1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# LANGUAGE ViewPatterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
\section[HsBinds]{Abstract syntax: top-level bindings and signatures}
Datatype for: @BindGroup@, @Bind@, @Sig@, @Bind@.
-}
-- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.*
module Language.Haskell.Syntax.Binds where
import GHC.Prelude
import {-# SOURCE #-} Language.Haskell.Syntax.Expr
( LHsExpr
, MatchGroup
, GRHSs )
import {-# SOURCE #-} Language.Haskell.Syntax.Pat
( LPat )
import Language.Haskell.Syntax.Extension
import Language.Haskell.Syntax.Type
import GHC.Types.Name.Reader(RdrName)
import GHC.Tc.Types.Evidence
import GHC.Core.Type
import GHC.Types.Basic
import GHC.Types.SourceText
import GHC.Types.SrcLoc as SrcLoc
import GHC.Types.Tickish
import GHC.Types.Var
import GHC.Types.Fixity
import GHC.Data.Bag
import GHC.Data.BooleanFormula (LBooleanFormula)
import GHC.Utils.Outputable
import GHC.Utils.Panic (pprPanic)
import Data.Data hiding ( Fixity )
import Data.Void
{-
************************************************************************
* *
\subsection{Bindings: @BindGroup@}
* *
************************************************************************
Global bindings (where clauses)
-}
-- During renaming, we need bindings where the left-hand sides
-- have been renamed but the right-hand sides have not.
-- Other than during renaming, these will be the same.
-- | Haskell Local Bindings
type HsLocalBinds id = HsLocalBindsLR id id
-- | Located Haskell local bindings
type LHsLocalBinds id = XRec id (HsLocalBinds id)
-- | Haskell Local Bindings with separate Left and Right identifier types
--
-- Bindings in a 'let' expression
-- or a 'where' clause
data HsLocalBindsLR idL idR
= HsValBinds
(XHsValBinds idL idR)
(HsValBindsLR idL idR)
-- ^ Haskell Value Bindings
-- There should be no pattern synonyms in the HsValBindsLR
-- These are *local* (not top level) bindings
-- The parser accepts them, however, leaving the
-- renamer to report them
| HsIPBinds
(XHsIPBinds idL idR)
(HsIPBinds idR)
-- ^ Haskell Implicit Parameter Bindings
| EmptyLocalBinds (XEmptyLocalBinds idL idR)
-- ^ Empty Local Bindings
| XHsLocalBindsLR
!(XXHsLocalBindsLR idL idR)
type LHsLocalBindsLR idL idR = XRec idL (HsLocalBindsLR idL idR)
-- | Haskell Value Bindings
type HsValBinds id = HsValBindsLR id id
-- | Haskell Value bindings with separate Left and Right identifier types
-- (not implicit parameters)
-- Used for both top level and nested bindings
-- May contain pattern synonym bindings
data HsValBindsLR idL idR
= -- | Value Bindings In
--
-- Before renaming RHS; idR is always RdrName
-- Not dependency analysed
-- Recursive by default
ValBinds
(XValBinds idL idR)
(LHsBindsLR idL idR) [LSig idR]
-- | Value Bindings Out
--
-- After renaming RHS; idR can be Name or Id Dependency analysed,
-- later bindings in the list may depend on earlier ones.
| XValBindsLR
!(XXValBindsLR idL idR)
-- ---------------------------------------------------------------------
-- | Located Haskell Binding
type LHsBind id = LHsBindLR id id
-- | Located Haskell Bindings
type LHsBinds id = LHsBindsLR id id
-- | Haskell Binding
type HsBind id = HsBindLR id id
-- | Located Haskell Bindings with separate Left and Right identifier types
type LHsBindsLR idL idR = Bag (LHsBindLR idL idR)
-- | Located Haskell Binding with separate Left and Right identifier types
type LHsBindLR idL idR = XRec idL (HsBindLR idL idR)
{- Note [FunBind vs PatBind]
~~~~~~~~~~~~~~~~~~~~~~~~~
The distinction between FunBind and PatBind is a bit subtle. FunBind covers
patterns which resemble function bindings and simple variable bindings.
f x = e
f !x = e
f = e
!x = e -- FunRhs has SrcStrict
x `f` y = e -- FunRhs has Infix
The actual patterns and RHSs of a FunBind are encoding in fun_matches.
