summaryrefslogtreecommitdiff
path: root/compiler/GHC/Types/Unique/FM.hs
blob: 265345e2ec93f7772527c7ad12a2df5ec6bb1e3f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1994-1998


UniqFM: Specialised finite maps, for things with @Uniques@.

Basically, the things need to be in class @Uniquable@, and we use the
@getUnique@ method to grab their @Uniques@.

(A similar thing to @UniqSet@, as opposed to @Set@.)

The interface is based on @FiniteMap@s, but the implementation uses
@Data.IntMap@, which is both maintained and faster than the past
implementation (see commit log).

The @UniqFM@ interface maps directly to Data.IntMap, only
``Data.IntMap.union'' is left-biased and ``plusUFM'' right-biased
and ``addToUFM\_C'' and ``Data.IntMap.insertWith'' differ in the order
of arguments of combining function.
-}

{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wall #-}

module GHC.Types.Unique.FM (
        -- * Unique-keyed mappings
        UniqFM,           -- abstract type
        NonDetUniqFM(..), -- wrapper for opting into nondeterminism

        -- ** Manipulating those mappings
        emptyUFM,
        unitUFM,
        unitDirectlyUFM,
        zipToUFM,
        listToUFM,
        listToUFM_Directly,
        listToUFM_C,
        listToIdentityUFM,
        addToUFM,addToUFM_C,addToUFM_Acc,
        addListToUFM,addListToUFM_C,
        addToUFM_Directly,
        addListToUFM_Directly,
        adjustUFM, alterUFM,
        adjustUFM_Directly,
        delFromUFM,
        delFromUFM_Directly,
        delListFromUFM,
        delListFromUFM_Directly,
        plusUFM,
        plusUFM_C,
        plusUFM_CD,
        plusUFM_CD2,
        mergeUFM,
        plusMaybeUFM_C,
        plusUFMList,
        sequenceUFMList,
        minusUFM,
        minusUFM_C,
        intersectUFM,
        intersectUFM_C,
        disjointUFM,
        equalKeysUFM,
        nonDetStrictFoldUFM, foldUFM, nonDetStrictFoldUFM_DirectlyM,
        anyUFM, allUFM, seqEltsUFM,
        mapUFM, mapUFM_Directly,
        mapMaybeUFM,
        elemUFM, elemUFM_Directly,
        filterUFM, filterUFM_Directly, partitionUFM,
        sizeUFM,
        isNullUFM,
        lookupUFM, lookupUFM_Directly,
        lookupWithDefaultUFM, lookupWithDefaultUFM_Directly,
        nonDetEltsUFM, nonDetKeysUFM,
        ufmToSet_Directly,
        nonDetUFMToList, ufmToIntMap, unsafeIntMapToUFM,
        unsafeCastUFMKey,
        pprUniqFM, pprUFM, pprUFMWithKeys, pluralUFM
    ) where

import GHC.Prelude

import GHC.Types.Unique ( Uniquable(..), Unique, getKey )
import GHC.Utils.Outputable
import GHC.Utils.Panic.Plain
import qualified Data.IntMap as M
import qualified Data.IntMap.Strict as MS
import qualified Data.IntSet as S
import Data.Data
import qualified Data.Semigroup as Semi
import Data.Functor.Classes (Eq1 (..))
import Data.Coerce

-- | A finite map from @uniques@ of one type to
-- elements in another type.
--
-- The key is just here to keep us honest. It's always safe
-- to use a single type as key.
-- If two types don't overlap in their uniques it's also safe
-- to index the same map at multiple key types. But this is
-- very much discouraged.
newtype UniqFM key ele = UFM (M.IntMap ele)
  deriving (Data, Eq, Functor)
  -- Nondeterministic Foldable and Traversable instances are accessible through
  -- use of the 'NonDetUniqFM' wrapper.
  -- See Note [Deterministic UniqFM] in GHC.Types.Unique.DFM to learn about determinism.

