1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
|
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
--
-- (c) The University of Glasgow 2002-2006
--
-- Binary I/O library, with special tweaks for GHC
--
-- Based on the nhc98 Binary library, which is copyright
-- (c) Malcolm Wallace and Colin Runciman, University of York, 1998.
-- Under the terms of the license for that software, we must tell you
-- where you can obtain the original version of the Binary library, namely
-- http://www.cs.york.ac.uk/fp/nhc98/
module GHC.Utils.Binary
( {-type-} Bin,
{-class-} Binary(..),
{-type-} BinHandle,
SymbolTable, Dictionary,
BinData(..), dataHandle, handleData,
openBinMem,
-- closeBin,
seekBin,
tellBin,
castBin,
withBinBuffer,
writeBinMem,
readBinMem,
putAt, getAt,
-- * For writing instances
putByte,
getByte,
-- * Variable length encodings
putULEB128,
getULEB128,
putSLEB128,
getSLEB128,
-- * Fixed length encoding
FixedLengthEncoding(..),
-- * Lazy Binary I/O
lazyGet,
lazyPut,
-- * User data
UserData(..), getUserData, setUserData,
newReadState, newWriteState,
putDictionary, getDictionary, putFS,
) where
#include "HsVersions.h"
import GHC.Prelude
import {-# SOURCE #-} GHC.Types.Name (Name)
import GHC.Data.FastString
import GHC.Utils.Panic.Plain
import GHC.Types.Unique.FM
import GHC.Data.FastMutInt
import GHC.Utils.Fingerprint
import GHC.Types.Basic
import GHC.Types.SrcLoc
import Control.DeepSeq
import Foreign
import Data.Array
import Data.ByteString (ByteString)
import qualified Data.ByteString.Internal as BS
import qualified Data.ByteString.Unsafe as BS
import Data.IORef
import Data.Char ( ord, chr )
import Data.Time
import Data.List (unfoldr)
import Type.Reflection
import Type.Reflection.Unsafe
import Data.Kind (Type)
import GHC.Exts (TYPE, RuntimeRep(..), VecCount(..), VecElem(..))
import Control.Monad ( when, (<$!>), unless )
import System.IO as IO
import System.IO.Unsafe ( unsafeInterleaveIO )
import System.IO.Error ( mkIOError, eofErrorType )
import GHC.Real ( Ratio(..) )
import GHC.Serialized
type BinArray = ForeignPtr Word8
---------------------------------------------------------------
-- BinData
---------------------------------------------------------------
data BinData = BinData Int BinArray
instance NFData BinData where
rnf (BinData sz _) = rnf sz
instance Binary BinData where
put_ bh (BinData sz dat) = do
put_ bh sz
putPrim bh sz $ \dest ->
withForeignPtr dat $ \orig ->
copyBytes dest orig sz
--
get bh = do
sz <- get bh
dat <- mallocForeignPtrBytes sz
getPrim bh sz $ \orig ->
withForeignPtr dat $ \dest ->
copyBytes dest orig sz
return (BinData sz dat)
dataHandle :: BinData -> IO BinHandle
dataHandle (BinData size bin) = do
ixr <- newFastMutInt
szr <- newFastMutInt
writeFastMutInt ixr 0
writeFastMutInt szr size
binr <- newIORef bin
return (BinMem noUserData ixr szr binr)
handleData :: BinHandle -> IO BinData
handleData (BinMem _ ixr _ binr) = BinData <$> readFastMutInt ixr <*> readIORef binr
---------------------------------------------------------------
-- BinHandle
---------------------------------------------------------------
data BinHandle
= BinMem { -- binary data stored in an unboxed array
bh_usr :: UserData, -- sigh, need parameterized modules :-)
_off_r :: !FastMutInt, -- the current offset
_sz_r :: !FastMutInt, -- size of the array (cached)
_arr_r :: !(IORef BinArray) -- the array (bounds: (0,size-1))
}
-- XXX: should really store a "high water mark" for dumping out
-- the binary data to a file.
getUserData :: BinHandle -> UserData
getUserData bh = bh_usr bh
setUserData :: BinHandle -> UserData -> BinHandle
setUserData bh us = bh { bh_usr = us }
-- | Get access to the underlying buffer.
--
-- It is quite important that no references to the 'ByteString' leak out of the
-- continuation lest terrible things happen.
withBinBuffer :: BinHandle -> (ByteString -> IO a) -> IO a
withBinBuffer (BinMem _ ix_r _ arr_r) action = do
arr <- readIORef arr_r
ix <- readFastMutInt ix_r
withForeignPtr arr $ \ptr ->
BS.unsafePackCStringLen (castPtr ptr, ix) >>= action
---------------------------------------------------------------
-- Bin
---------------------------------------------------------------
newtype Bin a = BinPtr Int
deriving (Eq, Ord, Show, Bounded)
castBin :: Bin a -> Bin b
castBin (BinPtr i) = BinPtr i
---------------------------------------------------------------
-- class Binary
---------------------------------------------------------------
-- | Do not rely on instance sizes for general types,
-- we use variable length encoding for many of them.
class Binary a where
put_ :: BinHandle -> a -> IO ()
put :: BinHandle -> a -> IO (Bin a)
get :: BinHandle -> IO a
-- define one of put_, put. Use of put_ is recommended because it
-- is more likely that tail-calls can kick in, and we rarely need the
-- position return value.
