TH, i.e.:
ForallT univs reqs (ForallT exis provs ty)
(where ty is the AST representation of t1 -> t2 -> ... -> tn -> t)
(b) When converting pattern synonyms from TH.Dec to HsSyn in
`GHC.ThToHs`, we convert their TH type signatures back to an
appropriate Haskell pattern synonym type of the form
forall univs. reqs => forall exis. provs => t1 -> t2 -> ... -> tn -> t
where initial empty `univs` type variables or an empty `reqs`
constraint context are represented *explicitly* as `() =>`.
(c) When reifying a pattern synonym in `GHC.Tc.Gen.Splice`, we always
return its *full* type, i.e.:
ForallT univs reqs (ForallT exis provs ty)
(where ty is the AST representation of t1 -> t2 -> ... -> tn -> t)
The key point is to always represent a pattern synonym's *full* type
in cases (a) and (c) to make it clear which of the two forall
quantifiers and/or constraint contexts are specified, and which are
not. See GHC's user's guide on pattern synonyms for more information
about pattern synonym type signatures.
-}
|