emptyUFM :: UniqFM key elt
emptyUFM = UFM M.empty

isNullUFM :: UniqFM key elt -> Bool
isNullUFM (UFM m) = M.null m

unitUFM :: Uniquable key => key -> elt -> UniqFM key elt
unitUFM k v = UFM (M.singleton (getKey $ getUnique k) v)

-- when you've got the Unique already
unitDirectlyUFM :: Unique -> elt -> UniqFM key elt
unitDirectlyUFM u v = UFM (M.singleton (getKey u) v)

-- zipToUFM ks vs = listToUFM (zip ks vs)
-- This function exists because it's a common case (#18535), and
-- it's inefficient to first build a list of pairs, and then immediately
-- take it apart. Astonishingly, fusing this one list away reduces total
-- compiler allocation by more than 10% (in T12545, see !3935)
-- Note that listToUFM (zip ks vs) performs similarly, but
-- the explicit recursion avoids relying too much on fusion.
zipToUFM :: Uniquable key => [key] -> [elt] -> UniqFM key elt
zipToUFM ks vs = assert (length ks == length vs ) innerZip emptyUFM ks vs
  where
    innerZip ufm (k:kList) (v:vList) = innerZip (addToUFM ufm k v) kList vList
    innerZip ufm _ _ = ufm

listToUFM :: Uniquable key => [(key,elt)] -> UniqFM key elt
listToUFM = foldl' (\m (k, v) -> addToUFM m k v) emptyUFM

listToUFM_Directly :: [(Unique, elt)] -> UniqFM key elt
listToUFM_Directly = foldl' (\m (u, v) -> addToUFM_Directly m u v) emptyUFM

listToIdentityUFM :: Uniquable key => [key] -> UniqFM key key
listToIdentityUFM = foldl' (\m x -> addToUFM m x x) emptyUFM

listToUFM_C
  :: Uniquable key
  => (elt -> elt -> elt)
  -> [(key, elt)]
  -> UniqFM key elt
listToUFM_C f = foldl' (\m (k, v) -> addToUFM_C f m k v) emptyUFM

addToUFM :: Uniquable key => UniqFM key elt -> key -> elt  -> UniqFM key elt
addToUFM (UFM m) k v = UFM (M.insert (getKey $ getUnique k) v m)

addListToUFM :: Uniquable key => UniqFM key elt -> [(key,elt)] -> UniqFM key elt
addListToUFM = foldl' (\m (k, v) -> addToUFM m k v)

addListToUFM_Directly :: UniqFM key elt -> [(Unique,elt)] -> UniqFM key elt
addListToUFM_Directly = foldl' (\m (k, v) -> addToUFM_Directly m k v)

addToUFM_Directly :: UniqFM key elt -> Unique -> elt -> UniqFM key elt
addToUFM_Directly (UFM m) u v = UFM (M.insert (getKey u) v m)

addToUFM_C
  :: Uniquable key
  => (elt -> elt -> elt)  -- old -> new -> result
  -> UniqFM key elt           -- old
  -> key -> elt           -- new
  -> UniqFM key elt           -- result
-- Arguments of combining function of M.insertWith and addToUFM_C are flipped.
addToUFM_C f (UFM m) k v =
  UFM (M.insertWith (flip f) (getKey $ getUnique k) v m)

addToUFM_Acc
  :: Uniquable key
  => (elt -> elts -> elts)  -- Add to existing
  -> (elt -> elts)          -- New element
  -> UniqFM key elts            -- old
  -> key -> elt             -- new
  -> UniqFM key elts            -- result
addToUFM_Acc exi new (UFM m) k v =
  UFM (M.insertWith (\_new old -> exi v old) (getKey $ getUnique k) (new v) m)

alterUFM
  :: Uniquable key
  => (Maybe elt -> Maybe elt)  -- How to adjust
  -> UniqFM key elt                -- old
  -> key                       -- new
  -> UniqFM key elt                -- result
alterUFM f (UFM m) k = UFM (M.alter f (getKey $ getUnique k) m)