put_ bh a = do _ <- put bh a; return ()
put bh a = do p <- tellBin bh; put_ bh a; return p
putAt :: Binary a => BinHandle -> Bin a -> a -> IO ()
putAt bh p x = do seekBin bh p; put_ bh x; return ()
getAt :: Binary a => BinHandle -> Bin a -> IO a
getAt bh p = do seekBin bh p; get bh
openBinMem :: Int -> IO BinHandle
openBinMem size
| size <= 0 = error "Data.Binary.openBinMem: size must be >= 0"
| otherwise = do
arr <- mallocForeignPtrBytes size
arr_r <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r <- newFastMutInt
writeFastMutInt sz_r size
return (BinMem noUserData ix_r sz_r arr_r)
tellBin :: BinHandle -> IO (Bin a)
tellBin (BinMem _ r _ _) = do ix <- readFastMutInt r; return (BinPtr ix)
seekBin :: BinHandle -> Bin a -> IO ()
seekBin h@(BinMem _ ix_r sz_r _) (BinPtr !p) = do
sz <- readFastMutInt sz_r
if (p >= sz)
then do expandBin h p; writeFastMutInt ix_r p
else writeFastMutInt ix_r p
writeBinMem :: BinHandle -> FilePath -> IO ()
writeBinMem (BinMem _ ix_r _ arr_r) fn = do
h <- openBinaryFile fn WriteMode
arr <- readIORef arr_r
ix <- readFastMutInt ix_r
withForeignPtr arr $ \p -> hPutBuf h p ix
hClose h
readBinMem :: FilePath -> IO BinHandle
-- Return a BinHandle with a totally undefined State
readBinMem filename = do
h <- openBinaryFile filename ReadMode
filesize' <- hFileSize h
let filesize = fromIntegral filesize'
arr <- mallocForeignPtrBytes filesize
count <- withForeignPtr arr $ \p -> hGetBuf h p filesize
when (count /= filesize) $
error ("Binary.readBinMem: only read " ++ show count ++ " bytes")
hClose h
arr_r <- newIORef arr
ix_r <- newFastMutInt
writeFastMutInt ix_r 0
sz_r <- newFastMutInt
writeFastMutInt sz_r filesize
return (BinMem noUserData ix_r sz_r arr_r)
-- expand the size of the array to include a specified offset
expandBin :: BinHandle -> Int -> IO ()
expandBin (BinMem _ _ sz_r arr_r) !off = do
!sz <- readFastMutInt sz_r
let !sz' = getSize sz
arr <- readIORef arr_r
arr' <- mallocForeignPtrBytes sz'
withForeignPtr arr $ \old ->
withForeignPtr arr' $ \new ->
copyBytes new old sz
writeFastMutInt sz_r sz'
writeIORef arr_r arr'
where
getSize :: Int -> Int
getSize !sz
| sz > off
= sz
| otherwise
= getSize (sz * 2)
-- -----------------------------------------------------------------------------
-- Low-level reading/writing of bytes
-- | Takes a size and action writing up to @size@ bytes.
-- After the action has run advance the index to the buffer
-- by size bytes.
putPrim :: BinHandle -> Int -> (Ptr Word8 -> IO ()) -> IO ()
putPrim h@(BinMem _ ix_r sz_r arr_r) size f = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix + size > sz) $
expandBin h (ix + size)
arr <- readIORef arr_r
withForeignPtr arr $ \op -> f (op `plusPtr` ix)
writeFastMutInt ix_r (ix + size)
-- -- | Similar to putPrim but advances the index by the actual number of
-- -- bytes written.
-- putPrimMax :: BinHandle -> Int -> (Ptr Word8 -> IO Int) -> IO ()
-- putPrimMax h@(BinMem _ ix_r sz_r arr_r) size f = do
-- ix <- readFastMutInt ix_r
-- sz <- readFastMutInt sz_r
-- when (ix + size > sz) $
-- expandBin h (ix + size)
-- arr <- readIORef arr_r
-- written <- withForeignPtr arr $ \op -> f (op `plusPtr` ix)
-- writeFastMutInt ix_r (ix + written)
getPrim :: BinHandle -> Int -> (Ptr Word8 -> IO a) -> IO a
getPrim (BinMem _ ix_r sz_r arr_r) size f = do
ix <- readFastMutInt ix_r
sz <- readFastMutInt sz_r
when (ix + size > sz) $
ioError (mkIOError eofErrorType "Data.Binary.getPrim" Nothing Nothing)
arr <- readIORef arr_r
w <- withForeignPtr arr $ \op -> f (op `plusPtr` ix)
writeFastMutInt ix_r (ix + size)
return w
putWord8 :: BinHandle -> Word8 -> IO ()
putWord8 h !w = putPrim h 1 (\op -> poke op w)
getWord8 :: BinHandle -> IO Word8
getWord8 h = getPrim h 1 peek
putWord16 :: BinHandle -> Word16 -> IO ()
putWord16 h w = putPrim h 2 (\op -> do
pokeElemOff op 0 (fromIntegral (w `shiftR` 8))
pokeElemOff op 1 (fromIntegral (w .&. 0xFF))
)
getWord16 :: BinHandle -> IO Word16
getWord16 h = getPrim h 2 (\op -> do
w0 <- fromIntegral <$> peekElemOff op 0
w1 <- fromIntegral <$> peekElemOff op 1
return $! w0 `shiftL` 8 .|. w1
)
putWord32 :: BinHandle -> Word32 -> IO ()
putWord32 h w = putPrim h 4 (\op -> do
pokeElemOff op 0 (fromIntegral (w `shiftR` 24))
pokeElemOff op 1 (fromIntegral ((w `shiftR` 16) .&. 0xFF))
pokeElemOff op 2 (fromIntegral ((w `shiftR` 8) .&. 0xFF))
pokeElemOff op 3 (fromIntegral (w .&. 0xFF))
)
getWord32 :: BinHandle -> IO Word32
getWord32 h = getPrim h 4 (\op -> do
w0 <- fromIntegral <$> peekElemOff op 0
w1 <- fromIntegral <$> peekElemOff op 1
w2 <- fromIntegral <$> peekElemOff op 2
w3 <- fromIntegral <$> peekElemOff op 3
return $! (w0 `shiftL` 24) .|.
(w1 `shiftL` 16) .|.