The m_ctxt field of each Match in fun_matches will be FunRhs and carries
two bits of information about the match,
* The mc_fixity field on each Match describes the fixity of the
function binder in that match. E.g. this is legal:
f True False = e1
True `f` True = e2
* The mc_strictness field is used /only/ for nullary FunBinds: ones
with one Match, which has no pats. For these, it describes whether
the match is decorated with a bang (e.g. `!x = e`).
By contrast, PatBind represents data constructor patterns, as well as a few
other interesting cases. Namely,
Just x = e
(x) = e
x :: Ty = e
-}
-- | Haskell Binding with separate Left and Right id's
data HsBindLR idL idR
= -- | Function-like Binding
--
-- FunBind is used for both functions @f x = e@
-- and variables @f = \x -> e@
-- and strict variables @!x = x + 1@
--
-- Reason 1: Special case for type inference: see 'GHC.Tc.Gen.Bind.tcMonoBinds'.
--
-- Reason 2: Instance decls can only have FunBinds, which is convenient.
-- If you change this, you'll need to change e.g. rnMethodBinds
--
-- But note that the form @f :: a->a = ...@
-- parses as a pattern binding, just like
-- @(f :: a -> a) = ... @
--
-- Strict bindings have their strictness recorded in the 'SrcStrictness' of their
-- 'MatchContext'. See Note [FunBind vs PatBind] for
-- details about the relationship between FunBind and PatBind.
--
-- 'GHC.Parser.Annotation.AnnKeywordId's
--
-- - 'GHC.Parser.Annotation.AnnFunId', attached to each element of fun_matches
--
-- - 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
FunBind {
fun_ext :: XFunBind idL idR,
-- ^ After the renamer (but before the type-checker), this contains the
-- locally-bound free variables of this defn. See Note [Bind free vars]
--
-- After the type-checker, this contains a coercion from the type of
-- the MatchGroup to the type of the Id. Example:
--
-- @
-- f :: Int -> forall a. a -> a
-- f x y = y
-- @
--
-- Then the MatchGroup will have type (Int -> a' -> a')
-- (with a free type variable a'). The coercion will take
-- a CoreExpr of this type and convert it to a CoreExpr of
-- type Int -> forall a'. a' -> a'
-- Notice that the coercion captures the free a'.
fun_id :: LIdP idL, -- Note [fun_id in Match] in GHC.Hs.Expr
fun_matches :: MatchGroup idR (LHsExpr idR), -- ^ The payload
fun_tick :: [CoreTickish] -- ^ Ticks to put on the rhs, if any
}
-- | Pattern Binding
--
-- The pattern is never a simple variable;
-- That case is done by FunBind.
-- See Note [FunBind vs PatBind] for details about the
-- relationship between FunBind and PatBind.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnBang',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| PatBind {
pat_ext :: XPatBind idL idR, -- ^ See Note [Bind free vars]
pat_lhs :: LPat idL,
pat_rhs :: GRHSs idR (LHsExpr idR),
pat_ticks :: ([CoreTickish], [[CoreTickish]])
-- ^ Ticks to put on the rhs, if any, and ticks to put on
-- the bound variables.
}
-- | Variable Binding
--
-- Dictionary binding and suchlike.