-- | Add elements to the map, combining existing values with inserted ones using
-- the given function.
addListToUFM_C
  :: Uniquable key
  => (elt -> elt -> elt)
  -> UniqFM key elt -> [(key,elt)]
  -> UniqFM key elt
addListToUFM_C f = foldl' (\m (k, v) -> addToUFM_C f m k v)

adjustUFM :: Uniquable key => (elt -> elt) -> UniqFM key elt -> key -> UniqFM key elt
adjustUFM f (UFM m) k = UFM (M.adjust f (getKey $ getUnique k) m)

adjustUFM_Directly :: (elt -> elt) -> UniqFM key elt -> Unique -> UniqFM key elt
adjustUFM_Directly f (UFM m) u = UFM (M.adjust f (getKey u) m)

delFromUFM :: Uniquable key => UniqFM key elt -> key    -> UniqFM key elt
delFromUFM (UFM m) k = UFM (M.delete (getKey $ getUnique k) m)

delListFromUFM :: Uniquable key => UniqFM key elt -> [key] -> UniqFM key elt
delListFromUFM = foldl' delFromUFM

delListFromUFM_Directly :: UniqFM key elt -> [Unique] -> UniqFM key elt
delListFromUFM_Directly = foldl' delFromUFM_Directly

delFromUFM_Directly :: UniqFM key elt -> Unique -> UniqFM key elt
delFromUFM_Directly (UFM m) u = UFM (M.delete (getKey u) m)

-- Bindings in right argument shadow those in the left
plusUFM :: UniqFM key elt -> UniqFM key elt -> UniqFM key elt
-- M.union is left-biased, plusUFM should be right-biased.
plusUFM (UFM x) (UFM y) = UFM (M.union y x)
     -- Note (M.union y x), with arguments flipped
     -- M.union is left-biased, plusUFM should be right-biased.

plusUFM_C :: (elt -> elt -> elt) -> UniqFM key elt -> UniqFM key elt -> UniqFM key elt
plusUFM_C f (UFM x) (UFM y) = UFM (M.unionWith f x y)

-- | `plusUFM_CD f m1 d1 m2 d2` merges the maps using `f` as the
-- combinding function and `d1` resp. `d2` as the default value if
-- there is no entry in `m1` reps. `m2`. The domain is the union of
-- the domains of `m1` and `m2`.
--
-- IMPORTANT NOTE: This function strictly applies the modification function
-- and forces the result unlike most the other functions in this module.
--
-- Representative example:
--
-- @
-- plusUFM_CD f {A: 1, B: 2} 23 {B: 3, C: 4} 42
--    == {A: f 1 42, B: f 2 3, C: f 23 4 }
-- @
{-# INLINE plusUFM_CD #-}
plusUFM_CD
  :: (elta -> eltb -> eltc)
  -> UniqFM key elta  -- map X
  -> elta         -- default for X
  -> UniqFM key eltb  -- map Y
  -> eltb         -- default for Y
  -> UniqFM key eltc
plusUFM_CD f (UFM xm) dx (UFM ym) dy
  = UFM $ MS.mergeWithKey
      (\_ x y -> Just (x `f` y))
      (MS.map (\x -> x `f` dy))
      (MS.map (\y -> dx `f` y))
      xm ym

-- | `plusUFM_CD2 f m1 m2` merges the maps using `f` as the combining
-- function. Unlike `plusUFM_CD`, a missing value is not defaulted: it is
-- instead passed as `Nothing` to `f`. `f` can never have both its arguments
-- be `Nothing`.
--
-- IMPORTANT NOTE: This function strictly applies the modification function
-- and forces the result.
--
-- `plusUFM_CD2 f m1 m2` is the same as `plusUFM_CD f (mapUFM Just m1) Nothing
-- (mapUFM Just m2) Nothing`.
plusUFM_CD2
  :: (Maybe elta -> Maybe eltb -> eltc)
  -> UniqFM key elta  -- map X
  -> UniqFM key eltb  -- map Y
  -> UniqFM key eltc
plusUFM_CD2 f (UFM xm) (UFM ym)
  = UFM $ MS.mergeWithKey
      (\_ x y -> Just (Just x `f` Just y))
      (MS.map (\x -> Just x `f` Nothing))
      (MS.map (\y -> Nothing `f` Just y))
      xm ym

