summaryrefslogtreecommitdiff
path: root/compiler/GHC/Types/Literal.hs
blob: a5c855a4fa18d16790d60a1d34a976969f93ce10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1998

\section[Literal]{@Literal@: literals}
-}

{-# LANGUAGE CPP, DeriveDataTypeable, ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

module GHC.Types.Literal
        (
        -- * Main data type
          Literal(..)           -- Exported to ParseIface
        , LitNumType(..)

        -- ** Creating Literals
        , mkLitInt, mkLitIntWrap, mkLitIntWrapC, mkLitIntUnchecked
        , mkLitWord, mkLitWordWrap, mkLitWordWrapC
        , mkLitInt8, mkLitInt8Wrap
        , mkLitWord8, mkLitWord8Wrap
        , mkLitInt16, mkLitInt16Wrap
        , mkLitWord16, mkLitWord16Wrap
        , mkLitInt32, mkLitInt32Wrap
        , mkLitWord32, mkLitWord32Wrap
        , mkLitInt64, mkLitInt64Wrap
        , mkLitWord64, mkLitWord64Wrap
        , mkLitFloat, mkLitDouble
        , mkLitChar, mkLitString
        , mkLitInteger, mkLitNatural
        , mkLitNumber, mkLitNumberWrap

        -- ** Operations on Literals
        , literalType
        , absentLiteralOf
        , pprLiteral
        , litNumIsSigned
        , litNumCheckRange

        -- ** Predicates on Literals and their contents
        , litIsDupable, litIsTrivial, litIsLifted
        , inCharRange
        , isZeroLit
        , litFitsInChar
        , litValue, mapLitValue

        -- ** Coercions
        , wordToIntLit, intToWordLit
        , narrow8IntLit, narrow16IntLit, narrow32IntLit
        , narrow8WordLit, narrow16WordLit, narrow32WordLit
        , narrowInt8Lit, narrowInt16Lit, narrowInt32Lit
        , narrowWord8Lit, narrowWord16Lit, narrowWord32Lit
        , extendIntLit, extendWordLit
        , int8Lit, int16Lit, int32Lit
        , word8Lit, word16Lit, word32Lit
        , charToIntLit, intToCharLit
        , floatToIntLit, intToFloatLit, doubleToIntLit, intToDoubleLit
        , nullAddrLit, rubbishLit, floatToDoubleLit, doubleToFloatLit
        ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Builtin.Types.Prim
import {-# SOURCE #-} GHC.Builtin.Types
import GHC.Builtin.Names
import GHC.Core.Type
import GHC.Core.TyCon
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Types.Basic
import GHC.Utils.Binary
import GHC.Settings.Constants
import GHC.Platform
import GHC.Types.Unique.FM
import GHC.Utils.Misc
import GHC.Utils.Panic

import Data.ByteString (ByteString)
import Data.Int
import Data.Word
import Data.Char
import Data.Data ( Data )
import Data.Proxy
import Numeric ( fromRat )

{-
************************************************************************
*                                                                      *
\subsection{Literals}
*                                                                      *
************************************************************************
-}

-- | So-called 'Literal's are one of:
--
-- * An unboxed numeric literal or floating-point literal which is presumed
--   to be surrounded by appropriate constructors (@Int#@, etc.), so that
--   the overall thing makes sense.
--
--   We maintain the invariant that the 'Integer' in the 'LitNumber'
--   constructor is actually in the (possibly target-dependent) range.
--   The mkLit{Int,Word}*Wrap smart constructors ensure this by applying
--   the target machine's wrapping semantics. Use these in situations
--   where you know the wrapping semantics are correct.
--
-- * The literal derived from the label mentioned in a \"foreign label\"
--   declaration ('LitLabel')
--
-- * A 'LitRubbish' to be used in place of values of 'UnliftedRep'
--   (i.e. 'MutVar#') when the value is never used.
--
-- * A character
-- * A string
-- * The NULL pointer
--
data Literal
  = LitChar    Char             -- ^ @Char#@ - at least 31 bits. Create with
                                -- 'mkLitChar'

  | LitNumber !LitNumType !Integer
                                -- ^ Any numeric literal that can be
                                -- internally represented with an Integer.

  | LitString !ByteString       -- ^ A string-literal: stored and emitted
                                -- UTF-8 encoded, we'll arrange to decode it
                                -- at runtime.  Also emitted with a @\'\\0\'@
                                -- terminator. Create with 'mkLitString'

  | LitNullAddr                 -- ^ The @NULL@ pointer, the only pointer value
                                -- that can be represented as a Literal. Create
                                -- with 'nullAddrLit'

  | LitRubbish                  -- ^ A nonsense value, used when an unlifted
                                -- binding is absent and has type
                                -- @forall (a :: 'TYPE' 'UnliftedRep'). a@.
                                -- May be lowered by code-gen to any possible
                                -- value. Also see Note [Rubbish literals]

  | LitFloat   Rational         -- ^ @Float#@. Create with 'mkLitFloat'
  | LitDouble  Rational         -- ^ @Double#@. Create with 'mkLitDouble'

  | LitLabel   FastString (Maybe Int) FunctionOrData
                                -- ^ A label literal. Parameters:
                                --
                                -- 1) The name of the symbol mentioned in the
                                --    declaration
                                --
                                -- 2) The size (in bytes) of the arguments
                                --    the label expects. Only applicable with
                                --    @stdcall@ labels. @Just x@ => @\<x\>@ will
                                --    be appended to label name when emitting
                                --    assembly.
                                --
                                -- 3) Flag indicating whether the symbol
                                --    references a function or a data
  deriving Data