-- All VarBinds are introduced by the type checker
| VarBind {
var_ext :: XVarBind idL idR,
var_id :: IdP idL,
var_rhs :: LHsExpr idR -- ^ Located only for consistency
}
-- | Abstraction Bindings
| AbsBinds { -- Binds abstraction; TRANSLATION
abs_ext :: XAbsBinds idL idR,
abs_tvs :: [TyVar],
abs_ev_vars :: [EvVar], -- ^ Includes equality constraints
-- | AbsBinds only gets used when idL = idR after renaming,
-- but these need to be idL's for the collect... code in HsUtil
-- to have the right type
abs_exports :: [ABExport idL],
-- | Evidence bindings
-- Why a list? See "GHC.Tc.TyCl.Instance"
-- Note [Typechecking plan for instance declarations]
abs_ev_binds :: [TcEvBinds],
-- | Typechecked user bindings
abs_binds :: LHsBinds idL,
abs_sig :: Bool -- See Note [The abs_sig field of AbsBinds]
}
-- | Patterns Synonym Binding
| PatSynBind
(XPatSynBind idL idR)
(PatSynBind idL idR)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnPattern',
-- 'GHC.Parser.Annotation.AnnLarrow','GHC.Parser.Annotation.AnnEqual',
-- 'GHC.Parser.Annotation.AnnWhere'
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XHsBindsLR !(XXHsBindsLR idL idR)
-- Consider (AbsBinds tvs ds [(ftvs, poly_f, mono_f) binds]
--
-- Creates bindings for (polymorphic, overloaded) poly_f
-- in terms of monomorphic, non-overloaded mono_f
--
-- Invariants:
-- 1. 'binds' binds mono_f
-- 2. ftvs is a subset of tvs
-- 3. ftvs includes all tyvars free in ds
--
-- See Note [AbsBinds]
-- | Abstraction Bindings Export
data ABExport p
= ABE { abe_ext :: XABE p
, abe_poly :: IdP p -- ^ Any INLINE pragma is attached to this Id
, abe_mono :: IdP p
, abe_wrap :: HsWrapper -- ^ See Note [ABExport wrapper]
-- Shape: (forall abs_tvs. abs_ev_vars => abe_mono) ~ abe_poly
, abe_prags :: TcSpecPrags -- ^ SPECIALISE pragmas
}
| XABExport !(XXABExport p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnPattern',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnLarrow',
-- 'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Pattern Synonym binding
data PatSynBind idL idR
= PSB { psb_ext :: XPSB idL idR, -- ^ Post renaming, FVs.
-- See Note [Bind free vars]
psb_id :: LIdP idL, -- ^ Name of the pattern synonym
psb_args :: HsPatSynDetails idR, -- ^ Formal parameter names
psb_def :: LPat idR, -- ^ Right-hand side
psb_dir :: HsPatSynDir idR -- ^ Directionality
}
| XPatSynBind !(XXPatSynBind idL idR)
{-
Note [AbsBinds]
~~~~~~~~~~~~~~~
The AbsBinds constructor is used in the output of the type checker, to
record *typechecked* and *generalised* bindings. Specifically
AbsBinds { abs_tvs = tvs
, abs_ev_vars = [d1,d2]
, abs_exports = [ABE { abe_poly = fp, abe_mono = fm
, abe_wrap = fwrap }
ABE { slly for g } ]
, abs_ev_binds = DBINDS
, abs_binds = BIND[fm,gm] }
where 'BIND' binds the monomorphic Ids 'fm' and 'gm', means
fp = fwrap [/\ tvs. \d1 d2. letrec { DBINDS ]
[ ; BIND[fm,gm] } ]
[ in fm ]
gp = ...same again, with gm instead of fm
The 'fwrap' is an impedance-matcher that typically does nothing; see
Note [ABExport wrapper].
This is a pretty bad translation, because it duplicates all the bindings.
So the desugarer tries to do a better job:
fp = /\ [a,b] -> \ [d1,d2] -> case tp [a,b] [d1,d2] of
(fm,gm) -> fm
..ditto for gp..
tp = /\ [a,b] -> \ [d1,d2] -> letrec { DBINDS; BIND }
in (fm,gm)
In general:
* abs_tvs are the type variables over which the binding group is
generalised
* abs_ev_var are the evidence variables (usually dictionaries)
over which the binding group is generalised
* abs_binds are the monomorphic bindings
* abs_ex_binds are the evidence bindings that wrap the abs_binds
* abs_exports connects the monomorphic Ids bound by abs_binds
with the polymorphic Ids bound by the AbsBinds itself.
