summaryrefslogtreecommitdiff
path: root/compiler/GHC/Utils/Monad.hs
blob: 9e53edd0bbfd56599c57d56c6a3bb46b2f7fdda6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
-- | Utilities related to Monad and Applicative classes
--   Mostly for backwards compatibility.

module GHC.Utils.Monad
        ( Applicative(..)
        , (<$>)

        , MonadFix(..)
        , MonadIO(..)

        , zipWith3M, zipWith3M_, zipWith4M, zipWithAndUnzipM
        , mapAndUnzipM, mapAndUnzip3M, mapAndUnzip4M, mapAndUnzip5M
        , mapAccumLM
        , mapSndM
        , concatMapM
        , mapMaybeM
        , fmapMaybeM, fmapEitherM
        , anyM, allM, orM
        , foldlM, foldlM_, foldrM
        , maybeMapM
        , whenM, unlessM
        , filterOutM
        ) where

-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------

import GHC.Prelude

import Control.Applicative
import Control.Monad
import Control.Monad.Fix
import Control.Monad.IO.Class
import Data.Foldable (sequenceA_, foldlM, foldrM)
import Data.List (unzip4, unzip5, zipWith4)

-------------------------------------------------------------------------------
-- Common functions
--  These are used throughout the compiler
-------------------------------------------------------------------------------

{-

Note [Inline @zipWithNM@ functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The inline principle for 'zipWith3M', 'zipWith4M' and 'zipWith3M_' is the same
as for 'zipWithM' and 'zipWithM_' in "Control.Monad", see
Note [Fusion for zipN/zipWithN] in GHC/List.hs for more details.

The 'zipWithM'/'zipWithM_' functions are inlined so that the `zipWith` and
`sequenceA` functions with which they are defined have an opportunity to fuse.

Furthermore, 'zipWith3M'/'zipWith4M' and 'zipWith3M_' have been explicitly
rewritten in a non-recursive way similarly to 'zipWithM'/'zipWithM_', and for
more than just uniformity: after [D5241](https://phabricator.haskell.org/D5241)
for issue #14037, all @zipN@/@zipWithN@ functions fuse, meaning
'zipWith3M'/'zipWIth4M' and 'zipWith3M_'@ now behave like 'zipWithM' and
'zipWithM_', respectively, with regards to fusion.

As such, since there are not any differences between 2-ary 'zipWithM'/
'zipWithM_' and their n-ary counterparts below aside from the number of
arguments, the `INLINE` pragma should be replicated in the @zipWithNM@
functions below as well.

-}

zipWith3M :: Monad m => (a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m [d]
{-# INLINE zipWith3M #-}
-- Inline so that fusion with 'zipWith3' and 'sequenceA' has a chance to fire.
-- See Note [Inline @zipWithNM@ functions] above.
zipWith3M f xs ys zs = sequenceA (zipWith3 f xs ys zs)

zipWith3M_ :: Monad m => (a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m ()
{-# INLINE zipWith3M_ #-}
-- Inline so that fusion with 'zipWith4' and 'sequenceA' has a chance to fire.
-- See  Note [Inline @zipWithNM@ functions] above.
zipWith3M_ f xs ys zs = sequenceA_ (zipWith3 f xs ys zs)

zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
          -> [a] -> [b] -> [c] -> [d] -> m [e]
{-# INLINE zipWith4M #-}
-- Inline so that fusion with 'zipWith5' and 'sequenceA' has a chance to fire.
-- See  Note [Inline @zipWithNM@ functions] above.
zipWith4M f xs ys ws zs = sequenceA (zipWith4 f xs ys ws zs)

zipWithAndUnzipM :: Monad m
                 => (a -> b -> m (c, d)) -> [a] -> [b] -> m ([c], [d])
{-# INLINABLE zipWithAndUnzipM #-}
-- See Note [flatten_args performance] in GHC.Tc.Solver.Flatten for why this
-- pragma is essential.
zipWithAndUnzipM f (x:xs) (y:ys)
  = do { (c, d) <- f x y
       ; (cs, ds) <- zipWithAndUnzipM f xs ys
       ; return (c:cs, d:ds) }
zipWithAndUnzipM _ _ _ = return ([], [])

{-

Note [Inline @mapAndUnzipNM@ functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The inline principle is the same as 'mapAndUnzipM' in "Control.Monad".
The 'mapAndUnzipM' function is inlined so that the `unzip` and `traverse`
functions with which it is defined have an opportunity to fuse, see
Note [Inline @unzipN@ functions] in Data/OldList.hs for more details.

Furthermore, the @mapAndUnzipNM@ functions have been explicitly rewritten in a
non-recursive way similarly to 'mapAndUnzipM', and for more than just
uniformity: after [D5249](https://phabricator.haskell.org/D5249) for Trac
ticket #14037, all @unzipN@ functions fuse, meaning 'mapAndUnzip3M',
'mapAndUnzip4M' and 'mapAndUnzip5M' now behave like 'mapAndUnzipM' with regards
to fusion.