-- | Numeric literal type
data LitNumType
  = LitNumInteger -- ^ @Integer@ (see Note [BigNum literals])
  | LitNumNatural -- ^ @Natural@ (see Note [BigNum literals])
  | LitNumInt     -- ^ @Int#@ - according to target machine
  | LitNumInt8    -- ^ @Int8#@ - exactly 8 bits
  | LitNumInt16   -- ^ @Int16#@ - exactly 16 bits
  | LitNumInt32   -- ^ @Int32#@ - exactly 32 bits
  | LitNumInt64   -- ^ @Int64#@ - exactly 64 bits
  | LitNumWord    -- ^ @Word#@ - according to target machine
  | LitNumWord8   -- ^ @Word8#@ - exactly 8 bits
  | LitNumWord16  -- ^ @Word16#@ - exactly 16 bits
  | LitNumWord32  -- ^ @Word32#@ - exactly 32 bits
  | LitNumWord64  -- ^ @Word64#@ - exactly 64 bits
  deriving (Data,Enum,Eq,Ord)

-- | Indicate if a numeric literal type supports negative numbers
litNumIsSigned :: LitNumType -> Bool
litNumIsSigned nt = case nt of
  LitNumInteger -> True
  LitNumNatural -> False
  LitNumInt     -> True
  LitNumInt8    -> True
  LitNumInt16   -> True
  LitNumInt32   -> True
  LitNumInt64   -> True
  LitNumWord    -> False
  LitNumWord8   -> False
  LitNumWord16  -> False
  LitNumWord32  -> False
  LitNumWord64  -> False

{-
Note [BigNum literals]
~~~~~~~~~~~~~~~~~~~~~~

GHC supports 2 kinds of arbitrary precision integers (a.k.a BigNum):

   * Natural: natural represented as a Word# or as a BigNat

   * Integer: integer represented a an Int# or as a BigNat (Integer's
   constructors indicate the sign)

BigNum literal instances are removed from Core during the CorePrep phase. They
are replaced with expression to build them at runtime from machine literals
(Word#, Int#, etc.) or from a list of Word#s.

Note [String literals]
~~~~~~~~~~~~~~~~~~~~~~

String literals are UTF-8 encoded and stored into ByteStrings in the following
ASTs: Haskell, Core, Stg, Cmm. TH can also emit ByteString based string literals
with the BytesPrimL constructor (see #14741).

It wasn't true before as [Word8] was used in Cmm AST and in TH which was quite
bad for performance with large strings (see #16198 and #14741).

To include string literals into output objects, the assembler code generator has
to embed the UTF-8 encoded binary blob. See Note [Embedding large binary blobs]
for more details.

-}

instance Binary LitNumType where
   put_ bh numTyp = putByte bh (fromIntegral (fromEnum numTyp))
   get bh = do
      h <- getByte bh
      return (toEnum (fromIntegral h))

instance Binary Literal where
    put_ bh (LitChar aa)     = do putByte bh 0; put_ bh aa
    put_ bh (LitString ab)   = do putByte bh 1; put_ bh ab
    put_ bh (LitNullAddr)    = putByte bh 2
    put_ bh (LitFloat ah)    = do putByte bh 3; put_ bh ah
    put_ bh (LitDouble ai)   = do putByte bh 4; put_ bh ai
    put_ bh (LitLabel aj mb fod)
        = do putByte bh 5
             put_ bh aj
             put_ bh mb
             put_ bh fod
    put_ bh (LitNumber nt i)
        = do putByte bh 6
             put_ bh nt
             put_ bh i
    put_ bh (LitRubbish) = putByte bh 7
    get bh = do
            h <- getByte bh
            case h of
              0 -> do
                    aa <- get bh
                    return (LitChar aa)
              1 -> do
                    ab <- get bh
                    return (LitString ab)
              2 -> return (LitNullAddr)
              3 -> do
                    ah <- get bh
                    return (LitFloat ah)
              4 -> do
                    ai <- get bh
                    return (LitDouble ai)
              5 -> do
                    aj <- get bh
                    mb <- get bh
                    fod <- get bh
                    return (LitLabel aj mb fod)
              6 -> do
                    nt <- get bh
                    i  <- get bh
                    return (LitNumber nt i)
              _ -> return (LitRubbish)

instance Outputable Literal where
    ppr = pprLiteral id

instance Eq Literal where
    a == b = compare a b == EQ

-- | Needed for the @Ord@ instance of 'AltCon', which in turn is needed in
-- 'GHC.Data.TrieMap.CoreMap'.
instance Ord Literal where
    compare = cmpLit

{-
        Construction
        ~~~~~~~~~~~~
-}

{- Note [Word/Int underflow/overflow]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
According to the Haskell Report 2010 (Sections 18.1 and 23.1 about signed and
unsigned integral types): "All arithmetic is performed modulo 2^n, where n is
the number of bits in the type."

GHC stores Word# and Int# constant values as Integer. Core optimizations such
as constant folding must ensure that the Integer value remains in the valid
target Word/Int range (see #13172). The following functions are used to
ensure this.