For example, consider a module M, with this top-level binding, where
there is no type signature for M.reverse,
M.reverse [] = []
M.reverse (x:xs) = M.reverse xs ++ [x]
In Hindley-Milner, a recursive binding is typechecked with the
*recursive* uses being *monomorphic*. So after typechecking *and*
desugaring we will get something like this
M.reverse :: forall a. [a] -> [a]
= /\a. letrec
reverse :: [a] -> [a] = \xs -> case xs of
[] -> []
(x:xs) -> reverse xs ++ [x]
in reverse
Notice that 'M.reverse' is polymorphic as expected, but there is a local
definition for plain 'reverse' which is *monomorphic*. The type variable
'a' scopes over the entire letrec.
That's after desugaring. What about after type checking but before
desugaring? That's where AbsBinds comes in. It looks like this:
AbsBinds { abs_tvs = [a]
, abs_ev_vars = []
, abs_exports = [ABE { abe_poly = M.reverse :: forall a. [a] -> [a],
, abe_mono = reverse :: [a] -> [a]}]
, abs_ev_binds = {}
, abs_binds = { reverse :: [a] -> [a]
= \xs -> case xs of
[] -> []
(x:xs) -> reverse xs ++ [x] } }
Here,
* abs_tvs says what type variables are abstracted over the binding
group, just 'a' in this case.
* abs_binds is the *monomorphic* bindings of the group
* abs_exports describes how to get the polymorphic Id 'M.reverse'
from the monomorphic one 'reverse'
Notice that the *original* function (the polymorphic one you thought
you were defining) appears in the abe_poly field of the
abs_exports. The bindings in abs_binds are for fresh, local, Ids with
a *monomorphic* Id.
If there is a group of mutually recursive (see Note [Polymorphic
recursion]) functions without type signatures, we get one AbsBinds
with the monomorphic versions of the bindings in abs_binds, and one
element of abe_exports for each variable bound in the mutually
recursive group. This is true even for pattern bindings. Example:
(f,g) = (\x -> x, f)
After type checking we get
AbsBinds { abs_tvs = [a]
, abs_exports = [ ABE { abe_poly = M.f :: forall a. a -> a
, abe_mono = f :: a -> a }
, ABE { abe_poly = M.g :: forall a. a -> a
, abe_mono = g :: a -> a }]
, abs_binds = { (f,g) = (\x -> x, f) }
Note [Polymorphic recursion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
Rec { f x = ...(g ef)...
; g :: forall a. [a] -> [a]
; g y = ...(f eg)... }
These bindings /are/ mutually recursive (f calls g, and g calls f).
But we can use the type signature for g to break the recursion,
like this:
1. Add g :: forall a. [a] -> [a] to the type environment
2. Typecheck the definition of f, all by itself,
including generalising it to find its most general
type, say f :: forall b. b -> b -> [b]
3. Extend the type environment with that type for f
4. Typecheck the definition of g, all by itself,
checking that it has the type claimed by its signature
Steps 2 and 4 each generate a separate AbsBinds, so we end
up with
Rec { AbsBinds { ...for f ... }
; AbsBinds { ...for g ... } }
This approach allows both f and to call each other
polymorphically, even though only g has a signature.
We get an AbsBinds that encompasses multiple source-program
bindings only when
* Each binding in the group has at least one binder that
lacks a user type signature
* The group forms a strongly connected component
Note [The abs_sig field of AbsBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The abs_sig field supports a couple of special cases for bindings.