(w2 `shiftL` 8) .|.
w3
)
putWord64 :: BinHandle -> Word64 -> IO ()
putWord64 h w = putPrim h 8 (\op -> do
pokeElemOff op 0 (fromIntegral (w `shiftR` 56))
pokeElemOff op 1 (fromIntegral ((w `shiftR` 48) .&. 0xFF))
pokeElemOff op 2 (fromIntegral ((w `shiftR` 40) .&. 0xFF))
pokeElemOff op 3 (fromIntegral ((w `shiftR` 32) .&. 0xFF))
pokeElemOff op 4 (fromIntegral ((w `shiftR` 24) .&. 0xFF))
pokeElemOff op 5 (fromIntegral ((w `shiftR` 16) .&. 0xFF))
pokeElemOff op 6 (fromIntegral ((w `shiftR` 8) .&. 0xFF))
pokeElemOff op 7 (fromIntegral (w .&. 0xFF))
)
getWord64 :: BinHandle -> IO Word64
getWord64 h = getPrim h 8 (\op -> do
w0 <- fromIntegral <$> peekElemOff op 0
w1 <- fromIntegral <$> peekElemOff op 1
w2 <- fromIntegral <$> peekElemOff op 2
w3 <- fromIntegral <$> peekElemOff op 3
w4 <- fromIntegral <$> peekElemOff op 4
w5 <- fromIntegral <$> peekElemOff op 5
w6 <- fromIntegral <$> peekElemOff op 6
w7 <- fromIntegral <$> peekElemOff op 7
return $! (w0 `shiftL` 56) .|.
(w1 `shiftL` 48) .|.
(w2 `shiftL` 40) .|.
(w3 `shiftL` 32) .|.
(w4 `shiftL` 24) .|.
(w5 `shiftL` 16) .|.
(w6 `shiftL` 8) .|.
w7
)
putByte :: BinHandle -> Word8 -> IO ()
putByte bh !w = putWord8 bh w
getByte :: BinHandle -> IO Word8
getByte h = getWord8 h
-- -----------------------------------------------------------------------------
-- Encode numbers in LEB128 encoding.
-- Requires one byte of space per 7 bits of data.
--
-- There are signed and unsigned variants.
-- Do NOT use the unsigned one for signed values, at worst it will
-- result in wrong results, at best it will lead to bad performance
-- when coercing negative values to an unsigned type.
--
-- We mark them as SPECIALIZE as it's extremely critical that they get specialized
-- to their specific types.
--
-- TODO: Each use of putByte performs a bounds check,
-- we should use putPrimMax here. However it's quite hard to return
-- the number of bytes written into putPrimMax without allocating an
-- Int for it, while the code below does not allocate at all.
-- So we eat the cost of the bounds check instead of increasing allocations
-- for now.
-- Unsigned numbers
{-# SPECIALISE putULEB128 :: BinHandle -> Word -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Word64 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Word32 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Word16 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int64 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int32 -> IO () #-}
{-# SPECIALISE putULEB128 :: BinHandle -> Int16 -> IO () #-}
putULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> a -> IO ()
putULEB128 bh w =
#if defined(DEBUG)
(if w < 0 then panic "putULEB128: Signed number" else id) $
#endif
go w
where
go :: a -> IO ()
go w
| w <= (127 :: a)
= putByte bh (fromIntegral w :: Word8)
| otherwise = do
-- bit 7 (8th bit) indicates more to come.
let !byte = setBit (fromIntegral w) 7 :: Word8
putByte bh byte
go (w `unsafeShiftR` 7)
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word64 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word32 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Word16 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int64 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int32 #-}
{-# SPECIALISE getULEB128 :: BinHandle -> IO Int16 #-}
getULEB128 :: forall a. (Integral a, FiniteBits a) => BinHandle -> IO a
getULEB128 bh =
go 0 0
where
go :: Int -> a -> IO a
go shift w = do
b <- getByte bh
let !hasMore = testBit b 7
let !val = w .|. ((clearBit (fromIntegral b) 7) `unsafeShiftL` shift) :: a
if hasMore
then do
go (shift+7) val
else
return $! val
-- Signed numbers
{-# SPECIALISE putSLEB128 :: BinHandle -> Word -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Word64 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Word32 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Word16 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int64 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int32 -> IO () #-}
{-# SPECIALISE putSLEB128 :: BinHandle -> Int16 -> IO () #-}
putSLEB128 :: forall a. (Integral a, Bits a) => BinHandle -> a -> IO ()
putSLEB128 bh initial = go initial
where
go :: a -> IO ()
go val = do
let !byte = fromIntegral (clearBit val 7) :: Word8
let !val' = val `unsafeShiftR` 7
let !signBit = testBit byte 6
let !done =
-- Unsigned value, val' == 0 and last value can
-- be discriminated from a negative number.
((val' == 0 && not signBit) ||
-- Signed value,
(val' == -1 && signBit))
let !byte' = if done then byte else setBit byte 7
putByte bh byte'
unless done $ go val'
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word64 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word32 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Word16 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int64 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int32 #-}
{-# SPECIALISE getSLEB128 :: BinHandle -> IO Int16 #-}
getSLEB128 :: forall a. (Show a, Integral a, FiniteBits a) => BinHandle -> IO a
getSLEB128 bh = do
(val,shift,signed) <- go 0 0
if signed && (shift < finiteBitSize val )
then return $! ((complement 0 `unsafeShiftL` shift) .|. val)
else return val
where
go :: Int -> a -> IO (a,Int,Bool)
go shift val = do
byte <- getByte bh
let !byteVal = fromIntegral (clearBit byte 7) :: a
let !val' = val .|. (byteVal `unsafeShiftL` shift)
let !more = testBit byte 7
let !shift' = shift+7
if more
then go (shift') val'
else do
let !signed = testBit byte 6
return (val',shift',signed)
-- -----------------------------------------------------------------------------
-- Fixed length encoding instances
-- Sometimes words are used to represent a certain bit pattern instead
-- of a number. Using FixedLengthEncoding we will write the pattern as
-- is to the interface file without the variable length encoding we usually
-- apply.