Note that we *don't* warn the user about overflow. It's not done at runtime
either, and compilation of completely harmless things like
   ((124076834 :: Word32) + (2147483647 :: Word32))
doesn't yield a warning. Instead we simply squash the value into the *target*
Int/Word range.
-}

-- | Wrap a literal number according to its type
wrapLitNumber :: Platform -> Literal -> Literal
wrapLitNumber platform v@(LitNumber nt i) = case nt of
  LitNumInt -> case platformWordSize platform of
    PW4 -> LitNumber nt (toInteger (fromIntegral i :: Int32))
    PW8 -> LitNumber nt (toInteger (fromIntegral i :: Int64))
  LitNumWord -> case platformWordSize platform of
    PW4 -> LitNumber nt (toInteger (fromIntegral i :: Word32))
    PW8 -> LitNumber nt (toInteger (fromIntegral i :: Word64))
  LitNumInt8    -> LitNumber nt (toInteger (fromIntegral i :: Int8))
  LitNumWord8   -> LitNumber nt (toInteger (fromIntegral i :: Word8))
  LitNumInt16   -> LitNumber nt (toInteger (fromIntegral i :: Int16))
  LitNumWord16  -> LitNumber nt (toInteger (fromIntegral i :: Word16))
  LitNumInt32   -> LitNumber nt (toInteger (fromIntegral i :: Int32))
  LitNumWord32  -> LitNumber nt (toInteger (fromIntegral i :: Word32))
  LitNumInt64   -> LitNumber nt (toInteger (fromIntegral i :: Int64))
  LitNumWord64  -> LitNumber nt (toInteger (fromIntegral i :: Word64))
  LitNumInteger -> v
  LitNumNatural -> v
wrapLitNumber _ x = x

-- | Create a numeric 'Literal' of the given type
mkLitNumberWrap :: Platform -> LitNumType -> Integer -> Literal
mkLitNumberWrap platform nt i = wrapLitNumber platform (LitNumber nt i)

-- | Check that a given number is in the range of a numeric literal
litNumCheckRange :: Platform -> LitNumType -> Integer -> Bool
litNumCheckRange platform nt i = case nt of
     LitNumInt     -> platformInIntRange platform i
     LitNumWord    -> platformInWordRange platform i
     LitNumInt8    -> inInt8Range i
     LitNumInt16   -> inInt16Range i
     LitNumInt32   -> inInt32Range i
     LitNumInt64   -> inInt64Range i
     LitNumWord8   -> inWord8Range i
     LitNumWord16  -> inWord16Range i
     LitNumWord32  -> inWord32Range i
     LitNumWord64  -> inWord64Range i
     LitNumNatural -> i >= 0
     LitNumInteger -> True

-- | Create a numeric 'Literal' of the given type
mkLitNumber :: Platform -> LitNumType -> Integer -> Literal
mkLitNumber platform nt i =
  ASSERT2(litNumCheckRange platform nt i, integer i)
  (LitNumber nt i)

-- | Creates a 'Literal' of type @Int#@
mkLitInt :: Platform -> Integer -> Literal
mkLitInt platform x = ASSERT2( platformInIntRange platform x,  integer x )
                       (mkLitIntUnchecked x)

-- | Creates a 'Literal' of type @Int#@.
--   If the argument is out of the (target-dependent) range, it is wrapped.
--   See Note [Word/Int underflow/overflow]
mkLitIntWrap :: Platform -> Integer -> Literal
mkLitIntWrap platform i = wrapLitNumber platform $ mkLitIntUnchecked i

-- | Creates a 'Literal' of type @Int#@ without checking its range.
mkLitIntUnchecked :: Integer -> Literal
mkLitIntUnchecked i = LitNumber LitNumInt i

-- | Creates a 'Literal' of type @Int#@, as well as a 'Bool'ean flag indicating
--   overflow. That is, if the argument is out of the (target-dependent) range
--   the argument is wrapped and the overflow flag will be set.
--   See Note [Word/Int underflow/overflow]
mkLitIntWrapC :: Platform -> Integer -> (Literal, Bool)
mkLitIntWrapC platform i = (n, i /= i')
  where
    n@(LitNumber _ i') = mkLitIntWrap platform i

-- | Creates a 'Literal' of type @Word#@
mkLitWord :: Platform -> Integer -> Literal
mkLitWord platform x = ASSERT2( platformInWordRange platform x, integer x )
                        (mkLitWordUnchecked x)

-- | Creates a 'Literal' of type @Word#@.
--   If the argument is out of the (target-dependent) range, it is wrapped.
--   See Note [Word/Int underflow/overflow]
mkLitWordWrap :: Platform -> Integer -> Literal
mkLitWordWrap platform i = wrapLitNumber platform $ mkLitWordUnchecked i

-- | Creates a 'Literal' of type @Word#@ without checking its range.
mkLitWordUnchecked :: Integer -> Literal
mkLitWordUnchecked i = LitNumber LitNumWord i

-- | Creates a 'Literal' of type @Word#@, as well as a 'Bool'ean flag indicating
--   carry. That is, if the argument is out of the (target-dependent) range
--   the argument is wrapped and the carry flag will be set.
--   See Note [Word/Int underflow/overflow]
mkLitWordWrapC :: Platform -> Integer -> (Literal, Bool)
mkLitWordWrapC platform i = (n, i /= i')
  where
    n@(LitNumber _ i') = mkLitWordWrap platform i

-- | Creates a 'Literal' of type @Int8#@
mkLitInt8 :: Integer -> Literal
mkLitInt8  x = ASSERT2( inInt8Range x, integer x ) (mkLitInt8Unchecked x)

