1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
|
{-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples #-}
{-# OPTIONS_GHC -O2 #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected
-- -----------------------------------------------------------------------------
--
-- (c) The University of Glasgow, 1997-2006
--
-- Character encodings
--
-- -----------------------------------------------------------------------------
module GHC.Utils.Encoding (
-- * UTF-8
utf8DecodeChar#,
utf8PrevChar,
utf8CharStart,
utf8DecodeChar,
utf8DecodeByteString,
utf8DecodeStringLazy,
utf8EncodeChar,
utf8EncodeString,
utf8EncodedLength,
countUTF8Chars,
-- * Z-encoding
zEncodeString,
zDecodeString,
-- * Base62-encoding
toBase62,
toBase62Padded
) where
import GHC.Prelude
import Foreign
import Foreign.ForeignPtr.Unsafe
import Data.Char
import qualified Data.Char as Char
import Numeric
import GHC.IO
import Data.ByteString (ByteString)
import qualified Data.ByteString.Internal as BS
import GHC.Exts
-- -----------------------------------------------------------------------------
-- UTF-8
-- We can't write the decoder as efficiently as we'd like without
-- resorting to unboxed extensions, unfortunately. I tried to write
-- an IO version of this function, but GHC can't eliminate boxed
-- results from an IO-returning function.
--
-- We assume we can ignore overflow when parsing a multibyte character here.
-- To make this safe, we add extra sentinel bytes to unparsed UTF-8 sequences
-- before decoding them (see StringBuffer.hs).
{-# INLINE utf8DecodeChar# #-}
utf8DecodeChar# :: Addr# -> (# Char#, Int# #)
utf8DecodeChar# a# =
let !ch0 = word2Int# (indexWord8OffAddr# a# 0#) in
case () of
_ | isTrue# (ch0 <=# 0x7F#) -> (# chr# ch0, 1# #)
| isTrue# ((ch0 >=# 0xC0#) `andI#` (ch0 <=# 0xDF#)) ->
let !ch1 = word2Int# (indexWord8OffAddr# a# 1#) in
if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else
(# chr# (((ch0 -# 0xC0#) `uncheckedIShiftL#` 6#) +#
(ch1 -# 0x80#)),
2# #)
| isTrue# ((ch0 >=# 0xE0#) `andI#` (ch0 <=# 0xEF#)) ->
let !ch1 = word2Int# (indexWord8OffAddr# a# 1#) in
if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else
let !ch2 = word2Int# (indexWord8OffAddr# a# 2#) in
if isTrue# ((ch2 <# 0x80#) `orI#` (ch2 >=# 0xC0#)) then fail 2# else
(# chr# (((ch0 -# 0xE0#) `uncheckedIShiftL#` 12#) +#
((ch1 -# 0x80#) `uncheckedIShiftL#` 6#) +#
(ch2 -# 0x80#)),
3# #)
| isTrue# ((ch0 >=# 0xF0#) `andI#` (ch0 <=# 0xF8#)) ->
let !ch1 = word2Int# (indexWord8OffAddr# a# 1#) in
if isTrue# ((ch1 <# 0x80#) `orI#` (ch1 >=# 0xC0#)) then fail 1# else
let !ch2 = word2Int# (indexWord8OffAddr# a# 2#) in
if isTrue# ((ch2 <# 0x80#) `orI#` (ch2 >=# 0xC0#)) then fail 2# else
let !ch3 = word2Int# (indexWord8OffAddr# a# 3#) in
if isTrue# ((ch3 <# 0x80#) `orI#` (ch3 >=# 0xC0#)) then fail 3# else
(# chr# (((ch0 -# 0xF0#) `uncheckedIShiftL#` 18#) +#
((ch1 -# 0x80#) `uncheckedIShiftL#` 12#) +#
((ch2 -# 0x80#) `uncheckedIShiftL#` 6#) +#
(ch3 -# 0x80#)),
4# #)
| otherwise -> fail 1#
where
-- all invalid sequences end up here:
fail :: Int# -> (# Char#, Int# #)
fail nBytes# = (# '\0'#, nBytes# #)
-- '\xFFFD' would be the usual replacement character, but
-- that's a valid symbol in Haskell, so will result in a
-- confusing parse error later on. Instead we use '\0' which
-- will signal a lexer error immediately.