-- | Encode the argument in it's full length. This is different from many default
-- binary instances which make no guarantee about the actual encoding and
-- might do things use variable length encoding.
newtype FixedLengthEncoding a = FixedLengthEncoding { unFixedLength :: a }
instance Binary (FixedLengthEncoding Word8) where
put_ h (FixedLengthEncoding x) = putByte h x
get h = FixedLengthEncoding <$> getByte h
instance Binary (FixedLengthEncoding Word16) where
put_ h (FixedLengthEncoding x) = putWord16 h x
get h = FixedLengthEncoding <$> getWord16 h
instance Binary (FixedLengthEncoding Word32) where
put_ h (FixedLengthEncoding x) = putWord32 h x
get h = FixedLengthEncoding <$> getWord32 h
instance Binary (FixedLengthEncoding Word64) where
put_ h (FixedLengthEncoding x) = putWord64 h x
get h = FixedLengthEncoding <$> getWord64 h
-- -----------------------------------------------------------------------------
-- Primitive Word writes
instance Binary Word8 where
put_ bh !w = putWord8 bh w
get = getWord8
instance Binary Word16 where
put_ = putULEB128
get = getULEB128
instance Binary Word32 where
put_ = putULEB128
get = getULEB128
instance Binary Word64 where
put_ = putULEB128
get = getULEB128
-- -----------------------------------------------------------------------------
-- Primitive Int writes
instance Binary Int8 where
put_ h w = put_ h (fromIntegral w :: Word8)
get h = do w <- get h; return $! (fromIntegral (w::Word8))
instance Binary Int16 where
put_ = putSLEB128
get = getSLEB128
instance Binary Int32 where
put_ = putSLEB128
get = getSLEB128
instance Binary Int64 where
put_ h w = putSLEB128 h w
get h = getSLEB128 h
-- -----------------------------------------------------------------------------
-- Instances for standard types
instance Binary () where
put_ _ () = return ()
get _ = return ()
instance Binary Bool where
put_ bh b = putByte bh (fromIntegral (fromEnum b))
get bh = do x <- getWord8 bh; return $! (toEnum (fromIntegral x))
instance Binary Char where
put_ bh c = put_ bh (fromIntegral (ord c) :: Word32)
get bh = do x <- get bh; return $! (chr (fromIntegral (x :: Word32)))
instance Binary Int where
put_ bh i = put_ bh (fromIntegral i :: Int64)
get bh = do
x <- get bh
return $! (fromIntegral (x :: Int64))
instance Binary a => Binary [a] where
put_ bh l = do
let len = length l
put_ bh len
mapM_ (put_ bh) l
get bh = do
len <- get bh :: IO Int -- Int is variable length encoded so only
-- one byte for small lists.
let loop 0 = return []
loop n = do a <- get bh; as <- loop (n-1); return (a:as)
loop len
instance (Ix a, Binary a, Binary b) => Binary (Array a b) where
put_ bh arr = do
put_ bh $ bounds arr
put_ bh $ elems arr
get bh = do
bounds <- get bh
xs <- get bh
return $ listArray bounds xs
instance (Binary a, Binary b) => Binary (a,b) where
put_ bh (a,b) = do put_ bh a; put_ bh b
get bh = do a <- get bh
b <- get bh
return (a,b)
instance (Binary a, Binary b, Binary c) => Binary (a,b,c) where
put_ bh (a,b,c) = do put_ bh a; put_ bh b; put_ bh c
get bh = do a <- get bh
b <- get bh
c <- get bh
return (a,b,c)
instance (Binary a, Binary b, Binary c, Binary d) => Binary (a,b,c,d) where
put_ bh (a,b,c,d) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
return (a,b,c,d)
instance (Binary a, Binary b, Binary c, Binary d, Binary e) => Binary (a,b,c,d, e) where
put_ bh (a,b,c,d, e) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e;
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
return (a,b,c,d,e)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f) => Binary (a,b,c,d, e, f) where
put_ bh (a,b,c,d, e, f) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f;
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
return (a,b,c,d,e,f)
instance (Binary a, Binary b, Binary c, Binary d, Binary e, Binary f, Binary g) => Binary (a,b,c,d,e,f,g) where
put_ bh (a,b,c,d,e,f,g) = do put_ bh a; put_ bh b; put_ bh c; put_ bh d; put_ bh e; put_ bh f; put_ bh g
get bh = do a <- get bh
b <- get bh
c <- get bh
d <- get bh
e <- get bh
f <- get bh
g <- get bh
return (a,b,c,d,e,f,g)
instance Binary a => Binary (Maybe a) where
put_ bh Nothing = putByte bh 0
put_ bh (Just a) = do putByte bh 1; put_ bh a
get bh = do h <- getWord8 bh
case h of
0 -> return Nothing
_ -> do x <- get bh; return (Just x)
instance (Binary a, Binary b) => Binary (Either a b) where
put_ bh (Left a) = do putByte bh 0; put_ bh a
put_ bh (Right b) = do putByte bh 1; put_ bh b
get bh = do h <- getWord8 bh
case h of
0 -> do a <- get bh ; return (Left a)
_ -> do b <- get bh ; return (Right b)
instance Binary UTCTime where
put_ bh u = do put_ bh (utctDay u)
put_ bh (utctDayTime u)
get bh = do day <- get bh
dayTime <- get bh
return $ UTCTime { utctDay = day, utctDayTime = dayTime }
instance Binary Day where
put_ bh d = put_ bh (toModifiedJulianDay d)
get bh = do i <- get bh
return $ ModifiedJulianDay { toModifiedJulianDay = i }
instance Binary DiffTime where
put_ bh dt = put_ bh (toRational dt)
get bh = do r <- get bh
return $ fromRational r
{-
Finally - a reasonable portable Integer instance.
We used to encode values in the Int32 range as such,
falling back to a string of all things. In either case
we stored a tag byte to discriminate between the two cases.
This made some sense as it's highly portable but also not very
efficient.
However GHC stores a surprisingly large number off large Integer
values. In the examples looked at between 25% and 50% of Integers
serialized were outside of the Int32 range.
Consider a valie like `2724268014499746065`, some sort of hash
actually generated by GHC.
In the old scheme this was encoded as a list of 19 chars. This
gave a size of 77 Bytes, one for the length of the list and 76
since we encode chars as Word32 as well.
We can easily do better. The new plan is:
* Start with a tag byte
* 0 => Int64 (LEB128 encoded)
* 1 => Negative large interger
* 2 => Positive large integer
* Followed by the value:
* Int64 is encoded as usual
* Large integers are encoded as a list of bytes (Word8).
We use Data.Bits which defines a bit order independent of the representation.
Values are stored LSB first.