-- | Creates a 'Literal' of type @Int8#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt8Wrap :: Platform -> Integer -> Literal
mkLitInt8Wrap platform i = wrapLitNumber platform $ mkLitInt8Unchecked i

-- | Creates a 'Literal' of type @Int8#@ without checking its range.
mkLitInt8Unchecked :: Integer -> Literal
mkLitInt8Unchecked i = LitNumber LitNumInt8 i

-- | Creates a 'Literal' of type @Word8#@
mkLitWord8 :: Integer -> Literal
mkLitWord8 x = ASSERT2( inWord8Range x, integer x ) (mkLitWord8Unchecked x)

-- | Creates a 'Literal' of type @Word8#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord8Wrap :: Platform -> Integer -> Literal
mkLitWord8Wrap platform i = wrapLitNumber platform $ mkLitWord8Unchecked i

-- | Creates a 'Literal' of type @Word8#@ without checking its range.
mkLitWord8Unchecked :: Integer -> Literal
mkLitWord8Unchecked i = LitNumber LitNumWord8 i

-- | Creates a 'Literal' of type @Int16#@
mkLitInt16 :: Integer -> Literal
mkLitInt16  x = ASSERT2( inInt16Range x, integer x ) (mkLitInt16Unchecked x)

-- | Creates a 'Literal' of type @Int16#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt16Wrap :: Platform -> Integer -> Literal
mkLitInt16Wrap platform i = wrapLitNumber platform $ mkLitInt16Unchecked i

-- | Creates a 'Literal' of type @Int16#@ without checking its range.
mkLitInt16Unchecked :: Integer -> Literal
mkLitInt16Unchecked i = LitNumber LitNumInt16 i

-- | Creates a 'Literal' of type @Word16#@
mkLitWord16 :: Integer -> Literal
mkLitWord16 x = ASSERT2( inWord16Range x, integer x ) (mkLitWord16Unchecked x)

-- | Creates a 'Literal' of type @Word16#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord16Wrap :: Platform -> Integer -> Literal
mkLitWord16Wrap platform i = wrapLitNumber platform $ mkLitWord16Unchecked i

-- | Creates a 'Literal' of type @Word16#@ without checking its range.
mkLitWord16Unchecked :: Integer -> Literal
mkLitWord16Unchecked i = LitNumber LitNumWord16 i

-- | Creates a 'Literal' of type @Int32#@
mkLitInt32 :: Integer -> Literal
mkLitInt32  x = ASSERT2( inInt32Range x, integer x ) (mkLitInt32Unchecked x)

-- | Creates a 'Literal' of type @Int32#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt32Wrap :: Platform -> Integer -> Literal
mkLitInt32Wrap platform i = wrapLitNumber platform $ mkLitInt32Unchecked i

-- | Creates a 'Literal' of type @Int32#@ without checking its range.
mkLitInt32Unchecked :: Integer -> Literal
mkLitInt32Unchecked i = LitNumber LitNumInt32 i

-- | Creates a 'Literal' of type @Word32#@
mkLitWord32 :: Integer -> Literal
mkLitWord32 x = ASSERT2( inWord32Range x, integer x ) (mkLitWord32Unchecked x)

-- | Creates a 'Literal' of type @Word32#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord32Wrap :: Platform -> Integer -> Literal
mkLitWord32Wrap platform i = wrapLitNumber platform $ mkLitWord32Unchecked i

-- | Creates a 'Literal' of type @Word32#@ without checking its range.
mkLitWord32Unchecked :: Integer -> Literal
mkLitWord32Unchecked i = LitNumber LitNumWord32 i

-- | Creates a 'Literal' of type @Int64#@
mkLitInt64 :: Integer -> Literal
mkLitInt64  x = ASSERT2( inInt64Range x, integer x ) (mkLitInt64Unchecked x)

-- | Creates a 'Literal' of type @Int64#@.
--   If the argument is out of the range, it is wrapped.
mkLitInt64Wrap :: Platform -> Integer -> Literal
mkLitInt64Wrap platform i = wrapLitNumber platform $ mkLitInt64Unchecked i

-- | Creates a 'Literal' of type @Int64#@ without checking its range.
mkLitInt64Unchecked :: Integer -> Literal
mkLitInt64Unchecked i = LitNumber LitNumInt64 i

-- | Creates a 'Literal' of type @Word64#@
mkLitWord64 :: Integer -> Literal
mkLitWord64 x = ASSERT2( inWord64Range x, integer x ) (mkLitWord64Unchecked x)

-- | Creates a 'Literal' of type @Word64#@.
--   If the argument is out of the range, it is wrapped.
mkLitWord64Wrap :: Platform -> Integer -> Literal
mkLitWord64Wrap platform i = wrapLitNumber platform $ mkLitWord64Unchecked i

-- | Creates a 'Literal' of type @Word64#@ without checking its range.
mkLitWord64Unchecked :: Integer -> Literal
mkLitWord64Unchecked i = LitNumber LitNumWord64 i

-- | Creates a 'Literal' of type @Float#@
mkLitFloat :: Rational -> Literal
mkLitFloat = LitFloat

-- | Creates a 'Literal' of type @Double#@
mkLitDouble :: Rational -> Literal
mkLitDouble = LitDouble

-- | Creates a 'Literal' of type @Char#@
mkLitChar :: Char -> Literal
mkLitChar = LitChar