utf8DecodeChar :: Ptr Word8 -> (Char, Int)
utf8DecodeChar (Ptr a#) =
case utf8DecodeChar# a# of (# c#, nBytes# #) -> ( C# c#, I# nBytes# )
-- UTF-8 is cleverly designed so that we can always figure out where
-- the start of the current character is, given any position in a
-- stream. This function finds the start of the previous character,
-- assuming there *is* a previous character.
utf8PrevChar :: Ptr Word8 -> IO (Ptr Word8)
utf8PrevChar p = utf8CharStart (p `plusPtr` (-1))
utf8CharStart :: Ptr Word8 -> IO (Ptr Word8)
utf8CharStart p = go p
where go p = do w <- peek p
if w >= 0x80 && w < 0xC0
then go (p `plusPtr` (-1))
else return p
utf8DecodeByteString :: ByteString -> [Char]
utf8DecodeByteString (BS.PS ptr offset len)
= utf8DecodeStringLazy ptr offset len
utf8DecodeStringLazy :: ForeignPtr Word8 -> Int -> Int -> [Char]
utf8DecodeStringLazy fptr offset len
= unsafeDupablePerformIO $ unpack start
where
!start = unsafeForeignPtrToPtr fptr `plusPtr` offset
!end = start `plusPtr` len
unpack p
| p >= end = touchForeignPtr fptr >> return []
| otherwise =
case utf8DecodeChar# (unPtr p) of
(# c#, nBytes# #) -> do
rest <- unsafeDupableInterleaveIO $ unpack (p `plusPtr#` nBytes#)
return (C# c# : rest)
countUTF8Chars :: Ptr Word8 -> Int -> IO Int
countUTF8Chars ptr len = go ptr 0
where
!end = ptr `plusPtr` len
go p !n
| p >= end = return n
| otherwise = do
case utf8DecodeChar# (unPtr p) of
(# _, nBytes# #) -> go (p `plusPtr#` nBytes#) (n+1)
unPtr :: Ptr a -> Addr#
unPtr (Ptr a) = a
plusPtr# :: Ptr a -> Int# -> Ptr a
plusPtr# ptr nBytes# = ptr `plusPtr` (I# nBytes#)
utf8EncodeChar :: Char -> Ptr Word8 -> IO (Ptr Word8)
utf8EncodeChar c ptr =
let x = ord c in
case () of
_ | x > 0 && x <= 0x007f -> do
poke ptr (fromIntegral x)
return (ptr `plusPtr` 1)
-- NB. '\0' is encoded as '\xC0\x80', not '\0'. This is so that we
-- can have 0-terminated UTF-8 strings (see GHC.Base.unpackCStringUtf8).
| x <= 0x07ff -> do
poke ptr (fromIntegral (0xC0 .|. ((x `shiftR` 6) .&. 0x1F)))
pokeElemOff ptr 1 (fromIntegral (0x80 .|. (x .&. 0x3F)))
return (ptr `plusPtr` 2)
| x <= 0xffff -> do
poke ptr (fromIntegral (0xE0 .|. (x `shiftR` 12) .&. 0x0F))
pokeElemOff ptr 1 (fromIntegral (0x80 .|. (x `shiftR` 6) .&. 0x3F))
pokeElemOff ptr 2 (fromIntegral (0x80 .|. (x .&. 0x3F)))
return (ptr `plusPtr` 3)
| otherwise -> do
poke ptr (fromIntegral (0xF0 .|. (x `shiftR` 18)))
pokeElemOff ptr 1 (fromIntegral (0x80 .|. ((x `shiftR` 12) .&. 0x3F)))
pokeElemOff ptr 2 (fromIntegral (0x80 .|. ((x `shiftR` 6) .&. 0x3F)))
pokeElemOff ptr 3 (fromIntegral (0x80 .|. (x .&. 0x3F)))
return (ptr `plusPtr` 4)
utf8EncodeString :: Ptr Word8 -> String -> IO ()
utf8EncodeString ptr str = go ptr str
where go !_ [] = return ()
go ptr (c:cs) = do
ptr' <- utf8EncodeChar c ptr
go ptr' cs
utf8EncodedLength :: String -> Int
utf8EncodedLength str = go 0 str
where go !n [] = n
go n (c:cs)
| ord c > 0 && ord c <= 0x007f = go (n+1) cs
| ord c <= 0x07ff = go (n+2) cs
| ord c <= 0xffff = go (n+3) cs
| otherwise = go (n+4) cs
-- -----------------------------------------------------------------------------
-- The Z-encoding
{-
This is the main name-encoding and decoding function. It encodes any
string into a string that is acceptable as a C name. This is done
right before we emit a symbol name into the compiled C or asm code.
