1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# LANGUAGE ViewPatterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
-- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.*
-- | Abstract syntax of global declarations.
--
-- Definitions for: @SynDecl@ and @ConDecl@, @ClassDecl@,
-- @InstDecl@, @DefaultDecl@ and @ForeignDecl@.
module Language.Haskell.Syntax.Decls (
-- * Toplevel declarations
HsDecl(..), LHsDecl, HsDataDefn(..), HsDeriving, LHsFunDep, FunDep(..),
HsDerivingClause(..), LHsDerivingClause, DerivClauseTys(..), LDerivClauseTys,
NewOrData(..), newOrDataToFlavour,
StandaloneKindSig(..), LStandaloneKindSig,
-- ** Class or type declarations
TyClDecl(..), LTyClDecl, DataDeclRn(..),
TyClGroup(..),
tyClGroupTyClDecls, tyClGroupInstDecls, tyClGroupRoleDecls,
tyClGroupKindSigs,
isClassDecl, isDataDecl, isSynDecl,
isFamilyDecl, isTypeFamilyDecl, isDataFamilyDecl,
isOpenTypeFamilyInfo, isClosedTypeFamilyInfo,
countTyClDecls,
tyClDeclTyVars,
FamilyDecl(..), LFamilyDecl,
-- ** Instance declarations
InstDecl(..), LInstDecl, FamilyInfo(..), pprFlavour,
TyFamInstDecl(..), LTyFamInstDecl,
TyFamDefltDecl, LTyFamDefltDecl,
DataFamInstDecl(..), LDataFamInstDecl,
FamEqn(..), TyFamInstEqn, LTyFamInstEqn, HsTyPats,
LClsInstDecl, ClsInstDecl(..),
-- ** Standalone deriving declarations
DerivDecl(..), LDerivDecl,
-- ** Deriving strategies
DerivStrategy(..), LDerivStrategy,
derivStrategyName,
-- ** @RULE@ declarations
LRuleDecls,RuleDecls(..),RuleDecl(..),LRuleDecl,HsRuleRn(..),
RuleBndr(..),LRuleBndr,
collectRuleBndrSigTys,
pprFullRuleName,
-- ** @default@ declarations
DefaultDecl(..), LDefaultDecl,
-- ** Template haskell declaration splice
SpliceExplicitFlag(..),
SpliceDecl(..), LSpliceDecl,
-- ** Foreign function interface declarations
ForeignDecl(..), LForeignDecl, ForeignImport(..), ForeignExport(..),
CImportSpec(..),
-- ** Data-constructor declarations
ConDecl(..), LConDecl,
HsConDeclH98Details, HsConDeclGADTDetails(..),
-- ** Document comments
DocDecl(..), LDocDecl, docDeclDoc,
-- ** Deprecations
WarnDecl(..), LWarnDecl,
WarnDecls(..), LWarnDecls,
-- ** Annotations
AnnDecl(..), LAnnDecl,
AnnProvenance(..), annProvenanceName_maybe,
-- ** Role annotations
RoleAnnotDecl(..), LRoleAnnotDecl,
-- ** Injective type families
FamilyResultSig(..), LFamilyResultSig, InjectivityAnn(..), LInjectivityAnn,
-- * Grouping
HsGroup(..), hsGroupInstDecls,
) where
-- friends:
import GHC.Prelude
import {-# SOURCE #-} Language.Haskell.Syntax.Expr
( HsExpr, HsSplice )
-- Because Expr imports Decls via HsBracket
import Language.Haskell.Syntax.Binds
import Language.Haskell.Syntax.Type
import GHC.Hs.Doc
import GHC.Core.TyCon
import GHC.Types.Basic
import GHC.Types.ForeignCall
import Language.Haskell.Syntax.Extension
import GHC.Types.Name.Set
import GHC.Types.Fixity
-- others:
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Types.SrcLoc
import GHC.Types.SourceText
import GHC.Core.Type
import GHC.Unit.Module.Warnings
import GHC.Data.Maybe
import Data.Data hiding (TyCon,Fixity, Infix)
import Data.Void
{-
************************************************************************
* *
\subsection[HsDecl]{Declarations}
* *
************************************************************************
-}
type LHsDecl p = XRec p (HsDecl p)
-- ^ When in a list this may have
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi'
--
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | A Haskell Declaration
data HsDecl p
= TyClD (XTyClD p) (TyClDecl p) -- ^ Type or Class Declaration
| InstD (XInstD p) (InstDecl p) -- ^ Instance declaration
| DerivD (XDerivD p) (DerivDecl p) -- ^ Deriving declaration
| ValD (XValD p) (HsBind p) -- ^ Value declaration
| SigD (XSigD p) (Sig p) -- ^ Signature declaration
| KindSigD (XKindSigD p) (StandaloneKindSig p) -- ^ Standalone kind signature
| DefD (XDefD p) (DefaultDecl p) -- ^ 'default' declaration
| ForD (XForD p) (ForeignDecl p) -- ^ Foreign declaration
| WarningD (XWarningD p) (WarnDecls p) -- ^ Warning declaration
| AnnD (XAnnD p) (AnnDecl p) -- ^ Annotation declaration
| RuleD (XRuleD p) (RuleDecls p) -- ^ Rule declaration
| SpliceD (XSpliceD p) (SpliceDecl p) -- ^ Splice declaration
-- (Includes quasi-quotes)
| DocD (XDocD p) (DocDecl p) -- ^ Documentation comment
-- declaration
| RoleAnnotD (XRoleAnnotD p) (RoleAnnotDecl p) -- ^Role annotation declaration
| XHsDecl !(XXHsDecl p)
{-
Note [Top-level fixity signatures in an HsGroup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An `HsGroup p` stores every top-level fixity declarations in one of two places:
1. hs_fixds :: [LFixitySig p]
This stores fixity signatures for top-level declarations (e.g., functions,
data constructors, classes, type families, etc.) as well as fixity
signatures for class methods written outside of the class, as in this
example:
infixl 4 `m1`
class C1 a where
m1 :: a -> a -> a
2. hs_tyclds :: [TyClGroup p]
Each type class can be found in a TyClDecl inside a TyClGroup, and that
TyClDecl stores the fixity signatures for its methods written inside of the
class, as in this example:
class C2 a where
infixl 4 `m2`
m2 :: a -> a -> a
The story for fixity signatures for class methods is made slightly complicated
by the fact that they can appear both inside and outside of the class itself,
and both forms of fixity signatures are considered top-level. This matters
in `GHC.Rename.Module.rnSrcDecls`, which must create a fixity environment out
of all top-level fixity signatures before doing anything else. Therefore,
`rnSrcDecls` must be aware of both (1) and (2) above. The
`hsGroupTopLevelFixitySigs` function is responsible for collecting this
information from an `HsGroup`.