-- | Creates a 'Literal' of type @Addr#@, which is appropriate for passing to
-- e.g. some of the \"error\" functions in GHC.Err such as @GHC.Err.runtimeError@
mkLitString :: String -> Literal
-- stored UTF-8 encoded
mkLitString s = LitString (bytesFS $ mkFastString s)

mkLitInteger :: Integer -> Literal
mkLitInteger x = LitNumber LitNumInteger x

mkLitNatural :: Integer -> Literal
mkLitNatural x = ASSERT2( inNaturalRange x,  integer x )
                    (LitNumber LitNumNatural x)

inNaturalRange :: Integer -> Bool
inNaturalRange x = x >= 0

inInt8Range,  inWord8Range,  inInt16Range, inWord16Range :: Integer -> Bool
inInt32Range, inWord32Range, inInt64Range, inWord64Range :: Integer -> Bool
inInt8Range  x  = x >= toInteger (minBound :: Int8) &&
                  x <= toInteger (maxBound :: Int8)
inWord8Range  x = x >= toInteger (minBound :: Word8) &&
                  x <= toInteger (maxBound :: Word8)
inInt16Range x  = x >= toInteger (minBound :: Int16) &&
                  x <= toInteger (maxBound :: Int16)
inWord16Range x = x >= toInteger (minBound :: Word16) &&
                  x <= toInteger (maxBound :: Word16)
inInt32Range x  = x >= toInteger (minBound :: Int32) &&
                  x <= toInteger (maxBound :: Int32)
inWord32Range x = x >= toInteger (minBound :: Word32) &&
                  x <= toInteger (maxBound :: Word32)
inInt64Range x  = x >= toInteger (minBound :: Int64) &&
                  x <= toInteger (maxBound :: Int64)
inWord64Range x = x >= toInteger (minBound :: Word64) &&
                  x <= toInteger (maxBound :: Word64)

inCharRange :: Char -> Bool
inCharRange c =  c >= '\0' && c <= chr tARGET_MAX_CHAR

-- | Tests whether the literal represents a zero of whatever type it is
isZeroLit :: Literal -> Bool
isZeroLit (LitNumber _ 0) = True
isZeroLit (LitFloat  0)   = True
isZeroLit (LitDouble 0)   = True
isZeroLit _               = False

-- | Returns the 'Integer' contained in the 'Literal', for when that makes
-- sense, i.e. for 'Char', 'Int', 'Word', 'LitInteger' and 'LitNatural'.
litValue  :: Literal -> Integer
litValue l = case isLitValue_maybe l of
   Just x  -> x
   Nothing -> pprPanic "litValue" (ppr l)

-- | Returns the 'Integer' contained in the 'Literal', for when that makes
-- sense, i.e. for 'Char' and numbers.
isLitValue_maybe  :: Literal -> Maybe Integer
isLitValue_maybe (LitChar   c)     = Just $ toInteger $ ord c
isLitValue_maybe (LitNumber _ i)   = Just i
isLitValue_maybe _                 = Nothing

-- | Apply a function to the 'Integer' contained in the 'Literal', for when that
-- makes sense, e.g. for 'Char' and numbers.
-- For fixed-size integral literals, the result will be wrapped in accordance
-- with the semantics of the target type.
-- See Note [Word/Int underflow/overflow]
mapLitValue  :: Platform -> (Integer -> Integer) -> Literal -> Literal
mapLitValue _        f (LitChar   c)      = mkLitChar (fchar c)
   where fchar = chr . fromInteger . f . toInteger . ord
mapLitValue platform f (LitNumber nt i)   = wrapLitNumber platform (LitNumber nt (f i))
mapLitValue _        _ l                  = pprPanic "mapLitValue" (ppr l)

{-
        Coercions
        ~~~~~~~~~
-}

narrow8IntLit, narrow16IntLit, narrow32IntLit,
  narrow8WordLit, narrow16WordLit, narrow32WordLit,
  int8Lit, int16Lit, int32Lit,
  word8Lit, word16Lit, word32Lit,
  charToIntLit, intToCharLit,
  floatToIntLit, intToFloatLit, doubleToIntLit, intToDoubleLit,
  floatToDoubleLit, doubleToFloatLit
  :: Literal -> Literal

wordToIntLit, intToWordLit :: Platform -> Literal -> Literal
wordToIntLit platform (LitNumber LitNumWord w)
  -- Map Word range [max_int+1, max_word]
  -- to Int range   [min_int  , -1]
  -- Range [0,max_int] has the same representation with both Int and Word
  | w > platformMaxInt platform = mkLitInt platform (w - platformMaxWord platform - 1)
  | otherwise                   = mkLitInt platform w
wordToIntLit _ l = pprPanic "wordToIntLit" (ppr l)

intToWordLit platform (LitNumber LitNumInt i)
  -- Map Int range [min_int  , -1]
  -- to Word range [max_int+1, max_word]
  -- Range [0,max_int] has the same representation with both Int and Word
  | i < 0     = mkLitWord platform (1 + platformMaxWord platform + i)
  | otherwise = mkLitWord platform i
intToWordLit _ l = pprPanic "intToWordLit" (ppr l)