This means our example value `2724268014499746065` is now only 10 bytes large.
* One byte tag
* One byte for the length of the [Word8] list.
* 8 bytes for the actual date.
The new scheme also does not depend in any way on
architecture specific details.
We still use this scheme even with LEB128 available,
as it has less overhead for truly large numbers. (> maxBound :: Int64)
The instance is used for in Binary Integer and Binary Rational in GHC.Types.Literal
-}
instance Binary Integer where
put_ bh i
| i >= lo64 && i <= hi64 = do
putWord8 bh 0
put_ bh (fromIntegral i :: Int64)
| otherwise = do
if i < 0
then putWord8 bh 1
else putWord8 bh 2
put_ bh (unroll $ abs i)
where
lo64 = fromIntegral (minBound :: Int64)
hi64 = fromIntegral (maxBound :: Int64)
get bh = do
int_kind <- getWord8 bh
case int_kind of
0 -> fromIntegral <$!> (get bh :: IO Int64)
-- Large integer
1 -> negate <$!> getInt
2 -> getInt
_ -> panic "Binary Integer - Invalid byte"
where
getInt :: IO Integer
getInt = roll <$!> (get bh :: IO [Word8])
unroll :: Integer -> [Word8]
unroll = unfoldr step
where
step 0 = Nothing
step i = Just (fromIntegral i, i `shiftR` 8)
roll :: [Word8] -> Integer
roll = foldl' unstep 0 . reverse
where
unstep a b = a `shiftL` 8 .|. fromIntegral b
{-
-- This code is currently commented out.
-- See https://gitlab.haskell.org/ghc/ghc/issues/3379#note_104346 for
-- discussion.
put_ bh (S# i#) = do putByte bh 0; put_ bh (I# i#)
put_ bh (J# s# a#) = do
putByte bh 1
put_ bh (I# s#)
let sz# = sizeofByteArray# a# -- in *bytes*
put_ bh (I# sz#) -- in *bytes*
putByteArray bh a# sz#
get bh = do
b <- getByte bh
case b of
0 -> do (I# i#) <- get bh
return (S# i#)
_ -> do (I# s#) <- get bh
sz <- get bh
(BA a#) <- getByteArray bh sz
return (J# s# a#)
putByteArray :: BinHandle -> ByteArray# -> Int# -> IO ()
putByteArray bh a s# = loop 0#
where loop n#
| n# ==# s# = return ()
| otherwise = do
putByte bh (indexByteArray a n#)
loop (n# +# 1#)
getByteArray :: BinHandle -> Int -> IO ByteArray
getByteArray bh (I# sz) = do
(MBA arr) <- newByteArray sz
let loop n
| n ==# sz = return ()
| otherwise = do
w <- getByte bh
writeByteArray arr n w
loop (n +# 1#)
loop 0#
freezeByteArray arr
-}
{-
data ByteArray = BA ByteArray#
data MBA = MBA (MutableByteArray# RealWorld)
newByteArray :: Int# -> IO MBA
newByteArray sz = IO $ \s ->
case newByteArray# sz s of { (# s, arr #) ->
(# s, MBA arr #) }
freezeByteArray :: MutableByteArray# RealWorld -> IO ByteArray
freezeByteArray arr = IO $ \s ->
case unsafeFreezeByteArray# arr s of { (# s, arr #) ->
(# s, BA arr #) }
writeByteArray :: MutableByteArray# RealWorld -> Int# -> Word8 -> IO ()
writeByteArray arr i (W8# w) = IO $ \s ->
case writeWord8Array# arr i w s of { s ->
(# s, () #) }
indexByteArray :: ByteArray# -> Int# -> Word8
indexByteArray a# n# = W8# (indexWord8Array# a# n#)
-}
instance (Binary a) => Binary (Ratio a) where
put_ bh (a :% b) = do put_ bh a; put_ bh b
get bh = do a <- get bh; b <- get bh; return (a :% b)
-- Instance uses fixed-width encoding to allow inserting
-- Bin placeholders in the stream.
instance Binary (Bin a) where
put_ bh (BinPtr i) = putWord32 bh (fromIntegral i :: Word32)
get bh = do i <- getWord32 bh; return (BinPtr (fromIntegral (i :: Word32)))
-- -----------------------------------------------------------------------------
-- Instances for Data.Typeable stuff
instance Binary TyCon where
put_ bh tc = do
put_ bh (tyConPackage tc)
put_ bh (tyConModule tc)
put_ bh (tyConName tc)
put_ bh (tyConKindArgs tc)
put_ bh (tyConKindRep tc)
get bh =
mkTyCon <$> get bh <*> get bh <*> get bh <*> get bh <*> get bh
instance Binary VecCount where
put_ bh = putByte bh . fromIntegral . fromEnum
get bh = toEnum . fromIntegral <$> getByte bh
instance Binary VecElem where
put_ bh = putByte bh . fromIntegral . fromEnum
get bh = toEnum . fromIntegral <$> getByte bh
instance Binary RuntimeRep where
put_ bh (VecRep a b) = putByte bh 0 >> put_ bh a >> put_ bh b
put_ bh (TupleRep reps) = putByte bh 1 >> put_ bh reps
put_ bh (SumRep reps) = putByte bh 2 >> put_ bh reps
put_ bh LiftedRep = putByte bh 3
put_ bh UnliftedRep = putByte bh 4
put_ bh IntRep = putByte bh 5
put_ bh WordRep = putByte bh 6
put_ bh Int64Rep = putByte bh 7
put_ bh Word64Rep = putByte bh 8
put_ bh AddrRep = putByte bh 9
put_ bh FloatRep = putByte bh 10
put_ bh DoubleRep = putByte bh 11
put_ bh Int8Rep = putByte bh 12
put_ bh Word8Rep = putByte bh 13
put_ bh Int16Rep = putByte bh 14
put_ bh Word16Rep = putByte bh 15
#if __GLASGOW_HASKELL__ >= 809
put_ bh Int32Rep = putByte bh 16
put_ bh Word32Rep = putByte bh 17
#endif
get bh = do
tag <- getByte bh
case tag of
0 -> VecRep <$> get bh <*> get bh
1 -> TupleRep <$> get bh
2 -> SumRep <$> get bh
3 -> pure LiftedRep
4 -> pure UnliftedRep
5 -> pure IntRep
6 -> pure WordRep
7 -> pure Int64Rep
8 -> pure Word64Rep
9 -> pure AddrRep
10 -> pure FloatRep
11 -> pure DoubleRep
12 -> pure Int8Rep
13 -> pure Word8Rep
14 -> pure Int16Rep
15 -> pure Word16Rep
#if __GLASGOW_HASKELL__ >= 809
16 -> pure Int32Rep