Consider
x :: Num a => (# a, a #)
x = (# 3, 4 #)
The general desugaring for AbsBinds would give
x = /\a. \ ($dNum :: Num a) ->
letrec xm = (# fromInteger $dNum 3, fromInteger $dNum 4 #) in
xm
But that has an illegal let-binding for an unboxed tuple. In this
case we'd prefer to generate the (more direct)
x = /\ a. \ ($dNum :: Num a) ->
(# fromInteger $dNum 3, fromInteger $dNum 4 #)
A similar thing happens with representation-polymorphic defns
(#11405):
undef :: forall (r :: RuntimeRep) (a :: TYPE r). HasCallStack => a
undef = error "undef"
Again, the vanilla desugaring gives a local let-binding for a
representation-polymorphic (undefm :: a), which is illegal. But
again we can desugar without a let:
undef = /\ a. \ (d:HasCallStack) -> error a d "undef"
The abs_sig field supports this direct desugaring, with no local
let-binding. When abs_sig = True
* the abs_binds is single FunBind
* the abs_exports is a singleton
* we have a complete type sig for binder
and hence the abs_binds is non-recursive
(it binds the mono_id but refers to the poly_id
These properties are exploited in GHC.HsToCore.Binds.dsAbsBinds to
generate code without a let-binding.
Note [ABExport wrapper]
~~~~~~~~~~~~~~~~~~~~~~~
Consider
(f,g) = (\x.x, \y.y)
This ultimately desugars to something like this:
tup :: forall a b. (a->a, b->b)
tup = /\a b. (\x:a.x, \y:b.y)
f :: forall a. a -> a
f = /\a. case tup a Any of
(fm::a->a,gm:Any->Any) -> fm
...similarly for g...
The abe_wrap field deals with impedance-matching between
(/\a b. case tup a b of { (f,g) -> f })
and the thing we really want, which may have fewer type
variables. The action happens in GHC.Tc.Gen.Bind.mkExport.
Note [Bind free vars]
~~~~~~~~~~~~~~~~~~~~~
The bind_fvs field of FunBind and PatBind records the free variables
of the definition. It is used for the following purposes
a) Dependency analysis prior to type checking
(see GHC.Tc.Gen.Bind.tc_group)
b) Deciding whether we can do generalisation of the binding
(see GHC.Tc.Gen.Bind.decideGeneralisationPlan)
c) Deciding whether the binding can be used in static forms
(see GHC.Tc.Gen.Expr.checkClosedInStaticForm for the HsStatic case and
GHC.Tc.Gen.Bind.isClosedBndrGroup).
Specifically,
* bind_fvs includes all free vars that are defined in this module
(including top-level things and lexically scoped type variables)
* bind_fvs excludes imported vars; this is just to keep the set smaller
* Before renaming, and after typechecking, the field is unused;
it's just an error thunk
-}
{-
************************************************************************
* *
Implicit parameter bindings
* *
************************************************************************
-}
-- | Haskell Implicit Parameter Bindings
data HsIPBinds id
= IPBinds
(XIPBinds id)
[LIPBind id]
-- TcEvBinds -- Only in typechecker output; binds
-- -- uses of the implicit parameters
| XHsIPBinds !(XXHsIPBinds id)
-- | Located Implicit Parameter Binding
type LIPBind id = XRec id (IPBind id)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when in a
-- list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Implicit parameter bindings.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnEqual'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data IPBind id
= IPBind
(XCIPBind id)
(XRec id HsIPName)
(LHsExpr id)
| XIPBind !(XXIPBind id)
{-
************************************************************************
* *
\subsection{@Sig@: type signatures and value-modifying user pragmas}
* *
************************************************************************
It is convenient to lump ``value-modifying'' user-pragmas (e.g.,
``specialise this function to these four types...'') in with type
signatures. Then all the machinery to move them into place, etc.,
serves for both.