-- | Narrow a literal number (unchecked result range)
narrowLit' :: forall a. Integral a => Proxy a -> LitNumType -> Literal -> Literal
narrowLit' _ nt' (LitNumber _ i)  = LitNumber nt' (toInteger (fromInteger i :: a))
narrowLit' _ _   l                = pprPanic "narrowLit" (ppr l)

narrow8IntLit   = narrowLit' (Proxy :: Proxy Int8)   LitNumInt
narrow16IntLit  = narrowLit' (Proxy :: Proxy Int16)  LitNumInt
narrow32IntLit  = narrowLit' (Proxy :: Proxy Int32)  LitNumInt
narrow8WordLit  = narrowLit' (Proxy :: Proxy Word8)  LitNumWord
narrow16WordLit = narrowLit' (Proxy :: Proxy Word16) LitNumWord
narrow32WordLit = narrowLit' (Proxy :: Proxy Word32) LitNumWord

narrowInt8Lit, narrowInt16Lit, narrowInt32Lit,
  narrowWord8Lit, narrowWord16Lit, narrowWord32Lit :: Literal -> Literal
narrowInt8Lit   = narrowLit' (Proxy :: Proxy Int8)   LitNumInt8
narrowInt16Lit  = narrowLit' (Proxy :: Proxy Int16)  LitNumInt16
narrowInt32Lit  = narrowLit' (Proxy :: Proxy Int32)  LitNumInt32
narrowWord8Lit  = narrowLit' (Proxy :: Proxy Word8)  LitNumWord8
narrowWord16Lit = narrowLit' (Proxy :: Proxy Word16) LitNumWord16
narrowWord32Lit = narrowLit' (Proxy :: Proxy Word32) LitNumWord32

-- | Extend a fixed-width literal (e.g. 'Int16#') to a word-sized literal (e.g.
-- 'Int#').
extendWordLit, extendIntLit :: Platform -> Literal -> Literal
extendWordLit platform (LitNumber _nt i)  = mkLitWord platform i
extendWordLit _platform l                 = pprPanic "extendWordLit" (ppr l)
extendIntLit  platform (LitNumber _nt i)  = mkLitInt platform i
extendIntLit  _platform l                 = pprPanic "extendIntLit" (ppr l)

int8Lit (LitNumber _ i)   = mkLitInt8 i
int8Lit l                 = pprPanic "int8Lit" (ppr l)
int16Lit (LitNumber _ i)  = mkLitInt16 i
int16Lit l                = pprPanic "int16Lit" (ppr l)
int32Lit (LitNumber _ i)  = mkLitInt32 i
int32Lit l                = pprPanic "int32Lit" (ppr l)
word8Lit (LitNumber _ i)  = mkLitWord8 i
word8Lit l                = pprPanic "word8Lit" (ppr l)
word16Lit (LitNumber _ i) = mkLitWord16 i
word16Lit l               = pprPanic "word16Lit" (ppr l)
word32Lit (LitNumber _ i) = mkLitWord32 i
word32Lit l               = pprPanic "word32Lit" (ppr l)

charToIntLit (LitChar c)       = mkLitIntUnchecked (toInteger (ord c))
charToIntLit l                 = pprPanic "charToIntLit" (ppr l)
intToCharLit (LitNumber _ i)   = LitChar (chr (fromInteger i))
intToCharLit l                 = pprPanic "intToCharLit" (ppr l)

floatToIntLit (LitFloat f)      = mkLitIntUnchecked (truncate f)
floatToIntLit l                 = pprPanic "floatToIntLit" (ppr l)
intToFloatLit (LitNumber _ i)   = LitFloat (fromInteger i)
intToFloatLit l                 = pprPanic "intToFloatLit" (ppr l)

doubleToIntLit (LitDouble f)     = mkLitIntUnchecked (truncate f)
doubleToIntLit l                 = pprPanic "doubleToIntLit" (ppr l)
intToDoubleLit (LitNumber _ i)   = LitDouble (fromInteger i)
intToDoubleLit l                 = pprPanic "intToDoubleLit" (ppr l)

floatToDoubleLit (LitFloat  f) = LitDouble f
floatToDoubleLit l             = pprPanic "floatToDoubleLit" (ppr l)
doubleToFloatLit (LitDouble d) = LitFloat  d
doubleToFloatLit l             = pprPanic "doubleToFloatLit" (ppr l)

nullAddrLit :: Literal
nullAddrLit = LitNullAddr

-- | A nonsense literal of type @forall (a :: 'TYPE' 'UnliftedRep'). a@.
rubbishLit :: Literal
rubbishLit = LitRubbish

{-
        Predicates
        ~~~~~~~~~~
-}

-- | True if there is absolutely no penalty to duplicating the literal.
-- False principally of strings.
--
-- "Why?", you say? I'm glad you asked. Well, for one duplicating strings would
-- blow up code sizes. Not only this, it's also unsafe.
--
-- Consider a program that wants to traverse a string. One way it might do this
-- is to first compute the Addr# pointing to the end of the string, and then,
-- starting from the beginning, bump a pointer using eqAddr# to determine the
-- end. For instance,
--
-- @
-- -- Given pointers to the start and end of a string, count how many zeros
-- -- the string contains.
-- countZeros :: Addr# -> Addr# -> -> Int
-- countZeros start end = go start 0
--   where
--     go off n
--       | off `addrEq#` end = n
--       | otherwise         = go (off `plusAddr#` 1) n'
--       where n' | isTrue# (indexInt8OffAddr# off 0# ==# 0#) = n + 1
--                | otherwise                                 = n
-- @
--
-- Consider what happens if we considered strings to be trivial (and therefore
-- duplicable) and emitted a call like @countZeros "hello"# ("hello"#
-- `plusAddr`# 5)@. The beginning and end pointers do not belong to the same
-- string, meaning that an iteration like the above would blow up terribly.
-- This is what happened in #12757.
--
-- Ultimately the solution here is to make primitive strings a bit more
-- structured, ensuring that the compiler can't inline in ways that will break
-- user code. One approach to this is described in #8472.
litIsTrivial :: Literal -> Bool
--      c.f. GHC.Core.Utils.exprIsTrivial
litIsTrivial (LitString _)    = False
litIsTrivial (LitNumber nt _) = case nt of
  LitNumInteger -> False
  LitNumNatural -> False
  LitNumInt     -> True
  LitNumInt8    -> True
  LitNumInt16   -> True
  LitNumInt32   -> True
  LitNumInt64   -> True
  LitNumWord    -> True
  LitNumWord8   -> True
  LitNumWord16  -> True
  LitNumWord32  -> True
  LitNumWord64  -> True
litIsTrivial _                  = True