17 -> pure Word32Rep
#endif
_ -> fail "Binary.putRuntimeRep: invalid tag"
instance Binary KindRep where
put_ bh (KindRepTyConApp tc k) = putByte bh 0 >> put_ bh tc >> put_ bh k
put_ bh (KindRepVar bndr) = putByte bh 1 >> put_ bh bndr
put_ bh (KindRepApp a b) = putByte bh 2 >> put_ bh a >> put_ bh b
put_ bh (KindRepFun a b) = putByte bh 3 >> put_ bh a >> put_ bh b
put_ bh (KindRepTYPE r) = putByte bh 4 >> put_ bh r
put_ bh (KindRepTypeLit sort r) = putByte bh 5 >> put_ bh sort >> put_ bh r
get bh = do
tag <- getByte bh
case tag of
0 -> KindRepTyConApp <$> get bh <*> get bh
1 -> KindRepVar <$> get bh
2 -> KindRepApp <$> get bh <*> get bh
3 -> KindRepFun <$> get bh <*> get bh
4 -> KindRepTYPE <$> get bh
5 -> KindRepTypeLit <$> get bh <*> get bh
_ -> fail "Binary.putKindRep: invalid tag"
instance Binary TypeLitSort where
put_ bh TypeLitSymbol = putByte bh 0
put_ bh TypeLitNat = putByte bh 1
get bh = do
tag <- getByte bh
case tag of
0 -> pure TypeLitSymbol
1 -> pure TypeLitNat
_ -> fail "Binary.putTypeLitSort: invalid tag"
putTypeRep :: BinHandle -> TypeRep a -> IO ()
-- Special handling for TYPE, (->), and RuntimeRep due to recursive kind
-- relations.
-- See Note [Mutually recursive representations of primitive types]
putTypeRep bh rep
| Just HRefl <- rep `eqTypeRep` (typeRep :: TypeRep Type)
= put_ bh (0 :: Word8)
putTypeRep bh (Con' con ks) = do
put_ bh (1 :: Word8)
put_ bh con
put_ bh ks
putTypeRep bh (App f x) = do
put_ bh (2 :: Word8)
putTypeRep bh f
putTypeRep bh x
putTypeRep bh (Fun arg res) = do
put_ bh (3 :: Word8)
putTypeRep bh arg
putTypeRep bh res
getSomeTypeRep :: BinHandle -> IO SomeTypeRep
getSomeTypeRep bh = do
tag <- get bh :: IO Word8
case tag of
0 -> return $ SomeTypeRep (typeRep :: TypeRep Type)
1 -> do con <- get bh :: IO TyCon
ks <- get bh :: IO [SomeTypeRep]
return $ SomeTypeRep $ mkTrCon con ks
2 -> do SomeTypeRep f <- getSomeTypeRep bh
SomeTypeRep x <- getSomeTypeRep bh
case typeRepKind f of
Fun arg res ->
case arg `eqTypeRep` typeRepKind x of
Just HRefl ->
case typeRepKind res `eqTypeRep` (typeRep :: TypeRep Type) of
Just HRefl -> return $ SomeTypeRep $ mkTrApp f x
_ -> failure "Kind mismatch in type application" []
_ -> failure "Kind mismatch in type application"
[ " Found argument of kind: " ++ show (typeRepKind x)
, " Where the constructor: " ++ show f
, " Expects kind: " ++ show arg
]
_ -> failure "Applied non-arrow"
[ " Applied type: " ++ show f
, " To argument: " ++ show x
]
3 -> do SomeTypeRep arg <- getSomeTypeRep bh
SomeTypeRep res <- getSomeTypeRep bh
if
| App argkcon _ <- typeRepKind arg
, App reskcon _ <- typeRepKind res
, Just HRefl <- argkcon `eqTypeRep` tYPErep
, Just HRefl <- reskcon `eqTypeRep` tYPErep
-> return $ SomeTypeRep $ Fun arg res
| otherwise -> failure "Kind mismatch" []
_ -> failure "Invalid SomeTypeRep" []
where
tYPErep :: TypeRep TYPE
tYPErep = typeRep
failure description info =
fail $ unlines $ [ "Binary.getSomeTypeRep: "++description ]
++ map (" "++) info
instance Typeable a => Binary (TypeRep (a :: k)) where
put_ = putTypeRep
get bh = do
SomeTypeRep rep <- getSomeTypeRep bh
case rep `eqTypeRep` expected of
Just HRefl -> pure rep
Nothing -> fail $ unlines
[ "Binary: Type mismatch"
, " Deserialized type: " ++ show rep
, " Expected type: " ++ show expected
]
where expected = typeRep :: TypeRep a
instance Binary SomeTypeRep where
put_ bh (SomeTypeRep rep) = putTypeRep bh rep
get = getSomeTypeRep
-- -----------------------------------------------------------------------------
-- Lazy reading/writing
lazyPut :: Binary a => BinHandle -> a -> IO ()
lazyPut bh a = do
-- output the obj with a ptr to skip over it:
pre_a <- tellBin bh
put_ bh pre_a -- save a slot for the ptr
put_ bh a -- dump the object
q <- tellBin bh -- q = ptr to after object
putAt bh pre_a q -- fill in slot before a with ptr to q
seekBin bh q -- finally carry on writing at q
lazyGet :: Binary a => BinHandle -> IO a
lazyGet bh = do
p <- get bh -- a BinPtr
p_a <- tellBin bh
a <- unsafeInterleaveIO $ do
-- NB: Use a fresh off_r variable in the child thread, for thread
-- safety.
off_r <- newFastMutInt
getAt bh { _off_r = off_r } p_a
seekBin bh p -- skip over the object for now
return a
-- -----------------------------------------------------------------------------
-- UserData
-- -----------------------------------------------------------------------------
-- | Information we keep around during interface file
-- serialization/deserialization. Namely we keep the functions for serializing
-- and deserializing 'Name's and 'FastString's. We do this because we actually
-- use serialization in two distinct settings,
--
-- * When serializing interface files themselves
--
-- * When computing the fingerprint of an IfaceDecl (which we computing by
-- hashing its Binary serialization)
--
-- These two settings have different needs while serializing Names:
--
-- * Names in interface files are serialized via a symbol table (see Note
-- [Symbol table representation of names] in GHC.Iface.Binary).