One might wonder why we even bother separating top-level fixity signatures
into two places at all. That is, why not just take the fixity signatures
from `hs_tyclds` and put them into `hs_fixds` so that they are all in one
location? This ends up causing problems for `GHC.HsToCore.Quote.repTopDs`,
which translates each fixity signature in `hs_fixds` and `hs_tyclds` into a
Template Haskell `Dec`. If there are any duplicate signatures between the two
fields, this will result in an error (#17608).
-}
-- | Haskell Group
--
-- A 'HsDecl' is categorised into a 'HsGroup' before being
-- fed to the renamer.
data HsGroup p
= HsGroup {
hs_ext :: XCHsGroup p,
hs_valds :: HsValBinds p,
hs_splcds :: [LSpliceDecl p],
hs_tyclds :: [TyClGroup p],
-- A list of mutually-recursive groups;
-- This includes `InstDecl`s as well;
-- Parser generates a singleton list;
-- renamer does dependency analysis
hs_derivds :: [LDerivDecl p],
hs_fixds :: [LFixitySig p],
-- A list of fixity signatures defined for top-level
-- declarations and class methods (defined outside of the class
-- itself).
-- See Note [Top-level fixity signatures in an HsGroup]
hs_defds :: [LDefaultDecl p],
hs_fords :: [LForeignDecl p],
hs_warnds :: [LWarnDecls p],
hs_annds :: [LAnnDecl p],
hs_ruleds :: [LRuleDecls p],
hs_docs :: [LDocDecl p]
}
| XHsGroup !(XXHsGroup p)
hsGroupInstDecls :: HsGroup id -> [LInstDecl id]
hsGroupInstDecls = (=<<) group_instds . hs_tyclds
-- | Located Splice Declaration
type LSpliceDecl pass = XRec pass (SpliceDecl pass)
-- | Splice Declaration
data SpliceDecl p
= SpliceDecl -- Top level splice
(XSpliceDecl p)
(XRec p (HsSplice p))
SpliceExplicitFlag
| XSpliceDecl !(XXSpliceDecl p)
{-
************************************************************************
* *
Type and class declarations
* *
************************************************************************
Note [The Naming story]
~~~~~~~~~~~~~~~~~~~~~~~
Here is the story about the implicit names that go with type, class,
and instance decls. It's a bit tricky, so pay attention!
"Implicit" (or "system") binders
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Each data type decl defines
a worker name for each constructor
to-T and from-T convertors
Each class decl defines
a tycon for the class
a data constructor for that tycon
the worker for that constructor
a selector for each superclass
All have occurrence names that are derived uniquely from their parent
declaration.
None of these get separate definitions in an interface file; they are
fully defined by the data or class decl. But they may *occur* in
interface files, of course. Any such occurrence must haul in the
relevant type or class decl.
Plan of attack:
- Ensure they "point to" the parent data/class decl
when loading that decl from an interface file
(See RnHiFiles.getSysBinders)
- When typechecking the decl, we build the implicit TyCons and Ids.
When doing so we look them up in the name cache (GHC.Rename.Env.lookupSysName),
to ensure correct module and provenance is set
These are the two places that we have to conjure up the magic derived
names. (The actual magic is in GHC.Types.Name.Occurrence.mkWorkerOcc, etc.)
Default methods
~~~~~~~~~~~~~~~
- Occurrence name is derived uniquely from the method name
E.g. $dmmax
- If there is a default method name at all, it's recorded in
the ClassOpSig (in GHC.Hs.Binds), in the DefMethInfo field.
(DefMethInfo is defined in GHC.Core.Class)
Source-code class decls and interface-code class decls are treated subtly
differently, which has given me a great deal of confusion over the years.
Here's the deal. (We distinguish the two cases because source-code decls
have (Just binds) in the tcdMeths field, whereas interface decls have Nothing.
In *source-code* class declarations:
- When parsing, every ClassOpSig gets a DefMeth with a suitable RdrName
This is done by GHC.Parser.PostProcess.mkClassOpSigDM
- The renamer renames it to a Name
- During typechecking, we generate a binding for each $dm for
which there's a programmer-supplied default method:
class Foo a where
op1 :: <type>
op2 :: <type>
op1 = ...
We generate a binding for $dmop1 but not for $dmop2.
The Class for Foo has a Nothing for op2 and
a Just ($dm_op1, VanillaDM) for op1.
The Name for $dmop2 is simply discarded.
In *interface-file* class declarations:
- When parsing, we see if there's an explicit programmer-supplied default method
because there's an '=' sign to indicate it:
class Foo a where
op1 = :: <type> -- NB the '='
op2 :: <type>
We use this info to generate a DefMeth with a suitable RdrName for op1,
and a NoDefMeth for op2
- The interface file has a separate definition for $dmop1, with unfolding etc.
- The renamer renames it to a Name.
- The renamer treats $dmop1 as a free variable of the declaration, so that
the binding for $dmop1 will be sucked in. (See RnHsSyn.tyClDeclFVs)
This doesn't happen for source code class decls, because they *bind* the default method.
Dictionary functions
~~~~~~~~~~~~~~~~~~~~
Each instance declaration gives rise to one dictionary function binding.
The type checker makes up new source-code instance declarations
(e.g. from 'deriving' or generic default methods --- see
GHC.Tc.TyCl.Instance.tcInstDecls1). So we can't generate the names for
dictionary functions in advance (we don't know how many we need).
On the other hand for interface-file instance declarations, the decl
specifies the name of the dictionary function, and it has a binding elsewhere
in the interface file:
instance {Eq Int} = dEqInt
dEqInt :: {Eq Int} <pragma info>
So again we treat source code and interface file code slightly differently.
Source code:
- Source code instance decls have a Nothing in the (Maybe name) field
(see data InstDecl below)
- The typechecker makes up a Local name for the dict fun for any source-code
instance decl, whether it comes from a source-code instance decl, or whether
the instance decl is derived from some other construct (e.g. 'deriving').
- The occurrence name it chooses is derived from the instance decl (just for
documentation really) --- e.g. dNumInt. Two dict funs may share a common
occurrence name, but will have different uniques. E.g.
instance Foo [Int] where ...
instance Foo [Bool] where ...
These might both be dFooList
- The CoreTidy phase externalises the name, and ensures the occurrence name is
unique (this isn't special to dict funs). So we'd get dFooList and dFooList1.
- We can take this relaxed approach (changing the occurrence name later)
because dict fun Ids are not captured in a TyCon or Class (unlike default
methods, say). Instead, they are kept separately in the InstEnv. This
makes it easy to adjust them after compiling a module. (Once we've finished
compiling that module, they don't change any more.)
Interface file code:
- The instance decl gives the dict fun name, so the InstDecl has a (Just name)
in the (Maybe name) field.