-}
-- | Located Signature
type LSig pass = XRec pass (Sig pass)
-- | Signatures and pragmas
data Sig pass
= -- | An ordinary type signature
--
-- > f :: Num a => a -> a
--
-- After renaming, this list of Names contains the named
-- wildcards brought into scope by this signature. For a signature
-- @_ -> _a -> Bool@, the renamer will leave the unnamed wildcard @_@
-- untouched, and the named wildcard @_a@ is then replaced with
-- fresh meta vars in the type. Their names are stored in the type
-- signature that brought them into scope, in this third field to be
-- more specific.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon',
-- 'GHC.Parser.Annotation.AnnComma'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
TypeSig
(XTypeSig pass)
[LIdP pass] -- LHS of the signature; e.g. f,g,h :: blah
(LHsSigWcType pass) -- RHS of the signature; can have wildcards
-- | A pattern synonym type signature
--
-- > pattern Single :: () => (Show a) => a -> [a]
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnPattern',
-- 'GHC.Parser.Annotation.AnnDcolon','GHC.Parser.Annotation.AnnForall'
-- 'GHC.Parser.Annotation.AnnDot','GHC.Parser.Annotation.AnnDarrow'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| PatSynSig (XPatSynSig pass) [LIdP pass] (LHsSigType pass)
-- P :: forall a b. Req => Prov => ty
-- | A signature for a class method
-- False: ordinary class-method signature
-- True: generic-default class method signature
-- e.g. class C a where
-- op :: a -> a -- Ordinary
-- default op :: Eq a => a -> a -- Generic default
-- No wildcards allowed here
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDefault',
-- 'GHC.Parser.Annotation.AnnDcolon'
| ClassOpSig (XClassOpSig pass) Bool [LIdP pass] (LHsSigType pass)
-- | A type signature in generated code, notably the code
-- generated for record selectors. We simply record
-- the desired Id itself, replete with its name, type
-- and IdDetails. Otherwise it's just like a type
-- signature: there should be an accompanying binding
| IdSig (XIdSig pass) Id
-- | An ordinary fixity declaration
--
-- > infixl 8 ***
--
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnInfix',
-- 'GHC.Parser.Annotation.AnnVal'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| FixSig (XFixSig pass) (FixitySig pass)
-- | An inline pragma
--
-- > {#- INLINE f #-}
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnOpen' @'{-\# INLINE'@ and @'['@,
-- 'GHC.Parser.Annotation.AnnClose','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnTilde',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| InlineSig (XInlineSig pass)
(LIdP pass) -- Function name
InlinePragma -- Never defaultInlinePragma
-- | A specialisation pragma
--
-- > {-# SPECIALISE f :: Int -> Int #-}
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpen' @'{-\# SPECIALISE'@ and @'['@,
-- 'GHC.Parser.Annotation.AnnTilde',
-- 'GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnClose' @']'@ and @'\#-}'@,
-- 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| SpecSig (XSpecSig pass)
(LIdP pass) -- Specialise a function or datatype ...
[LHsSigType pass] -- ... to these types
InlinePragma -- The pragma on SPECIALISE_INLINE form.
-- If it's just defaultInlinePragma, then we said
-- SPECIALISE, not SPECIALISE_INLINE
-- | A specialisation pragma for instance declarations only
--
-- > {-# SPECIALISE instance Eq [Int] #-}
--
-- (Class tys); should be a specialisation of the
-- current instance declaration
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnInstance','GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| SpecInstSig (XSpecInstSig pass) SourceText (LHsSigType pass)
-- Note [Pragma source text] in GHC.Types.SourceText
-- | A minimal complete definition pragma
--
-- > {-# MINIMAL a | (b, c | (d | e)) #-}
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnVbar','GHC.Parser.Annotation.AnnComma',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| MinimalSig (XMinimalSig pass)
SourceText (LBooleanFormula (LIdP pass))
-- Note [Pragma source text] in GHC.Types.SourceText
-- | A "set cost centre" pragma for declarations
--
-- > {-# SCC funName #-}
--
-- or
--
-- > {-# SCC funName "cost_centre_name" #-}
| SCCFunSig (XSCCFunSig pass)
SourceText -- Note [Pragma source text] in GHC.Types.SourceText
(LIdP pass) -- Function name
(Maybe (XRec pass StringLiteral))
-- | A complete match pragma
--
-- > {-# COMPLETE C, D [:: T] #-}
--
-- Used to inform the pattern match checker about additional
-- complete matchings which, for example, arise from pattern
-- synonym definitions.