--
-- * During fingerprinting a binding Name is serialized as the OccName and a
-- non-binding Name is serialized as the fingerprint of the thing they
-- represent. See Note [Fingerprinting IfaceDecls] for further discussion.
--
data UserData =
UserData {
-- for *deserialising* only:
ud_get_name :: BinHandle -> IO Name,
ud_get_fs :: BinHandle -> IO FastString,
-- for *serialising* only:
ud_put_nonbinding_name :: BinHandle -> Name -> IO (),
-- ^ serialize a non-binding 'Name' (e.g. a reference to another
-- binding).
ud_put_binding_name :: BinHandle -> Name -> IO (),
-- ^ serialize a binding 'Name' (e.g. the name of an IfaceDecl)
ud_put_fs :: BinHandle -> FastString -> IO ()
}
newReadState :: (BinHandle -> IO Name) -- ^ how to deserialize 'Name's
-> (BinHandle -> IO FastString)
-> UserData
newReadState get_name get_fs
= UserData { ud_get_name = get_name,
ud_get_fs = get_fs,
ud_put_nonbinding_name = undef "put_nonbinding_name",
ud_put_binding_name = undef "put_binding_name",
ud_put_fs = undef "put_fs"
}
newWriteState :: (BinHandle -> Name -> IO ())
-- ^ how to serialize non-binding 'Name's
-> (BinHandle -> Name -> IO ())
-- ^ how to serialize binding 'Name's
-> (BinHandle -> FastString -> IO ())
-> UserData
newWriteState put_nonbinding_name put_binding_name put_fs
= UserData { ud_get_name = undef "get_name",
ud_get_fs = undef "get_fs",
ud_put_nonbinding_name = put_nonbinding_name,
ud_put_binding_name = put_binding_name,
ud_put_fs = put_fs
}
noUserData :: a
noUserData = undef "UserData"
undef :: String -> a
undef s = panic ("Binary.UserData: no " ++ s)
---------------------------------------------------------
-- The Dictionary
---------------------------------------------------------
type Dictionary = Array Int FastString -- The dictionary
-- Should be 0-indexed
putDictionary :: BinHandle -> Int -> UniqFM (Int,FastString) -> IO ()
putDictionary bh sz dict = do
put_ bh sz
mapM_ (putFS bh) (elems (array (0,sz-1) (nonDetEltsUFM dict)))
-- It's OK to use nonDetEltsUFM here because the elements have indices
-- that array uses to create order
getDictionary :: BinHandle -> IO Dictionary
getDictionary bh = do
sz <- get bh
elems <- sequence (take sz (repeat (getFS bh)))
return (listArray (0,sz-1) elems)
---------------------------------------------------------
-- The Symbol Table
---------------------------------------------------------
-- On disk, the symbol table is an array of IfExtName, when
-- reading it in we turn it into a SymbolTable.
type SymbolTable = Array Int Name
---------------------------------------------------------
-- Reading and writing FastStrings
---------------------------------------------------------
putFS :: BinHandle -> FastString -> IO ()
putFS bh fs = putBS bh $ bytesFS fs
getFS :: BinHandle -> IO FastString
getFS bh = do
l <- get bh :: IO Int
getPrim bh l (\src -> pure $! mkFastStringBytes src l )
putBS :: BinHandle -> ByteString -> IO ()
putBS bh bs =
BS.unsafeUseAsCStringLen bs $ \(ptr, l) -> do
put_ bh l
putPrim bh l (\op -> BS.memcpy op (castPtr ptr) l)
getBS :: BinHandle -> IO ByteString
getBS bh = do
l <- get bh :: IO Int
BS.create l $ \dest -> do
getPrim bh l (\src -> BS.memcpy dest src l)
instance Binary ByteString where
put_ bh f = putBS bh f
get bh = getBS bh
instance Binary FastString where
put_ bh f =
case getUserData bh of
UserData { ud_put_fs = put_fs } -> put_fs bh f
get bh =
case getUserData bh of
UserData { ud_get_fs = get_fs } -> get_fs bh
-- Here to avoid loop
instance Binary LeftOrRight where
put_ bh CLeft = putByte bh 0
put_ bh CRight = putByte bh 1
get bh = do { h <- getByte bh
; case h of
0 -> return CLeft
_ -> return CRight }
instance Binary PromotionFlag where
put_ bh NotPromoted = putByte bh 0
put_ bh IsPromoted = putByte bh 1
get bh = do
n <- getByte bh
case n of
0 -> return NotPromoted
1 -> return IsPromoted
_ -> fail "Binary(IsPromoted): fail)"
instance Binary Fingerprint where
put_ h (Fingerprint w1 w2) = do put_ h w1; put_ h w2
get h = do w1 <- get h; w2 <- get h; return (Fingerprint w1 w2)
instance Binary FunctionOrData where
put_ bh IsFunction = putByte bh 0
put_ bh IsData = putByte bh 1
get bh = do
h <- getByte bh
case h of
0 -> return IsFunction
1 -> return IsData
_ -> panic "Binary FunctionOrData"
instance Binary TupleSort where
put_ bh BoxedTuple = putByte bh 0
put_ bh UnboxedTuple = putByte bh 1
put_ bh ConstraintTuple = putByte bh 2
get bh = do
h <- getByte bh
case h of
0 -> do return BoxedTuple
1 -> do return UnboxedTuple
_ -> do return ConstraintTuple