mergeUFM
  :: (elta -> eltb -> Maybe eltc)
  -> (UniqFM key elta -> UniqFM key eltc)  -- map X
  -> (UniqFM key eltb -> UniqFM key eltc) -- map Y
  -> UniqFM key elta
  -> UniqFM key eltb
  -> UniqFM key eltc
mergeUFM f g h (UFM xm) (UFM ym)
  = UFM $ MS.mergeWithKey
      (\_ x y -> (x `f` y))
      (coerce g)
      (coerce h)
      xm ym

plusMaybeUFM_C :: (elt -> elt -> Maybe elt)
               -> UniqFM key elt -> UniqFM key elt -> UniqFM key elt
plusMaybeUFM_C f (UFM xm) (UFM ym)
    = UFM $ M.mergeWithKey
        (\_ x y -> x `f` y)
        id
        id
        xm ym

plusUFMList :: [UniqFM key elt] -> UniqFM key elt
plusUFMList = foldl' plusUFM emptyUFM

sequenceUFMList :: forall key elt. [UniqFM key elt] -> UniqFM key [elt]
sequenceUFMList = foldr (plusUFM_CD2 cons) emptyUFM
  where
    cons :: Maybe elt -> Maybe [elt] -> [elt]
    cons (Just x) (Just ys) = x : ys
    cons Nothing  (Just ys) = ys
    cons (Just x) Nothing   = [x]
    cons Nothing  Nothing   = []

minusUFM :: UniqFM key elt1 -> UniqFM key elt2 -> UniqFM key elt1
minusUFM (UFM x) (UFM y) = UFM (M.difference x y)

-- | @minusUFC_C f map1 map2@ returns @map1@, except that every mapping @key
-- |-> value1@ in @map1@ that shares a key with a mapping @key |-> value2@ in
-- @map2@ is altered by @f@: @value1@ is replaced by @f value1 value2@, where
-- 'Just' means that the new value is used and 'Nothing' means that the mapping
-- is deleted.
minusUFM_C :: (elt1 -> elt2 -> Maybe elt1) -> UniqFM key elt1 -> UniqFM key elt2 -> UniqFM key elt1
minusUFM_C f (UFM x) (UFM y) = UFM (M.differenceWith f x y)

intersectUFM :: UniqFM key elt1 -> UniqFM key elt2 -> UniqFM key elt1
intersectUFM (UFM x) (UFM y) = UFM (M.intersection x y)

intersectUFM_C
  :: (elt1 -> elt2 -> elt3)
  -> UniqFM key elt1
  -> UniqFM key elt2
  -> UniqFM key elt3
intersectUFM_C f (UFM x) (UFM y) = UFM (M.intersectionWith f x y)

disjointUFM :: UniqFM key elt1 -> UniqFM key elt2 -> Bool
disjointUFM (UFM x) (UFM y) = M.disjoint x y

foldUFM :: (elt -> a -> a) -> a -> UniqFM key elt -> a
foldUFM k z (UFM m) = M.foldr k z m

mapUFM :: (elt1 -> elt2) -> UniqFM key elt1 -> UniqFM key elt2
mapUFM f (UFM m) = UFM (M.map f m)

mapMaybeUFM :: (elt1 -> Maybe elt2) -> UniqFM key elt1 -> UniqFM key elt2
mapMaybeUFM f (UFM m) = UFM (M.mapMaybe f m)