| CompleteMatchSig (XCompleteMatchSig pass)
SourceText
(XRec pass [LIdP pass])
(Maybe (LIdP pass))
| XSig !(XXSig pass)
-- | Located Fixity Signature
type LFixitySig pass = XRec pass (FixitySig pass)
-- | Fixity Signature
data FixitySig pass = FixitySig (XFixitySig pass) [LIdP pass] Fixity
| XFixitySig !(XXFixitySig pass)
-- | Type checker Specialisation Pragmas
--
-- 'TcSpecPrags' conveys @SPECIALISE@ pragmas from the type checker to the desugarer
data TcSpecPrags
= IsDefaultMethod -- ^ Super-specialised: a default method should
-- be macro-expanded at every call site
| SpecPrags [LTcSpecPrag]
deriving Data
-- | Located Type checker Specification Pragmas
type LTcSpecPrag = Located TcSpecPrag
-- | Type checker Specification Pragma
data TcSpecPrag
= SpecPrag
Id
HsWrapper
InlinePragma
-- ^ The Id to be specialised, a wrapper that specialises the
-- polymorphic function, and inlining spec for the specialised function
deriving Data
noSpecPrags :: TcSpecPrags
noSpecPrags = SpecPrags []
hasSpecPrags :: TcSpecPrags -> Bool
hasSpecPrags (SpecPrags ps) = not (null ps)
hasSpecPrags IsDefaultMethod = False
isDefaultMethod :: TcSpecPrags -> Bool
isDefaultMethod IsDefaultMethod = True
isDefaultMethod (SpecPrags {}) = False
isFixityLSig :: forall p. UnXRec p => LSig p -> Bool
isFixityLSig (unXRec @p -> FixSig {}) = True
isFixityLSig _ = False
isTypeLSig :: forall p. UnXRec p => LSig p -> Bool -- Type signatures
isTypeLSig (unXRec @p -> TypeSig {}) = True
isTypeLSig (unXRec @p -> ClassOpSig {}) = True
isTypeLSig (unXRec @p -> IdSig {}) = True
isTypeLSig _ = False
isSpecLSig :: forall p. UnXRec p => LSig p -> Bool
isSpecLSig (unXRec @p -> SpecSig {}) = True
isSpecLSig _ = False
isSpecInstLSig :: forall p. UnXRec p => LSig p -> Bool
isSpecInstLSig (unXRec @p -> SpecInstSig {}) = True
isSpecInstLSig _ = False
isPragLSig :: forall p. UnXRec p => LSig p -> Bool
-- Identifies pragmas
isPragLSig (unXRec @p -> SpecSig {}) = True
isPragLSig (unXRec @p -> InlineSig {}) = True
isPragLSig (unXRec @p -> SCCFunSig {}) = True
isPragLSig (unXRec @p -> CompleteMatchSig {}) = True
isPragLSig _ = False
isInlineLSig :: forall p. UnXRec p => LSig p -> Bool
-- Identifies inline pragmas
isInlineLSig (unXRec @p -> InlineSig {}) = True
isInlineLSig _ = False
isMinimalLSig :: forall p. UnXRec p => LSig p -> Bool
isMinimalLSig (unXRec @p -> MinimalSig {}) = True
isMinimalLSig _ = False
isSCCFunSig :: forall p. UnXRec p => LSig p -> Bool
isSCCFunSig (unXRec @p -> SCCFunSig {}) = True
isSCCFunSig _ = False
isCompleteMatchSig :: forall p. UnXRec p => LSig p -> Bool
isCompleteMatchSig (unXRec @p -> CompleteMatchSig {} ) = True
isCompleteMatchSig _ = False
hsSigDoc :: Sig name -> SDoc
hsSigDoc (TypeSig {}) = text "type signature"
hsSigDoc (PatSynSig {}) = text "pattern synonym signature"
hsSigDoc (ClassOpSig _ is_deflt _ _)
| is_deflt = text "default type signature"
| otherwise = text "class method signature"
hsSigDoc (IdSig {}) = text "id signature"
hsSigDoc (SpecSig _ _ _ inl) = (inlinePragmaName . inl_inline $ inl) <+> text "pragma"
hsSigDoc (InlineSig _ _ prag) = (inlinePragmaName . inl_inline $ prag) <+> text "pragma"
-- Using the 'inlinePragmaName' function ensures that the pragma name for any
-- one of the INLINE/INLINABLE/NOINLINE pragmas are printed after being extracted
-- from the InlineSpec field of the pragma.