- RnHsSyn.instDeclFVs treats the dict fun name as free in the decl, so that we
suck in the dfun binding
-}
-- | Located Declaration of a Type or Class
type LTyClDecl pass = XRec pass (TyClDecl pass)
-- | A type or class declaration.
data TyClDecl pass
= -- | @type/data family T :: *->*@
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
-- 'GHC.Parser.Annotation.AnnData',
-- 'GHC.Parser.Annotation.AnnFamily','GHC.Parser.Annotation.AnnDcolon',
-- 'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpenP',
-- 'GHC.Parser.Annotation.AnnDcolon','GHC.Parser.Annotation.AnnCloseP',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnRarrow',
-- 'GHC.Parser.Annotation.AnnVbar'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
FamDecl { tcdFExt :: XFamDecl pass, tcdFam :: FamilyDecl pass }
| -- | @type@ declaration
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
-- 'GHC.Parser.Annotation.AnnEqual',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
SynDecl { tcdSExt :: XSynDecl pass -- ^ Post renameer, FVs
, tcdLName :: LIdP pass -- ^ Type constructor
, tcdTyVars :: LHsQTyVars pass -- ^ Type variables; for an
-- associated type these
-- include outer binders
, tcdFixity :: LexicalFixity -- ^ Fixity used in the declaration
, tcdRhs :: LHsType pass } -- ^ RHS of type declaration
| -- | @data@ declaration
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnData',
-- 'GHC.Parser.Annotation.AnnFamily',
-- 'GHC.Parser.Annotation.AnnNewType',
-- 'GHC.Parser.Annotation.AnnNewType','GHC.Parser.Annotation.AnnDcolon'
-- 'GHC.Parser.Annotation.AnnWhere',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
DataDecl { tcdDExt :: XDataDecl pass -- ^ Post renamer, CUSK flag, FVs
, tcdLName :: LIdP pass -- ^ Type constructor
, tcdTyVars :: LHsQTyVars pass -- ^ Type variables
-- See Note [TyVar binders for associated decls]
, tcdFixity :: LexicalFixity -- ^ Fixity used in the declaration
, tcdDataDefn :: HsDataDefn pass }
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnClass',
-- 'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- - The tcdFDs will have 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnComma'
-- 'GHC.Parser.Annotation.AnnRarrow'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| ClassDecl { tcdCExt :: XClassDecl pass, -- ^ Post renamer, FVs
tcdCtxt :: Maybe (LHsContext pass), -- ^ Context...
tcdLName :: LIdP pass, -- ^ Name of the class
tcdTyVars :: LHsQTyVars pass, -- ^ Class type variables
tcdFixity :: LexicalFixity, -- ^ Fixity used in the declaration
tcdFDs :: [LHsFunDep pass], -- ^ Functional deps
tcdSigs :: [LSig pass], -- ^ Methods' signatures
tcdMeths :: LHsBinds pass, -- ^ Default methods
tcdATs :: [LFamilyDecl pass], -- ^ Associated types;
tcdATDefs :: [LTyFamDefltDecl pass], -- ^ Associated type defaults
tcdDocs :: [LDocDecl pass] -- ^ Haddock docs
}
| XTyClDecl !(XXTyClDecl pass)
data FunDep pass
= FunDep (XCFunDep pass)
[LIdP pass]
[LIdP pass]
| XFunDep !(XXFunDep pass)
type LHsFunDep pass = XRec pass (FunDep pass)
data DataDeclRn = DataDeclRn
{ tcdDataCusk :: Bool -- ^ does this have a CUSK?
-- See Note [CUSKs: complete user-supplied kind signatures]
, tcdFVs :: NameSet }
deriving Data
{- Note [TyVar binders for associated decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For an /associated/ data, newtype, or type-family decl, the LHsQTyVars
/includes/ outer binders. For example
class T a where
data D a c
type F a b :: *
type F a b = a -> a
Here the data decl for 'D', and type-family decl for 'F', both include 'a'
in their LHsQTyVars (tcdTyVars and fdTyVars resp).
Ditto any implicit binders in the hsq_implicit field of the LHSQTyVars.
The idea is that the associated type is really a top-level decl in its
own right. However we are careful to use the same name 'a', so that
we can match things up.
c.f. Note [Associated type tyvar names] in GHC.Core.Class
Note [Family instance declaration binders]
-}
{- Note [Class LayoutInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The LayoutInfo is used to associate Haddock comments with parts of the declaration.
Compare the following examples:
class C a where
f :: a -> Int
-- ^ comment on f
class C a where
f :: a -> Int
-- ^ comment on C
Notice how "comment on f" and "comment on C" differ only by indentation level.
Thus we have to record the indentation level of the class declarations.
See also Note [Adding Haddock comments to the syntax tree] in GHC.Parser.PostProcess.Haddock
-}
-- Simple classifiers for TyClDecl
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- | @True@ <=> argument is a @data@\/@newtype@
-- declaration.
isDataDecl :: TyClDecl pass -> Bool
isDataDecl (DataDecl {}) = True
isDataDecl _other = False
-- | type or type instance declaration
isSynDecl :: TyClDecl pass -> Bool
isSynDecl (SynDecl {}) = True
isSynDecl _other = False
-- | type class
isClassDecl :: TyClDecl pass -> Bool
isClassDecl (ClassDecl {}) = True
isClassDecl _ = False
-- | type/data family declaration
isFamilyDecl :: TyClDecl pass -> Bool
isFamilyDecl (FamDecl {}) = True
isFamilyDecl _other = False
-- | type family declaration
isTypeFamilyDecl :: TyClDecl pass -> Bool
isTypeFamilyDecl (FamDecl _ (FamilyDecl { fdInfo = info })) = case info of
OpenTypeFamily -> True
ClosedTypeFamily {} -> True
_ -> False
isTypeFamilyDecl _ = False
-- | open type family info
isOpenTypeFamilyInfo :: FamilyInfo pass -> Bool
isOpenTypeFamilyInfo OpenTypeFamily = True
isOpenTypeFamilyInfo _ = False
-- | closed type family info
isClosedTypeFamilyInfo :: FamilyInfo pass -> Bool
isClosedTypeFamilyInfo (ClosedTypeFamily {}) = True
isClosedTypeFamilyInfo _ = False
-- | data family declaration
isDataFamilyDecl :: TyClDecl pass -> Bool
isDataFamilyDecl (FamDecl _ (FamilyDecl { fdInfo = DataFamily })) = True
isDataFamilyDecl _other = False
-- Dealing with names
tyClDeclTyVars :: TyClDecl pass -> LHsQTyVars pass
tyClDeclTyVars (FamDecl { tcdFam = FamilyDecl { fdTyVars = tvs } }) = tvs
tyClDeclTyVars d = tcdTyVars d
countTyClDecls :: [TyClDecl pass] -> (Int, Int, Int, Int, Int)
-- class, synonym decls, data, newtype, family decls
countTyClDecls decls
= (count isClassDecl decls,
count isSynDecl decls, -- excluding...
count isDataTy decls, -- ...family...
count isNewTy decls, -- ...instances
count isFamilyDecl decls)
where
isDataTy DataDecl{ tcdDataDefn = HsDataDefn { dd_ND = DataType } } = True
isDataTy _ = False
isNewTy DataDecl{ tcdDataDefn = HsDataDefn { dd_ND = NewType } } = True
isNewTy _ = False
{- Note [CUSKs: complete user-supplied kind signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We kind-check declarations differently if they have a complete, user-supplied
kind signature (CUSK). This is because we can safely generalise a CUSKed
declaration before checking all of the others, supporting polymorphic recursion.