Z-encoding of strings is cached in the FastString interface, so we
never encode the same string more than once.
The basic encoding scheme is this.
* Tuples (,,,) are coded as Z3T
* Alphabetic characters (upper and lower) and digits
all translate to themselves;
except 'Z', which translates to 'ZZ'
and 'z', which translates to 'zz'
We need both so that we can preserve the variable/tycon distinction
* Most other printable characters translate to 'zx' or 'Zx' for some
alphabetic character x
* The others translate as 'znnnU' where 'nnn' is the decimal number
of the character
Before After
--------------------------
Trak Trak
foo_wib foozuwib
> zg
>1 zg1
foo# foozh
foo## foozhzh
foo##1 foozhzh1
fooZ fooZZ
:+ ZCzp
() Z0T 0-tuple
(,,,,) Z5T 5-tuple
(# #) Z1H unboxed 1-tuple (note the space)
(#,,,,#) Z5H unboxed 5-tuple
(NB: There is no Z1T nor Z0H.)
-}
type UserString = String -- As the user typed it
type EncodedString = String -- Encoded form
zEncodeString :: UserString -> EncodedString
zEncodeString cs = case maybe_tuple cs of
Just n -> n -- Tuples go to Z2T etc
Nothing -> go cs
where
go [] = []
go (c:cs) = encode_digit_ch c ++ go' cs
go' [] = []
go' (c:cs) = encode_ch c ++ go' cs
unencodedChar :: Char -> Bool -- True for chars that don't need encoding
unencodedChar 'Z' = False
unencodedChar 'z' = False
unencodedChar c = c >= 'a' && c <= 'z'
|| c >= 'A' && c <= 'Z'
|| c >= '0' && c <= '9'
-- If a digit is at the start of a symbol then we need to encode it.
-- Otherwise package names like 9pH-0.1 give linker errors.
encode_digit_ch :: Char -> EncodedString
encode_digit_ch c | c >= '0' && c <= '9' = encode_as_unicode_char c
encode_digit_ch c | otherwise = encode_ch c
encode_ch :: Char -> EncodedString
encode_ch c | unencodedChar c = [c] -- Common case first
-- Constructors
encode_ch '(' = "ZL" -- Needed for things like (,), and (->)
encode_ch ')' = "ZR" -- For symmetry with (
encode_ch '[' = "ZM"
encode_ch ']' = "ZN"
encode_ch ':' = "ZC"
encode_ch 'Z' = "ZZ"
-- Variables
encode_ch 'z' = "zz"
encode_ch '&' = "za"
encode_ch '|' = "zb"
encode_ch '^' = "zc"
encode_ch '$' = "zd"
encode_ch '=' = "ze"
encode_ch '>' = "zg"
encode_ch '#' = "zh"
encode_ch '.' = "zi"
encode_ch '<' = "zl"
encode_ch '-' = "zm"
encode_ch '!' = "zn"
encode_ch '+' = "zp"
encode_ch '\'' = "zq"
encode_ch '\\' = "zr"
encode_ch '/' = "zs"
encode_ch '*' = "zt"
encode_ch '_' = "zu"
encode_ch '%' = "zv"
encode_ch c = encode_as_unicode_char c
encode_as_unicode_char :: Char -> EncodedString
encode_as_unicode_char c = 'z' : if isDigit (head hex_str) then hex_str
else '0':hex_str
where hex_str = showHex (ord c) "U"
-- ToDo: we could improve the encoding here in various ways.
-- eg. strings of unicode characters come out as 'z1234Uz5678U', we
-- could remove the 'U' in the middle (the 'z' works as a separator).
zDecodeString :: EncodedString -> UserString
zDecodeString [] = []
zDecodeString ('Z' : d : rest)
| isDigit d = decode_tuple d rest
| otherwise = decode_upper d : zDecodeString rest
zDecodeString ('z' : d : rest)
| isDigit d = decode_num_esc d rest
| otherwise = decode_lower d : zDecodeString rest
zDecodeString (c : rest) = c : zDecodeString rest
decode_upper, decode_lower :: Char -> Char
decode_upper 'L' = '('
decode_upper 'R' = ')'
decode_upper 'M' = '['
decode_upper 'N' = ']'
decode_upper 'C' = ':'
decode_upper 'Z' = 'Z'
decode_upper ch = {-pprTrace "decode_upper" (char ch)-} ch
decode_lower 'z' = 'z'
decode_lower 'a' = '&'
decode_lower 'b' = '|'
decode_lower 'c' = '^'
decode_lower 'd' = '$'
decode_lower 'e' = '='
decode_lower 'g' = '>'
decode_lower 'h' = '#'
decode_lower 'i' = '.'