mapUFM_Directly :: (Unique -> elt1 -> elt2) -> UniqFM key elt1 -> UniqFM key elt2
mapUFM_Directly f (UFM m) = UFM (M.mapWithKey (f . getUnique) m)

filterUFM :: (elt -> Bool) -> UniqFM key elt -> UniqFM key elt
filterUFM p (UFM m) = UFM (M.filter p m)

filterUFM_Directly :: (Unique -> elt -> Bool) -> UniqFM key elt -> UniqFM key elt
filterUFM_Directly p (UFM m) = UFM (M.filterWithKey (p . getUnique) m)

partitionUFM :: (elt -> Bool) -> UniqFM key elt -> (UniqFM key elt, UniqFM key elt)
partitionUFM p (UFM m) =
  case M.partition p m of
    (left, right) -> (UFM left, UFM right)

sizeUFM :: UniqFM key elt -> Int
sizeUFM (UFM m) = M.size m

elemUFM :: Uniquable key => key -> UniqFM key elt -> Bool
elemUFM k (UFM m) = M.member (getKey $ getUnique k) m

elemUFM_Directly :: Unique -> UniqFM key elt -> Bool
elemUFM_Directly u (UFM m) = M.member (getKey u) m

lookupUFM :: Uniquable key => UniqFM key elt -> key -> Maybe elt
lookupUFM (UFM m) k = M.lookup (getKey $ getUnique k) m

-- when you've got the Unique already
lookupUFM_Directly :: UniqFM key elt -> Unique -> Maybe elt
lookupUFM_Directly (UFM m) u = M.lookup (getKey u) m

lookupWithDefaultUFM :: Uniquable key => UniqFM key elt -> elt -> key -> elt
lookupWithDefaultUFM (UFM m) v k = M.findWithDefault v (getKey $ getUnique k) m

lookupWithDefaultUFM_Directly :: UniqFM key elt -> elt -> Unique -> elt
lookupWithDefaultUFM_Directly (UFM m) v u = M.findWithDefault v (getKey u) m

ufmToSet_Directly :: UniqFM key elt -> S.IntSet
ufmToSet_Directly (UFM m) = M.keysSet m

anyUFM :: (elt -> Bool) -> UniqFM key elt -> Bool
anyUFM p (UFM m) = M.foldr ((||) . p) False m

allUFM :: (elt -> Bool) -> UniqFM key elt -> Bool
allUFM p (UFM m) = M.foldr ((&&) . p) True m

seqEltsUFM :: (elt -> ()) -> UniqFM key elt -> ()
seqEltsUFM seqElt = foldUFM (\v rest -> seqElt v `seq` rest) ()

-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetEltsUFM :: UniqFM key elt -> [elt]
nonDetEltsUFM (UFM m) = M.elems m

-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetKeysUFM :: UniqFM key elt -> [Unique]
nonDetKeysUFM (UFM m) = map getUnique $ M.keys m

-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetStrictFoldUFM :: (elt -> a -> a) -> a -> UniqFM key elt -> a
nonDetStrictFoldUFM k z (UFM m) = M.foldl' (flip k) z m

-- | In essence foldM
-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
{-# INLINE nonDetStrictFoldUFM_DirectlyM #-} -- Allow specialization
nonDetStrictFoldUFM_DirectlyM :: (Monad m) => (Unique -> b -> elt -> m b) -> b -> UniqFM key elt -> m b
nonDetStrictFoldUFM_DirectlyM f z0 (UFM xs) = M.foldrWithKey c return xs z0
  -- See Note [List fusion and continuations in 'c']
  where c u x k z = f (getUnique u) z x >>= k
        {-# INLINE c #-}

-- See Note [Deterministic UniqFM] to learn about nondeterminism.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
nonDetUFMToList :: UniqFM key elt -> [(Unique, elt)]
nonDetUFMToList (UFM m) = map (\(k, v) -> (getUnique k, v)) $ M.toList m