-- | True if code space does not go bad if we duplicate this literal
litIsDupable :: Platform -> Literal -> Bool
--      c.f. GHC.Core.Utils.exprIsDupable
litIsDupable platform x = case x of
   (LitNumber nt i) -> case nt of
      LitNumInteger -> platformInIntRange platform i
      LitNumNatural -> platformInWordRange platform i
      LitNumInt     -> True
      LitNumInt8    -> True
      LitNumInt16   -> True
      LitNumInt32   -> True
      LitNumInt64   -> True
      LitNumWord    -> True
      LitNumWord8   -> True
      LitNumWord16  -> True
      LitNumWord32  -> True
      LitNumWord64  -> True
   (LitString _) -> False
   _             -> True

litFitsInChar :: Literal -> Bool
litFitsInChar (LitNumber _ i) = i >= toInteger (ord minBound)
                              && i <= toInteger (ord maxBound)
litFitsInChar _               = False

litIsLifted :: Literal -> Bool
litIsLifted (LitNumber nt _) = case nt of
  LitNumInteger -> True
  LitNumNatural -> True
  LitNumInt     -> False
  LitNumInt8    -> False
  LitNumInt16   -> False
  LitNumInt32   -> False
  LitNumInt64   -> False
  LitNumWord    -> False
  LitNumWord8   -> False
  LitNumWord16  -> False
  LitNumWord32  -> False
  LitNumWord64  -> False
litIsLifted _                  = False

{-
        Types
        ~~~~~
-}

-- | Find the Haskell 'Type' the literal occupies
literalType :: Literal -> Type
literalType LitNullAddr       = addrPrimTy
literalType (LitChar _)       = charPrimTy
literalType (LitString  _)    = addrPrimTy
literalType (LitFloat _)      = floatPrimTy
literalType (LitDouble _)     = doublePrimTy
literalType (LitLabel _ _ _)  = addrPrimTy
literalType (LitNumber lt _)  = case lt of
   LitNumInteger -> integerTy
   LitNumNatural -> naturalTy
   LitNumInt     -> intPrimTy
   LitNumInt8    -> int8PrimTy
   LitNumInt16   -> int16PrimTy
   LitNumInt32   -> int32PrimTy
   LitNumInt64   -> int64PrimTy
   LitNumWord    -> wordPrimTy
   LitNumWord8   -> word8PrimTy
   LitNumWord16  -> word16PrimTy
   LitNumWord32  -> word32PrimTy
   LitNumWord64  -> word64PrimTy
literalType (LitRubbish)      = mkForAllTy a Inferred (mkTyVarTy a)
  where
    a = alphaTyVarUnliftedRep

absentLiteralOf :: TyCon -> Maybe Literal
-- Return a literal of the appropriate primitive
-- TyCon, to use as a placeholder when it doesn't matter
-- Rubbish literals are handled in GHC.Core.Opt.WorkWrap.Utils, because
--  1. Looking at the TyCon is not enough, we need the actual type
--  2. This would need to return a type application to a literal
absentLiteralOf tc = lookupUFM absent_lits tc

-- We do not use TyConEnv here to avoid import cycles.
absent_lits :: UniqFM TyCon Literal
absent_lits = listToUFM_Directly
                        -- Explicitly construct the mape from the known
                        -- keys of these tyCons.
                        [ (addrPrimTyConKey,    LitNullAddr)
                        , (charPrimTyConKey,    LitChar 'x')
                        , (intPrimTyConKey,     mkLitIntUnchecked 0)
                        , (int64PrimTyConKey,   mkLitInt64Unchecked 0)
                        , (wordPrimTyConKey,    mkLitWordUnchecked 0)
                        , (word64PrimTyConKey,  mkLitWord64Unchecked 0)
                        , (floatPrimTyConKey,   LitFloat 0)
                        , (doublePrimTyConKey,  LitDouble 0)
                        ]

{-
        Comparison
        ~~~~~~~~~~
-}

cmpLit :: Literal -> Literal -> Ordering
cmpLit (LitChar      a)     (LitChar       b)     = a `compare` b
cmpLit (LitString    a)     (LitString     b)     = a `compare` b
cmpLit (LitNullAddr)        (LitNullAddr)         = EQ
cmpLit (LitFloat     a)     (LitFloat      b)     = a `compare` b
cmpLit (LitDouble    a)     (LitDouble     b)     = a `compare` b
cmpLit (LitLabel     a _ _) (LitLabel      b _ _) = a `uniqCompareFS` b
cmpLit (LitNumber nt1 a)    (LitNumber nt2  b)
  | nt1 == nt2 = a   `compare` b
  | otherwise  = nt1 `compare` nt2
cmpLit (LitRubbish)         (LitRubbish)          = EQ
cmpLit lit1 lit2
  | litTag lit1 < litTag lit2 = LT
  | otherwise                 = GT

litTag :: Literal -> Int
litTag (LitChar      _)   = 1
litTag (LitString    _)   = 2
litTag (LitNullAddr)      = 3
litTag (LitFloat     _)   = 4
litTag (LitDouble    _)   = 5
litTag (LitLabel _ _ _)   = 6
litTag (LitNumber  {})    = 7
litTag (LitRubbish)       = 8