hsSigDoc (SpecInstSig _ src _) = text (extractSpecPragName src) <+> text "instance pragma"
hsSigDoc (FixSig {}) = text "fixity declaration"
hsSigDoc (MinimalSig {}) = text "MINIMAL pragma"
hsSigDoc (SCCFunSig {}) = text "SCC pragma"
hsSigDoc (CompleteMatchSig {}) = text "COMPLETE pragma"
hsSigDoc (XSig {}) = text "XSIG TTG extension"
-- | Extracts the name for a SPECIALIZE instance pragma. In 'hsSigDoc', the src
-- field of 'SpecInstSig' signature contains the SourceText for a SPECIALIZE
-- instance pragma of the form: "SourceText {-# SPECIALIZE"
--
-- Extraction ensures that all variants of the pragma name (with a 'Z' or an
-- 'S') are output exactly as used in the pragma.
extractSpecPragName :: SourceText -> String
extractSpecPragName srcTxt = case (words $ show srcTxt) of
(_:_:pragName:_) -> filter (/= '\"') pragName
_ -> pprPanic "hsSigDoc: Misformed SPECIALISE instance pragma:" (ppr srcTxt)
{-
************************************************************************
* *
\subsection[PatSynBind]{A pattern synonym definition}
* *
************************************************************************
-}
-- | Haskell Pattern Synonym Details
type HsPatSynDetails pass = HsConDetails Void (LIdP pass) [RecordPatSynField pass]
-- See Note [Record PatSyn Fields]
-- | Record Pattern Synonym Field
data RecordPatSynField pass
= RecordPatSynField
{ recordPatSynField :: FieldOcc pass
-- ^ Field label visible in rest of the file
, recordPatSynPatVar :: LIdP pass
-- ^ Filled in by renamer, the name used internally by the pattern
}
{-
Note [Record PatSyn Fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider the following two pattern synonyms.
pattern P x y = ([x,True], [y,'v'])
pattern Q{ x, y } =([x,True], [y,'v'])
In P, we just have two local binders, x and y.
In Q, we have local binders but also top-level record selectors
x :: ([Bool], [Char]) -> Bool
y :: ([Bool], [Char]) -> Char
Both are recorded in the `RecordPatSynField`s for `x` and `y`:
* recordPatSynField: the top-level record selector
* recordPatSynPatVar: the local `x`, bound only in the RHS of the pattern synonym.
It would make sense to support record-like syntax
pattern Q{ x=x1, y=y1 } = ([x1,True], [y1,'v'])
when we have a different name for the local and top-level binder,
making the distinction between the two names clear.
-}
instance Outputable (XRec a RdrName) => Outputable (RecordPatSynField a) where
ppr (RecordPatSynField { recordPatSynField = v }) = ppr v
-- | Haskell Pattern Synonym Direction
data HsPatSynDir id
= Unidirectional
| ImplicitBidirectional
| ExplicitBidirectional (MatchGroup id (LHsExpr id))
|