See https://gitlab.haskell.org/ghc/ghc/wikis/ghc-kinds/kind-inference#proposed-new-strategy
and #9200 for lots of discussion of how we got here.
The detection of CUSKs is enabled by the -XCUSKs extension, switched on by default.
Under -XNoCUSKs, all declarations are treated as if they have no CUSK.
See https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0036-kind-signatures.rst
PRINCIPLE:
a type declaration has a CUSK iff we could produce a separate kind signature
for it, just like a type signature for a function,
looking only at the header of the declaration.
Examples:
* data T1 (a :: *->*) (b :: *) = ....
-- Has CUSK; equivalant to T1 :: (*->*) -> * -> *
* data T2 a b = ...
-- No CUSK; we do not want to guess T2 :: * -> * -> *
-- because the full decl might be data T a b = MkT (a b)
* data T3 (a :: k -> *) (b :: *) = ...
-- CUSK; equivalent to T3 :: (k -> *) -> * -> *
-- We lexically generalise over k to get
-- T3 :: forall k. (k -> *) -> * -> *
-- The generalisation is here is purely lexical, just like
-- f3 :: a -> a
-- means
-- f3 :: forall a. a -> a
* data T4 (a :: j k) = ...
-- CUSK; equivalent to T4 :: j k -> *
-- which we lexically generalise to T4 :: forall j k. j k -> *
-- and then, if PolyKinds is on, we further generalise to
-- T4 :: forall kk (j :: kk -> *) (k :: kk). j k -> *
-- Again this is exactly like what happens as the term level
-- when you write
-- f4 :: forall a b. a b -> Int
NOTE THAT
* A CUSK does /not/ mean that everything about the kind signature is
fully specified by the user. Look at T4 and f4: we had to do kind
inference to figure out the kind-quantification. But in both cases
(T4 and f4) that inference is done looking /only/ at the header of T4
(or signature for f4), not at the definition thereof.
* The CUSK completely fixes the kind of the type constructor, forever.
* The precise rules, for each declaration form, for whether a declaration
has a CUSK are given in the user manual section "Complete user-supplied
kind signatures and polymorphic recursion". But they simply implement
PRINCIPLE above.
* Open type families are interesting:
type family T5 a b :: *
There simply /is/ no accompanying declaration, so that info is all
we'll ever get. So we it has a CUSK by definition, and we default
any un-fixed kind variables to *.
* Associated types are a bit tricker:
class C6 a where
type family T6 a b :: *
op :: a Int -> Int
Here C6 does not have a CUSK (in fact we ultimately discover that
a :: * -> *). And hence neither does T6, the associated family,
because we can't fix its kind until we have settled C6. Another
way to say it: unlike a top-level, we /may/ discover more about
a's kind from C6's definition.
* A data definition with a top-level :: must explicitly bind all
kind variables to the right of the ::. See test
dependent/should_compile/KindLevels, which requires this
case. (Naturally, any kind variable mentioned before the :: should
not be bound after it.)
This last point is much more debatable than the others; see
#15142 comment:22
Because this is fiddly to check, there is a field in the DataDeclRn
structure (included in a DataDecl after the renamer) that stores whether
or not the declaration has a CUSK.
-}
{- *********************************************************************
* *
TyClGroup
Strongly connected components of
type, class, instance, and role declarations
* *
********************************************************************* -}
{- Note [TyClGroups and dependency analysis]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A TyClGroup represents a strongly connected components of type/class/instance
decls, together with the role annotations for the type/class declarations.
The hs_tyclds :: [TyClGroup] field of a HsGroup is a dependency-order
sequence of strongly-connected components.
Invariants
* The type and class declarations, group_tyclds, may depend on each
other, or earlier TyClGroups, but not on later ones
* The role annotations, group_roles, are role-annotations for some or
all of the types and classes in group_tyclds (only).
* The instance declarations, group_instds, may (and usually will)
depend on group_tyclds, or on earlier TyClGroups, but not on later
ones.
See Note [Dependency analysis of type, class, and instance decls]
in GHC.Rename.Module for more info.
-}
-- | Type or Class Group
data TyClGroup pass -- See Note [TyClGroups and dependency analysis]
= TyClGroup { group_ext :: XCTyClGroup pass
, group_tyclds :: [LTyClDecl pass]
, group_roles :: [LRoleAnnotDecl pass]
, group_kisigs :: [LStandaloneKindSig pass]
, group_instds :: [LInstDecl pass] }
| XTyClGroup !(XXTyClGroup pass)
tyClGroupTyClDecls :: [TyClGroup pass] -> [LTyClDecl pass]
tyClGroupTyClDecls = concatMap group_tyclds
tyClGroupInstDecls :: [TyClGroup pass] -> [LInstDecl pass]
tyClGroupInstDecls = concatMap group_instds
tyClGroupRoleDecls :: [TyClGroup pass] -> [LRoleAnnotDecl pass]
tyClGroupRoleDecls = concatMap group_roles
tyClGroupKindSigs :: [TyClGroup pass] -> [LStandaloneKindSig pass]
tyClGroupKindSigs = concatMap group_kisigs
{- *********************************************************************
* *
Data and type family declarations
* *
********************************************************************* -}
{- Note [FamilyResultSig]
~~~~~~~~~~~~~~~~~~~~~~~~~
This data type represents the return signature of a type family. Possible
values are:
* NoSig - the user supplied no return signature:
type family Id a where ...
* KindSig - the user supplied the return kind:
type family Id a :: * where ...
* TyVarSig - user named the result with a type variable and possibly
provided a kind signature for that variable:
type family Id a = r where ...
type family Id a = (r :: *) where ...
Naming result of a type family is required if we want to provide
injectivity annotation for a type family:
type family Id a = r | r -> a where ...
See also: Note [Injectivity annotation]
Note [Injectivity annotation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A user can declare a type family to be injective:
type family Id a = r | r -> a where ...
* The part after the "|" is called "injectivity annotation".
* "r -> a" part is called "injectivity condition"; at the moment terms
"injectivity annotation" and "injectivity condition" are synonymous
because we only allow a single injectivity condition.
* "r" is the "LHS of injectivity condition". LHS can only contain the
variable naming the result of a type family.