-- | A wrapper around 'UniqFM' with the sole purpose of informing call sites
-- that the provided 'Foldable' and 'Traversable' instances are
-- nondeterministic.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
-- See Note [Deterministic UniqFM] in "GHC.Types.Unique.DFM" to learn about determinism.
newtype NonDetUniqFM key ele = NonDetUniqFM { getNonDet :: UniqFM key ele }
  deriving (Functor)

-- | Inherently nondeterministic.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
-- See Note [Deterministic UniqFM] in "GHC.Types.Unique.DFM" to learn about determinism.
instance forall key. Foldable (NonDetUniqFM key) where
  foldr f z (NonDetUniqFM (UFM m)) = foldr f z m

-- | Inherently nondeterministic.
-- If you use this please provide a justification why it doesn't introduce
-- nondeterminism.
-- See Note [Deterministic UniqFM] in "GHC.Types.Unique.DFM" to learn about determinism.
instance forall key. Traversable (NonDetUniqFM key) where
  traverse f (NonDetUniqFM (UFM m)) = NonDetUniqFM . UFM <$> traverse f m

ufmToIntMap :: UniqFM key elt -> M.IntMap elt
ufmToIntMap (UFM m) = m

unsafeIntMapToUFM :: M.IntMap elt -> UniqFM key elt
unsafeIntMapToUFM = UFM

-- | Cast the key domain of a UniqFM.
--
-- As long as the domains don't overlap in their uniques
-- this is safe.
unsafeCastUFMKey :: UniqFM key1 elt -> UniqFM key2 elt
unsafeCastUFMKey (UFM m) = UFM m

-- Determines whether two 'UniqFM's contain the same keys.
equalKeysUFM :: UniqFM key a -> UniqFM key b -> Bool
equalKeysUFM (UFM m1) (UFM m2) = liftEq (\_ _ -> True) m1 m2

-- Instances

instance Semi.Semigroup (UniqFM key a) where
  (<>) = plusUFM

instance Monoid (UniqFM key a) where
    mempty = emptyUFM
    mappend = (Semi.<>)

-- Output-ery

instance Outputable a => Outputable (UniqFM key a) where
    ppr ufm = pprUniqFM ppr ufm

pprUniqFM :: (a -> SDoc) -> UniqFM key a -> SDoc
pprUniqFM ppr_elt ufm
  = brackets $ fsep $ punctuate comma $
    [ ppr uq <+> text ":->" <+> ppr_elt elt
    | (uq, elt) <- nonDetUFMToList ufm ]
  -- It's OK to use nonDetUFMToList here because we only use it for
  -- pretty-printing.

-- | Pretty-print a non-deterministic set.
-- The order of variables is non-deterministic and for pretty-printing that
-- shouldn't be a problem.
-- Having this function helps contain the non-determinism created with
-- nonDetEltsUFM.
pprUFM :: UniqFM key a      -- ^ The things to be pretty printed
       -> ([a] -> SDoc) -- ^ The pretty printing function to use on the elements
       -> SDoc          -- ^ 'SDoc' where the things have been pretty
                        -- printed
pprUFM ufm pp = pp (nonDetEltsUFM ufm)

-- | Pretty-print a non-deterministic set.
-- The order of variables is non-deterministic and for pretty-printing that
-- shouldn't be a problem.
-- Having this function helps contain the non-determinism created with
-- nonDetUFMToList.
pprUFMWithKeys
       :: UniqFM key a                -- ^ The things to be pretty printed
       -> ([(Unique, a)] -> SDoc) -- ^ The pretty printing function to use on the elements
       -> SDoc                    -- ^ 'SDoc' where the things have been pretty
                                  -- printed
pprUFMWithKeys ufm pp = pp (nonDetUFMToList ufm)

-- | Determines the pluralisation suffix appropriate for the length of a set
-- in the same way that plural from Outputable does for lists.
pluralUFM :: UniqFM key a -> SDoc
pluralUFM ufm
  | sizeUFM ufm == 1 = empty
  | otherwise = char 's'