As such, since there are not any differences between 2-ary 'mapAndUnzipM' and
its n-ary counterparts below aside from the number of arguments, the `INLINE`
pragma should be replicated in the @mapAndUnzipNM@ functions below as well.

-}

-- | mapAndUnzipM for triples
mapAndUnzip3M :: Monad m => (a -> m (b,c,d)) -> [a] -> m ([b],[c],[d])
{-# INLINE mapAndUnzip3M #-}
-- Inline so that fusion with 'unzip3' and 'traverse' has a chance to fire.
-- See Note [Inline @mapAndUnzipNM@ functions] above.
mapAndUnzip3M f xs =  unzip3 <$> traverse f xs

mapAndUnzip4M :: Monad m => (a -> m (b,c,d,e)) -> [a] -> m ([b],[c],[d],[e])
{-# INLINE mapAndUnzip4M #-}
-- Inline so that fusion with 'unzip4' and 'traverse' has a chance to fire.
-- See Note [Inline @mapAndUnzipNM@ functions] above.
mapAndUnzip4M f xs =  unzip4 <$> traverse f xs

mapAndUnzip5M :: Monad m => (a -> m (b,c,d,e,f)) -> [a] -> m ([b],[c],[d],[e],[f])
{-# INLINE mapAndUnzip5M #-}
-- Inline so that fusion with 'unzip5' and 'traverse' has a chance to fire.
-- See Note [Inline @mapAndUnzipNM@ functions] above.
mapAndUnzip5M f xs =  unzip5 <$> traverse f xs

-- | Monadic version of mapAccumL
mapAccumLM :: Monad m
            => (acc -> x -> m (acc, y)) -- ^ combining function
            -> acc                      -- ^ initial state
            -> [x]                      -- ^ inputs
            -> m (acc, [y])             -- ^ final state, outputs
mapAccumLM _ s []     = return (s, [])
mapAccumLM f s (x:xs) = do
    (s1, x')  <- f s x
    (s2, xs') <- mapAccumLM f s1 xs
    return    (s2, x' : xs')

-- | Monadic version of mapSnd
mapSndM :: Monad m => (b -> m c) -> [(a,b)] -> m [(a,c)]
mapSndM _ []         = return []
mapSndM f ((a,b):xs) = do { c <- f b; rs <- mapSndM f xs; return ((a,c):rs) }

-- | Monadic version of concatMap
concatMapM :: Monad m => (a -> m [b]) -> [a] -> m [b]
concatMapM f xs = liftM concat (mapM f xs)

-- | Applicative version of mapMaybe
mapMaybeM :: Applicative m => (a -> m (Maybe b)) -> [a] -> m [b]
mapMaybeM f = foldr g (pure [])
  where g a = liftA2 (maybe id (:)) (f a)

-- | Monadic version of fmap
fmapMaybeM :: (Monad m) => (a -> m b) -> Maybe a -> m (Maybe b)
fmapMaybeM _ Nothing  = return Nothing
fmapMaybeM f (Just x) = f x >>= (return . Just)

-- | Monadic version of fmap
fmapEitherM :: Monad m => (a -> m b) -> (c -> m d) -> Either a c -> m (Either b d)
fmapEitherM fl _ (Left  a) = fl a >>= (return . Left)
fmapEitherM _ fr (Right b) = fr b >>= (return . Right)

-- | Monadic version of 'any', aborts the computation at the first @True@ value
anyM :: Monad m => (a -> m Bool) -> [a] -> m Bool
anyM _ []     = return False
anyM f (x:xs) = do b <- f x
                   if b then return True
                        else anyM f xs

-- | Monad version of 'all', aborts the computation at the first @False@ value
allM :: Monad m => (a -> m Bool) -> [a] -> m Bool
allM _ []     = return True
allM f (b:bs) = (f b) >>= (\bv -> if bv then allM f bs else return False)

-- | Monadic version of or
orM :: Monad m => m Bool -> m Bool -> m Bool
orM m1 m2 = m1 >>= \x -> if x then return True else m2

-- | Monadic version of foldl that discards its result
foldlM_ :: (Monad m, Foldable t) => (a -> b -> m a) -> a -> t b -> m ()
foldlM_ = foldM_

-- | Monadic version of fmap specialised for Maybe
maybeMapM :: Monad m => (a -> m b) -> (Maybe a -> m (Maybe b))
maybeMapM _ Nothing  = return Nothing
maybeMapM m (Just x) = liftM Just $ m x

-- | Monadic version of @when@, taking the condition in the monad
whenM :: Monad m => m Bool -> m () -> m ()
whenM mb thing = do { b <- mb
                    ; when b thing }

-- | Monadic version of @unless@, taking the condition in the monad
unlessM :: Monad m => m Bool -> m () -> m ()
unlessM condM acc = do { cond <- condM
                       ; unless cond acc }

-- | Like 'filterM', only it reverses the sense of the test.
filterOutM :: (Applicative m) => (a -> m Bool) -> [a] -> m [a]
filterOutM p =
  foldr (\ x -> liftA2 (\ flg -> if flg then id else (x:)) (p x)) (pure [])