* "a" is the "RHS of injectivity condition". RHS contains space-separated
type and kind variables representing the arguments of a type
family. Variables can be omitted if a type family is not injective in
these arguments. Example:
type family Foo a b c = d | d -> a c where ...
Note that:
(a) naming of type family result is required to provide injectivity
annotation
(b) for associated types if the result was named then injectivity annotation
is mandatory. Otherwise result type variable is indistinguishable from
associated type default.
It is possible that in the future this syntax will be extended to support
more complicated injectivity annotations. For example we could declare that
if we know the result of Plus and one of its arguments we can determine the
other argument:
type family Plus a b = (r :: Nat) | r a -> b, r b -> a where ...
Here injectivity annotation would consist of two comma-separated injectivity
conditions.
See also Note [Injective type families] in GHC.Core.TyCon
-}
-- | Located type Family Result Signature
type LFamilyResultSig pass = XRec pass (FamilyResultSig pass)
-- | type Family Result Signature
data FamilyResultSig pass = -- see Note [FamilyResultSig]
NoSig (XNoSig pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| KindSig (XCKindSig pass) (LHsKind pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnOpenP','GHC.Parser.Annotation.AnnDcolon',
-- 'GHC.Parser.Annotation.AnnCloseP'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| TyVarSig (XTyVarSig pass) (LHsTyVarBndr () pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnOpenP','GHC.Parser.Annotation.AnnDcolon',
-- 'GHC.Parser.Annotation.AnnCloseP', 'GHC.Parser.Annotation.AnnEqual'
| XFamilyResultSig !(XXFamilyResultSig pass)
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Located type Family Declaration
type LFamilyDecl pass = XRec pass (FamilyDecl pass)
-- | type Family Declaration
data FamilyDecl pass = FamilyDecl
{ fdExt :: XCFamilyDecl pass
, fdInfo :: FamilyInfo pass -- type/data, closed/open
, fdTopLevel :: TopLevelFlag -- used for printing only
, fdLName :: LIdP pass -- type constructor
, fdTyVars :: LHsQTyVars pass -- type variables
-- See Note [TyVar binders for associated decls]
, fdFixity :: LexicalFixity -- Fixity used in the declaration
, fdResultSig :: LFamilyResultSig pass -- result signature
, fdInjectivityAnn :: Maybe (LInjectivityAnn pass) -- optional injectivity ann
}
| XFamilyDecl !(XXFamilyDecl pass)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
-- 'GHC.Parser.Annotation.AnnData', 'GHC.Parser.Annotation.AnnFamily',
-- 'GHC.Parser.Annotation.AnnWhere', 'GHC.Parser.Annotation.AnnOpenP',
-- 'GHC.Parser.Annotation.AnnDcolon', 'GHC.Parser.Annotation.AnnCloseP',
-- 'GHC.Parser.Annotation.AnnEqual', 'GHC.Parser.Annotation.AnnRarrow',
-- 'GHC.Parser.Annotation.AnnVbar'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Located Injectivity Annotation
type LInjectivityAnn pass = XRec pass (InjectivityAnn pass)
-- | If the user supplied an injectivity annotation it is represented using
-- InjectivityAnn. At the moment this is a single injectivity condition - see
-- Note [Injectivity annotation]. `Located name` stores the LHS of injectivity
-- condition. `[Located name]` stores the RHS of injectivity condition. Example:
--
-- type family Foo a b c = r | r -> a c where ...
--
-- This will be represented as "InjectivityAnn `r` [`a`, `c`]"
data InjectivityAnn pass
= InjectivityAnn (XCInjectivityAnn pass)
(LIdP pass) [LIdP pass]
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnRarrow', 'GHC.Parser.Annotation.AnnVbar'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XInjectivityAnn !(XXInjectivityAnn pass)
data FamilyInfo pass
= DataFamily
| OpenTypeFamily
-- | 'Nothing' if we're in an hs-boot file and the user
-- said "type family Foo x where .."
| ClosedTypeFamily (Maybe [LTyFamInstEqn pass])
------------- Pretty printing FamilyDecls -----------
pprFlavour :: FamilyInfo pass -> SDoc
pprFlavour DataFamily = text "data"
pprFlavour OpenTypeFamily = text "type"
pprFlavour (ClosedTypeFamily {}) = text "type"
instance Outputable (FamilyInfo pass) where
ppr info = pprFlavour info <+> text "family"
{- *********************************************************************
* *
Data types and data constructors
* *
********************************************************************* -}
-- | Haskell Data type Definition
data HsDataDefn pass -- The payload of a data type defn
-- Used *both* for vanilla data declarations,
-- *and* for data family instances
= -- | Declares a data type or newtype, giving its constructors
-- @
-- data/newtype T a = <constrs>
-- data/newtype instance T [a] = <constrs>
-- @
HsDataDefn { dd_ext :: XCHsDataDefn pass,
dd_ND :: NewOrData,
dd_ctxt :: Maybe (LHsContext pass), -- ^ Context
dd_cType :: Maybe (XRec pass CType),
dd_kindSig:: Maybe (LHsKind pass),
-- ^ Optional kind signature.
--
-- @(Just k)@ for a GADT-style @data@,
-- or @data instance@ decl, with explicit kind sig
--
-- Always @Nothing@ for H98-syntax decls
dd_cons :: [LConDecl pass],
-- ^ Data constructors
--
-- For @data T a = T1 | T2 a@
-- the 'LConDecl's all have 'ConDeclH98'.
-- For @data T a where { T1 :: T a }@
-- the 'LConDecls' all have 'ConDeclGADT'.
dd_derivs :: HsDeriving pass -- ^ Optional 'deriving' clause
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
}
| XHsDataDefn !(XXHsDataDefn pass)
-- | Haskell Deriving clause
type HsDeriving pass = [LHsDerivingClause pass]
-- ^ The optional @deriving@ clauses of a data declaration. "Clauses" is
-- plural because one can specify multiple deriving clauses using the
-- @-XDerivingStrategies@ language extension.
--
-- The list of 'LHsDerivingClause's corresponds to exactly what the user
-- requested to derive, in order. If no deriving clauses were specified,
-- the list is empty.
type LHsDerivingClause pass = XRec pass (HsDerivingClause pass)
-- | A single @deriving@ clause of a data declaration.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnDeriving', 'GHC.Parser.Annotation.AnnStock',
-- 'GHC.Parser.Annotation.AnnAnyClass', 'GHC.Parser.Annotation.AnnNewtype',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
data HsDerivingClause pass
-- See Note [Deriving strategies] in GHC.Tc.Deriv
= HsDerivingClause
{ deriv_clause_ext :: XCHsDerivingClause pass
, deriv_clause_strategy :: Maybe (LDerivStrategy pass)
-- ^ The user-specified strategy (if any) to use when deriving
-- 'deriv_clause_tys'.