{-
        Printing
        ~~~~~~~~
* See Note [Printing of literals in Core]
-}

pprLiteral :: (SDoc -> SDoc) -> Literal -> SDoc
pprLiteral _       (LitChar c)     = pprPrimChar c
pprLiteral _       (LitString s)   = pprHsBytes s
pprLiteral _       (LitNullAddr)   = text "__NULL"
pprLiteral _       (LitFloat f)    = float (fromRat f) <> primFloatSuffix
pprLiteral _       (LitDouble d)   = double (fromRat d) <> primDoubleSuffix
pprLiteral add_par (LitNumber nt i)
   = case nt of
       LitNumInteger -> pprIntegerVal add_par i
       LitNumNatural -> pprIntegerVal add_par i
       LitNumInt     -> pprPrimInt i
       LitNumInt8    -> pprPrimInt8 i
       LitNumInt16   -> pprPrimInt16 i
       LitNumInt32   -> pprPrimInt32 i
       LitNumInt64   -> pprPrimInt64 i
       LitNumWord    -> pprPrimWord i
       LitNumWord8   -> pprPrimWord8 i
       LitNumWord16  -> pprPrimWord16 i
       LitNumWord32  -> pprPrimWord32 i
       LitNumWord64  -> pprPrimWord64 i
pprLiteral add_par (LitLabel l mb fod) =
    add_par (text "__label" <+> b <+> ppr fod)
    where b = case mb of
              Nothing -> pprHsString l
              Just x  -> doubleQuotes (text (unpackFS l ++ '@':show x))
pprLiteral _       (LitRubbish)     = text "__RUBBISH"

pprIntegerVal :: (SDoc -> SDoc) -> Integer -> SDoc
-- See Note [Printing of literals in Core].
pprIntegerVal add_par i | i < 0     = add_par (integer i)
                        | otherwise = integer i

{-
Note [Printing of literals in Core]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function `add_par` is used to wrap parenthesis around negative integers
(`LitInteger`) and labels (`LitLabel`), if they occur in a context requiring
an atomic thing (for example function application).

Although not all Core literals would be valid Haskell, we are trying to stay
as close as possible to Haskell syntax in the printing of Core, to make it
easier for a Haskell user to read Core.

To that end:
  * We do print parenthesis around negative `LitInteger`, because we print
  `LitInteger` using plain number literals (no prefix or suffix), and plain
  number literals in Haskell require parenthesis in contexts like function
  application (i.e. `1 - -1` is not valid Haskell).

  * We don't print parenthesis around other (negative) literals, because they
  aren't needed in GHC/Haskell either (i.e. `1# -# -1#` is accepted by GHC's
  parser).

Literal         Output             Output if context requires
                                   an atom (if different)
-------         -------            ----------------------
LitChar         'a'#
LitString       "aaa"#
LitNullAddr     "__NULL"
LitInt          -1#
LitInt64        -1L#
LitWord          1##
LitWord64        1L##
LitFloat        -1.0#
LitDouble       -1.0##
LitInteger      -1                 (-1)
LitLabel        "__label" ...      ("__label" ...)
LitRubbish      "__RUBBISH"

Note [Rubbish literals]
~~~~~~~~~~~~~~~~~~~~~~~
During worker/wrapper after demand analysis, where an argument
is unused (absent) we do the following w/w split (supposing that
y is absent):

  f x y z = e
===>
  f x y z = $wf x z
  $wf x z = let y = <absent value>
            in e

Usually the binding for y is ultimately optimised away, and
even if not it should never be evaluated -- but that's the
way the w/w split starts off.

What is <absent value>?
* For lifted values <absent value> can be a call to 'error'.
* For primitive types like Int# or Word# we can use any random
  value of that type.
* But what about /unlifted/ but /boxed/ types like MutVar# or
  Array#?   We need a literal value of that type.

That is 'LitRubbish'.  Since we need a rubbish literal for
many boxed, unlifted types, we say that LitRubbish has type
  LitRubbish :: forall (a :: TYPE UnliftedRep). a

So we might see a w/w split like
  $wf x z = let y :: Array# Int = LitRubbish @(Array# Int)
            in e

Recall that (TYPE UnliftedRep) is the kind of boxed, unlifted
heap pointers.

Here are the moving parts:

* We define LitRubbish as a constructor in GHC.Types.Literal.Literal

* It is given its polymorphic type by Literal.literalType

* GHC.Core.Opt.WorkWrap.Utils.mk_absent_let introduces a LitRubbish for absent
  arguments of boxed, unlifted type.

* In CoreToSTG we convert (RubishLit @t) to just ().  STG is
  untyped, so it doesn't matter that it points to a lifted
  value. The important thing is that it is a heap pointer,
  which the garbage collector can follow if it encounters it.

  We considered maintaining LitRubbish in STG, and lowering
  it in the code generators, but it seems simpler to do it
  once and for all in CoreToSTG.

  In GHC.ByteCode.Asm we just lower it as a 0 literal, because
  it's all boxed and lifted to the host GC anyway.
-}