instance Binary Activation where
put_ bh NeverActive = do
putByte bh 0
put_ bh AlwaysActive = do
putByte bh 1
put_ bh (ActiveBefore src aa) = do
putByte bh 2
put_ bh src
put_ bh aa
put_ bh (ActiveAfter src ab) = do
putByte bh 3
put_ bh src
put_ bh ab
get bh = do
h <- getByte bh
case h of
0 -> do return NeverActive
1 -> do return AlwaysActive
2 -> do src <- get bh
aa <- get bh
return (ActiveBefore src aa)
_ -> do src <- get bh
ab <- get bh
return (ActiveAfter src ab)
instance Binary InlinePragma where
put_ bh (InlinePragma s a b c d) = do
put_ bh s
put_ bh a
put_ bh b
put_ bh c
put_ bh d
get bh = do
s <- get bh
a <- get bh
b <- get bh
c <- get bh
d <- get bh
return (InlinePragma s a b c d)
instance Binary RuleMatchInfo where
put_ bh FunLike = putByte bh 0
put_ bh ConLike = putByte bh 1
get bh = do
h <- getByte bh
if h == 1 then return ConLike
else return FunLike
instance Binary InlineSpec where
put_ bh NoUserInline = putByte bh 0
put_ bh Inline = putByte bh 1
put_ bh Inlinable = putByte bh 2
put_ bh NoInline = putByte bh 3
get bh = do h <- getByte bh
case h of
0 -> return NoUserInline
1 -> return Inline
2 -> return Inlinable
_ -> return NoInline
instance Binary RecFlag where
put_ bh Recursive = do
putByte bh 0
put_ bh NonRecursive = do
putByte bh 1
get bh = do
h <- getByte bh
case h of
0 -> do return Recursive
_ -> do return NonRecursive
instance Binary OverlapMode where
put_ bh (NoOverlap s) = putByte bh 0 >> put_ bh s
put_ bh (Overlaps s) = putByte bh 1 >> put_ bh s
put_ bh (Incoherent s) = putByte bh 2 >> put_ bh s
put_ bh (Overlapping s) = putByte bh 3 >> put_ bh s
put_ bh (Overlappable s) = putByte bh 4 >> put_ bh s
get bh = do
h <- getByte bh
case h of
0 -> (get bh) >>= \s -> return $ NoOverlap s
1 -> (get bh) >>= \s -> return $ Overlaps s
2 -> (get bh) >>= \s -> return $ Incoherent s
3 -> (get bh) >>= \s -> return $ Overlapping s
4 -> (get bh) >>= \s -> return $ Overlappable s
_ -> panic ("get OverlapMode" ++ show h)
instance Binary OverlapFlag where
put_ bh flag = do put_ bh (overlapMode flag)
put_ bh (isSafeOverlap flag)
get bh = do
h <- get bh
b <- get bh
return OverlapFlag { overlapMode = h, isSafeOverlap = b }
instance Binary FixityDirection where
put_ bh InfixL = do
putByte bh 0
put_ bh InfixR = do
putByte bh 1
put_ bh InfixN = do
putByte bh 2
get bh = do
h <- getByte bh
case h of
0 -> do return InfixL
1 -> do return InfixR
_ -> do return InfixN
instance Binary Fixity where
put_ bh (Fixity src aa ab) = do
put_ bh src
put_ bh aa
put_ bh ab
get bh = do
src <- get bh
aa <- get bh
ab <- get bh
return (Fixity src aa ab)
instance Binary WarningTxt where
put_ bh (WarningTxt s w) = do
putByte bh 0
put_ bh s
put_ bh w
put_ bh (DeprecatedTxt s d) = do
putByte bh 1
put_ bh s
put_ bh d
get bh = do
h <- getByte bh
case h of
0 -> do s <- get bh
w <- get bh
return (WarningTxt s w)
_ -> do s <- get bh
d <- get bh
return (DeprecatedTxt s d)
instance Binary StringLiteral where
put_ bh (StringLiteral st fs) = do
put_ bh st
put_ bh fs
get bh = do
st <- get bh
fs <- get bh
return (StringLiteral st fs)
instance Binary a => Binary (Located a) where
put_ bh (L l x) = do
put_ bh l
put_ bh x
get bh = do
l <- get bh
x <- get bh
return (L l x)
instance Binary RealSrcSpan where
put_ bh ss = do
put_ bh (srcSpanFile ss)
put_ bh (srcSpanStartLine ss)
put_ bh (srcSpanStartCol ss)
put_ bh (srcSpanEndLine ss)
put_ bh (srcSpanEndCol ss)
get bh = do
f <- get bh
sl <- get bh
sc <- get bh
el <- get bh
ec <- get bh
return (mkRealSrcSpan (mkRealSrcLoc f sl sc)
(mkRealSrcLoc f el ec))
instance Binary BufPos where
put_ bh (BufPos i) = put_ bh i
get bh = BufPos <$> get bh
instance Binary BufSpan where
put_ bh (BufSpan start end) = do
put_ bh start
put_ bh end
get bh = do
start <- get bh
end <- get bh
return (BufSpan start end)
instance Binary SrcSpan where
put_ bh (RealSrcSpan ss sb) = do
putByte bh 0
put_ bh ss
put_ bh sb
put_ bh (UnhelpfulSpan s) = do
putByte bh 1
put_ bh s
get bh = do
h <- getByte bh
case h of
0 -> do ss <- get bh
sb <- get bh
return (RealSrcSpan ss sb)
_ -> do s <- get bh
return (UnhelpfulSpan s)
instance Binary Serialized where
put_ bh (Serialized the_type bytes) = do
put_ bh the_type
put_ bh bytes
get bh = do
the_type <- get bh
bytes <- get bh
return (Serialized the_type bytes)
instance Binary SourceText where
put_ bh NoSourceText = putByte bh 0
put_ bh (SourceText s) = do
putByte bh 1
put_ bh s
get bh = do
h <- getByte bh
case h of
0 -> return NoSourceText
1 -> do
s <- get bh
return (SourceText s)
_ -> panic $ "Binary SourceText:" ++ show h
|