, deriv_clause_tys :: LDerivClauseTys pass
-- ^ The types to derive.
}
| XHsDerivingClause !(XXHsDerivingClause pass)
type LDerivClauseTys pass = XRec pass (DerivClauseTys pass)
-- | The types mentioned in a single @deriving@ clause. This can come in two
-- forms, 'DctSingle' or 'DctMulti', depending on whether the types are
-- surrounded by enclosing parentheses or not. These parentheses are
-- semantically different than 'HsParTy'. For example, @deriving ()@ means
-- \"derive zero classes\" rather than \"derive an instance of the 0-tuple\".
--
-- 'DerivClauseTys' use 'LHsSigType' because @deriving@ clauses can mention
-- type variables that aren't bound by the datatype, e.g.
--
-- > data T b = ... deriving (C [a])
--
-- should produce a derived instance for @C [a] (T b)@.
data DerivClauseTys pass
= -- | A @deriving@ clause with a single type. Moreover, that type can only
-- be a type constructor without any arguments.
--
-- Example: @deriving Eq@
DctSingle (XDctSingle pass) (LHsSigType pass)
-- | A @deriving@ clause with a comma-separated list of types, surrounded
-- by enclosing parentheses.
--
-- Example: @deriving (Eq, C a)@
| DctMulti (XDctMulti pass) [LHsSigType pass]
| XDerivClauseTys !(XXDerivClauseTys pass)
-- | Located Standalone Kind Signature
type LStandaloneKindSig pass = XRec pass (StandaloneKindSig pass)
data StandaloneKindSig pass
= StandaloneKindSig (XStandaloneKindSig pass)
(LIdP pass) -- Why a single binder? See #16754
(LHsSigType pass) -- Why not LHsSigWcType? See Note [Wildcards in standalone kind signatures]
| XStandaloneKindSig !(XXStandaloneKindSig pass)
{- Note [Wildcards in standalone kind signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Standalone kind signatures enable polymorphic recursion, and it is unclear how
to reconcile this with partial type signatures, so we disallow wildcards in
them.
We reject wildcards in 'rnStandaloneKindSignature' by returning False for
'StandaloneKindSigCtx' in 'wildCardsAllowed'.
The alternative design is to have special treatment for partial standalone kind
signatures, much like we have special treatment for partial type signatures in
terms. However, partial standalone kind signatures are not a proper replacement
for CUSKs, so this would be a separate feature.
-}
data NewOrData
= NewType -- ^ @newtype Blah ...@
| DataType -- ^ @data Blah ...@
deriving( Eq, Data ) -- Needed because Demand derives Eq
-- | Convert a 'NewOrData' to a 'TyConFlavour'
newOrDataToFlavour :: NewOrData -> TyConFlavour
newOrDataToFlavour NewType = NewtypeFlavour
newOrDataToFlavour DataType = DataTypeFlavour
-- | Located data Constructor Declaration
type LConDecl pass = XRec pass (ConDecl pass)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when
-- in a GADT constructor list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- |
--
-- @
-- data T b = forall a. Eq a => MkT a b
-- MkT :: forall b a. Eq a => MkT a b
--
-- data T b where
-- MkT1 :: Int -> T Int
--
-- data T = Int `MkT` Int
-- | MkT2
--
-- data T a where
-- Int `MkT` Int :: T Int
-- @
--
-- - 'GHC.Parser.Annotation.AnnKeywordId's : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnCLose',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnDarrow','GHC.Parser.Annotation.AnnDarrow',
-- 'GHC.Parser.Annotation.AnnForall','GHC.Parser.Annotation.AnnDot'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | data Constructor Declaration
data ConDecl pass
= ConDeclGADT
{ con_g_ext :: XConDeclGADT pass
, con_names :: [LIdP pass]
, con_dcolon :: !(LHsUniToken "::" "∷" pass)
-- The following fields describe the type after the '::'
-- See Note [GADT abstract syntax]
, con_bndrs :: XRec pass (HsOuterSigTyVarBndrs pass)
-- ^ The outermost type variable binders, be they explicit or
-- implicit. The 'XRec' is used to anchor exact print
-- annotations, AnnForall and AnnDot.
, con_mb_cxt :: Maybe (LHsContext pass) -- ^ User-written context (if any)
, con_g_args :: HsConDeclGADTDetails pass -- ^ Arguments; never infix
, con_res_ty :: LHsType pass -- ^ Result type
, con_doc :: Maybe (LHsDoc pass) -- ^ A possible Haddock
-- comment.
}
| ConDeclH98
{ con_ext :: XConDeclH98 pass
, con_name :: LIdP pass
, con_forall :: Bool
-- ^ True <=> explicit user-written forall
-- e.g. data T a = forall b. MkT b (b->a)
-- con_ex_tvs = {b}
-- False => con_ex_tvs is empty
, con_ex_tvs :: [LHsTyVarBndr Specificity pass] -- ^ Existentials only
, con_mb_cxt :: Maybe (LHsContext pass) -- ^ User-written context (if any)
, con_args :: HsConDeclH98Details pass -- ^ Arguments; can be infix
, con_doc :: Maybe (LHsDoc pass) -- ^ A possible Haddock comment.
}
| XConDecl !(XXConDecl pass)
{- Note [GADT abstract syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The types of both forms of GADT constructors are very structured, as they
must consist of the quantified type variables (if provided), followed by the
context (if provided), followed by the argument types (if provided), followed
by the result type. (See "Wrinkle: No nested foralls or contexts" below for
more discussion on the restrictions imposed here.) As a result, instead of
storing the type of a GADT constructor as a single LHsType, we split it up
into its constituent components for easier access.
There are two broad ways to classify GADT constructors:
* Record-syntax constructors. For example:
data T a where
K :: forall a. Ord a => { x :: [a], ... } -> T a
* Prefix constructors, which do not use record syntax. For example:
data T a where
K :: forall a. Ord a => [a] -> ... -> T a
This distinction is recorded in the `con_args :: HsConDetails pass`, which
tracks if we're dealing with a RecCon or PrefixCon. It is easy to distinguish
the two in the AST since record GADT constructors use HsRecTy. This distinction
is made in GHC.Parser.PostProcess.mkGadtDecl.
It is worth elaborating a bit more on the process of splitting the argument
types of a GADT constructor, since there are some non-obvious details involved.
While splitting the argument types of a record GADT constructor is easy (they
are stored in an HsRecTy), splitting the arguments of a prefix GADT constructor
is trickier. The basic idea is that we must split along the outermost function
arrows ((->) and (%1 ->)) in the type, which GHC.Hs.Type.splitHsFunType
accomplishes. But what about type operators? Consider:
C :: a :*: b -> a :*: b -> a :+: b
This could parse in many different ways depending on the precedences of each
type operator. In particular, if (:*:) were to have lower precedence than (->),
then it could very well parse like this:
a :*: ((b -> a) :*: ((b -> a) :+: b)))
This would give the false impression that the whole type is part of one large
return type, with no arguments. Note that we do not fully resolve the exact
precedences of each user-defined type operator until the renamer, so this a
more difficult task for the parser.