decode_lower 'l' = '<'
decode_lower 'm' = '-'
decode_lower 'n' = '!'
decode_lower 'p' = '+'
decode_lower 'q' = '\''
decode_lower 'r' = '\\'
decode_lower 's' = '/'
decode_lower 't' = '*'
decode_lower 'u' = '_'
decode_lower 'v' = '%'
decode_lower ch = {-pprTrace "decode_lower" (char ch)-} ch
-- Characters not having a specific code are coded as z224U (in hex)
decode_num_esc :: Char -> EncodedString -> UserString
decode_num_esc d rest
= go (digitToInt d) rest
where
go n (c : rest) | isHexDigit c = go (16*n + digitToInt c) rest
go n ('U' : rest) = chr n : zDecodeString rest
go n other = error ("decode_num_esc: " ++ show n ++ ' ':other)
decode_tuple :: Char -> EncodedString -> UserString
decode_tuple d rest
= go (digitToInt d) rest
where
-- NB. recurse back to zDecodeString after decoding the tuple, because
-- the tuple might be embedded in a longer name.
go n (c : rest) | isDigit c = go (10*n + digitToInt c) rest
go 0 ('T':rest) = "()" ++ zDecodeString rest
go n ('T':rest) = '(' : replicate (n-1) ',' ++ ")" ++ zDecodeString rest
go 1 ('H':rest) = "(# #)" ++ zDecodeString rest
go n ('H':rest) = '(' : '#' : replicate (n-1) ',' ++ "#)" ++ zDecodeString rest
go n other = error ("decode_tuple: " ++ show n ++ ' ':other)
{-
Tuples are encoded as
Z3T or Z3H
for 3-tuples or unboxed 3-tuples respectively. No other encoding starts
Z<digit>
* "(# #)" is the tycon for an unboxed 1-tuple (not 0-tuple)
There are no unboxed 0-tuples.
* "()" is the tycon for a boxed 0-tuple.
There are no boxed 1-tuples.
-}
maybe_tuple :: UserString -> Maybe EncodedString
maybe_tuple "(# #)" = Just("Z1H")
maybe_tuple ('(' : '#' : cs) = case count_commas (0::Int) cs of
(n, '#' : ')' : _) -> Just ('Z' : shows (n+1) "H")
_ -> Nothing
maybe_tuple "()" = Just("Z0T")
maybe_tuple ('(' : cs) = case count_commas (0::Int) cs of
(n, ')' : _) -> Just ('Z' : shows (n+1) "T")
_ -> Nothing
maybe_tuple _ = Nothing
count_commas :: Int -> String -> (Int, String)
count_commas n (',' : cs) = count_commas (n+1) cs
count_commas n cs = (n,cs)
{-
************************************************************************
* *
Base 62
* *
************************************************************************
Note [Base 62 encoding 128-bit integers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Instead of base-62 encoding a single 128-bit integer
(ceil(21.49) characters), we'll base-62 a pair of 64-bit integers
(2 * ceil(10.75) characters). Luckily for us, it's the same number of
characters!
-}
--------------------------------------------------------------------------
-- Base 62
-- The base-62 code is based off of 'locators'
-- ((c) Operational Dynamics Consulting, BSD3 licensed)
-- | Size of a 64-bit word when written as a base-62 string
word64Base62Len :: Int
word64Base62Len = 11
-- | Converts a 64-bit word into a base-62 string
toBase62Padded :: Word64 -> String
toBase62Padded w = pad ++ str
where
pad = replicate len '0'
len = word64Base62Len - length str -- 11 == ceil(64 / lg 62)
str = toBase62 w
toBase62 :: Word64 -> String
toBase62 w = showIntAtBase 62 represent w ""
where
represent :: Int -> Char
represent x
| x < 10 = Char.chr (48 + x)
| x < 36 = Char.chr (65 + x - 10)
| x < 62 = Char.chr (97 + x - 36)
| otherwise = error "represent (base 62): impossible!"
|