Fortunately, there is no risk of the above happening. GHC's parser gives
special treatment to function arrows, and as a result, they are always parsed
with a lower precedence than any other type operator. As a result, the type
above is actually parsed like this:
(a :*: b) -> ((a :*: b) -> (a :+: b))
While we won't know the exact precedences of (:*:) and (:+:) until the renamer,
all we are concerned about in the parser is identifying the overall shape of
the argument and result types, which we can accomplish by piggybacking on the
special treatment given to function arrows. In a future where function arrows
aren't given special status in the parser, we will likely have to modify
GHC.Parser.PostProcess.mkHsOpTyPV to preserve this trick.
-----
-- Wrinkle: No nested foralls or contexts
-----
GADT constructors provide some freedom to change the order of foralls in their
types (see Note [DataCon user type variable binders] in GHC.Core.DataCon), but
this freedom is still limited. GADTs still require that all quantification
occurs "prenex". That is, any explicitly quantified type variables must occur
at the front of the GADT type, followed by any contexts, followed by the body of
the GADT type, in precisely that order. For instance:
data T where
MkT1 :: forall a b. (Eq a, Eq b) => a -> b -> T
-- OK
MkT2 :: forall a. Eq a => forall b. a -> b -> T
-- Rejected, `forall b` is nested
MkT3 :: forall a b. Eq a => Eq b => a -> b -> T
-- Rejected, `Eq b` is nested
MkT4 :: Int -> forall a. a -> T
-- Rejected, `forall a` is nested
MkT5 :: forall a. Int -> Eq a => a -> T
-- Rejected, `Eq a` is nested
MkT6 :: (forall a. a -> T)
-- Rejected, `forall a` is nested due to the surrounding parentheses
MkT7 :: (Eq a => a -> t)
-- Rejected, `Eq a` is nested due to the surrounding parentheses
For the full details, see the "Formal syntax for GADTs" section of the GHC
User's Guide. GHC enforces that GADT constructors do not have nested `forall`s
or contexts in two parts:
1. GHC, in the process of splitting apart a GADT's type,
extracts out the leading `forall` and context (if they are provided). To
accomplish this splitting, the renamer uses the
GHC.Hs.Type.splitLHsGADTPrefixTy function, which is careful not to remove
parentheses surrounding the leading `forall` or context (as these
parentheses can be syntactically significant). If the third result returned
by splitLHsGADTPrefixTy contains any `forall`s or contexts, then they must
be nested, so they will be rejected.
Note that this step applies to both prefix and record GADTs alike, as they
both have syntax which permits `forall`s and contexts. The difference is
where this step happens:
* For prefix GADTs, this happens in the renamer (in rnConDecl), as we cannot
split until after the type operator fixities have been resolved.
* For record GADTs, this happens in the parser (in mkGadtDecl).
2. If the GADT type is prefix, the renamer (in the ConDeclGADTPrefixPs case of
rnConDecl) will then check for nested `forall`s/contexts in the body of a
prefix GADT type, after it has determined what all of the argument types are.
This step is necessary to catch examples like MkT4 above, where the nested
quantification occurs after a visible argument type.
-}
-- | The arguments in a Haskell98-style data constructor.
type HsConDeclH98Details pass
= HsConDetails Void (HsScaled pass (LBangType pass)) (XRec pass [LConDeclField pass])
-- The Void argument to HsConDetails here is a reflection of the fact that
-- type applications are not allowed in data constructor declarations.
-- | The arguments in a GADT constructor. Unlike Haskell98-style constructors,
-- GADT constructors cannot be declared with infix syntax. As a result, we do
-- not use 'HsConDetails' here, as 'InfixCon' would be an unrepresentable
-- state. (There is a notion of infix GADT constructors for the purposes of
-- derived Show instances—see Note [Infix GADT constructors] in
-- GHC.Tc.TyCl—but that is an orthogonal concern.)
data HsConDeclGADTDetails pass
= PrefixConGADT [HsScaled pass (LBangType pass)]
| RecConGADT (XRec pass [LConDeclField pass]) (LHsUniToken "->" "→" pass)
instance Outputable NewOrData where
ppr NewType = text "newtype"
ppr DataType = text "data"
{-
************************************************************************
* *
Instance declarations
* *
************************************************************************
Note [Type family instance declarations in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The data type FamEqn represents one equation of a type family instance.
Aside from the pass, it is also parameterised over another field, feqn_rhs.
feqn_rhs is either an HsDataDefn (for data family instances) or an LHsType
(for type family instances).
Type family instances also include associated type family default equations.
That is because a default for a type family looks like this:
class C a where
type family F a b :: Type
type F c d = (c,d) -- Default instance
The default declaration is really just a `type instance` declaration, but one
with particularly simple patterns: they must all be distinct type variables.
That's because we will instantiate it (in an instance declaration for `C`) if
we don't give an explicit instance for `F`. Note that the names of the
variables don't need to match those of the class: it really is like a
free-standing `type instance` declaration.
-}
----------------- Type synonym family instances -------------
-- | Located Type Family Instance Equation
type LTyFamInstEqn pass = XRec pass (TyFamInstEqn pass)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi'
-- when in a list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Haskell Type Patterns
type HsTyPats pass = [LHsTypeArg pass]
{- Note [Family instance declaration binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The feqn_pats field of FamEqn (family instance equation) stores the LHS type
(and kind) patterns. Any type (and kind) variables contained
in these type patterns are bound in the feqn_bndrs field.
Note that in particular:
* The feqn_bndrs *include* any anonymous wildcards. For example
type instance F a _ = a
The feqn_bndrs will be HsOuterImplicit {a, _}. Remember that each separate
wildcard '_' gets its own unique. In this context wildcards behave just like
an ordinary type variable, only anonymous.
* The feqn_bndrs *include* type variables that are already in scope
Eg class C s t where
type F t p :: *
instance C w (a,b) where
type F (a,b) x = x->a
The feqn_bndrs of the F decl is HsOuterImplicit {a,b,x}, even though the
F decl is nested inside the 'instance' decl.
However after the renamer, the uniques will match up:
instance C w7 (a8,b9) where
type F (a8,b9) x10 = x10->a8
so that we can compare the type pattern in the 'instance' decl and
in the associated 'type' decl
c.f. Note [TyVar binders for associated decls]
-}
-- | Type Family Instance Equation
type TyFamInstEqn pass = FamEqn pass (LHsType pass)
-- Here, the @pats@ are type patterns (with kind and type bndrs).
-- See Note [Family instance declaration binders]
-- | Type family default declarations.
-- A convenient synonym for 'TyFamInstDecl'.
-- See @Note [Type family instance declarations in HsSyn]@.
type TyFamDefltDecl = TyFamInstDecl
-- | Located type family default declarations.
type LTyFamDefltDecl pass = XRec pass (TyFamDefltDecl pass)
-- | Located Type Family Instance Declaration
type LTyFamInstDecl pass = XRec pass (TyFamInstDecl pass)
-- | Type Family Instance Declaration
data TyFamInstDecl pass
= TyFamInstDecl { tfid_xtn :: XCTyFamInstDecl pass
, tfid_eqn :: TyFamInstEqn pass }
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
-- 'GHC.Parser.Annotation.AnnInstance',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XTyFamInstDecl !(XXTyFamInstDecl pass)
----------------- Data family instances -------------
-- | Located Data Family Instance Declaration
type LDataFamInstDecl pass = XRec pass (DataFamInstDecl pass)
-- | Data Family Instance Declaration
newtype DataFamInstDecl pass
= DataFamInstDecl { dfid_eqn :: FamEqn pass (HsDataDefn pass) }
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnData',
-- 'GHC.Parser.Annotation.AnnNewType','GHC.Parser.Annotation.AnnInstance',
-- 'GHC.Parser.Annotation.AnnDcolon'
-- 'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
----------------- Family instances (common types) -------------
-- | Family Equation
--
-- One equation in a type family instance declaration, data family instance
-- declaration, or type family default.
-- See Note [Type family instance declarations in HsSyn]
-- See Note [Family instance declaration binders]
data FamEqn pass rhs
= FamEqn
{ feqn_ext :: XCFamEqn pass rhs
, feqn_tycon :: LIdP pass
, feqn_bndrs :: HsOuterFamEqnTyVarBndrs pass -- ^ Optional quantified type vars
, feqn_pats :: HsTyPats pass
, feqn_fixity :: LexicalFixity -- ^ Fixity used in the declaration
, feqn_rhs :: rhs
}
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnEqual'
| XFamEqn !(XXFamEqn pass rhs)
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
----------------- Class instances -------------
-- | Located Class Instance Declaration
type LClsInstDecl pass = XRec pass (ClsInstDecl pass)
-- | Class Instance Declaration
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnInstance',
-- 'GHC.Parser.Annotation.AnnWhere',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data ClsInstDecl pass
= ClsInstDecl
{ cid_ext :: XCClsInstDecl pass
, cid_poly_ty :: LHsSigType pass -- Context => Class Instance-type
-- Using a polytype means that the renamer conveniently
-- figures out the quantified type variables for us.
, cid_binds :: LHsBinds pass -- Class methods
, cid_sigs :: [LSig pass] -- User-supplied pragmatic info
, cid_tyfam_insts :: [LTyFamInstDecl pass] -- Type family instances
, cid_datafam_insts :: [LDataFamInstDecl pass] -- Data family instances
, cid_overlap_mode :: Maybe (XRec pass OverlapMode)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
}
| XClsInstDecl !(XXClsInstDecl pass)
----------------- Instances of all kinds -------------
-- | Located Instance Declaration
type LInstDecl pass = XRec pass (InstDecl pass)
-- | Instance Declaration
data InstDecl pass -- Both class and family instances
= ClsInstD
{ cid_d_ext :: XClsInstD pass
, cid_inst :: ClsInstDecl pass }
| DataFamInstD -- data family instance
{ dfid_ext :: XDataFamInstD pass
, dfid_inst :: DataFamInstDecl pass }
| TyFamInstD -- type family instance
{ tfid_ext :: XTyFamInstD pass
, tfid_inst :: TyFamInstDecl pass }
| XInstDecl !(XXInstDecl pass)
{-
************************************************************************
* *
\subsection[DerivDecl]{A stand-alone instance deriving declaration}
* *
************************************************************************
-}
-- | Located stand-alone 'deriving instance' declaration
type LDerivDecl pass = XRec pass (DerivDecl pass)
-- | Stand-alone 'deriving instance' declaration
data DerivDecl pass = DerivDecl
{ deriv_ext :: XCDerivDecl pass
, deriv_type :: LHsSigWcType pass
-- ^ The instance type to derive.
--
-- It uses an 'LHsSigWcType' because the context is allowed to be a
-- single wildcard:
--
-- > deriving instance _ => Eq (Foo a)
--
-- Which signifies that the context should be inferred.
-- See Note [Inferring the instance context] in GHC.Tc.Deriv.Infer.
, deriv_strategy :: Maybe (LDerivStrategy pass)
, deriv_overlap_mode :: Maybe (XRec pass OverlapMode)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDeriving',
-- 'GHC.Parser.Annotation.AnnInstance', 'GHC.Parser.Annotation.AnnStock',
-- 'GHC.Parser.Annotation.AnnAnyClass', 'GHC.Parser.Annotation.AnnNewtype',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
}
| XDerivDecl !(XXDerivDecl pass)
{-
************************************************************************
* *
Deriving strategies
* *
************************************************************************
-}
-- | A 'Located' 'DerivStrategy'.
type LDerivStrategy pass = XRec pass (DerivStrategy pass)
-- | Which technique the user explicitly requested when deriving an instance.
data DerivStrategy pass
-- See Note [Deriving strategies] in GHC.Tc.Deriv
= StockStrategy (XStockStrategy pass)
-- ^ GHC's \"standard\" strategy, which is to implement a
-- custom instance for the data type. This only works
-- for certain types that GHC knows about (e.g., 'Eq',
-- 'Show', 'Functor' when @-XDeriveFunctor@ is enabled,
-- etc.)
| AnyclassStrategy (XAnyClassStrategy pass) -- ^ @-XDeriveAnyClass@
| NewtypeStrategy (XNewtypeStrategy pass) -- ^ @-XGeneralizedNewtypeDeriving@
| ViaStrategy (XViaStrategy pass)
-- ^ @-XDerivingVia@
-- | A short description of a @DerivStrategy'@.
derivStrategyName :: DerivStrategy a -> SDoc
derivStrategyName = text . go
where
go StockStrategy {} = "stock"
go AnyclassStrategy {} = "anyclass"
go NewtypeStrategy {} = "newtype"
go ViaStrategy {} = "via"
{-
************************************************************************
* *
\subsection[DefaultDecl]{A @default@ declaration}
* *
************************************************************************
There can only be one default declaration per module, but it is hard
for the parser to check that; we pass them all through in the abstract
syntax, and that restriction must be checked in the front end.
-}
-- | Located Default Declaration
type LDefaultDecl pass = XRec pass (DefaultDecl pass)
-- | Default Declaration
data DefaultDecl pass
= DefaultDecl (XCDefaultDecl pass) [LHsType pass]
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId's : 'GHC.Parser.Annotation.AnnDefault',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XDefaultDecl !(XXDefaultDecl pass)
{-
************************************************************************
* *
\subsection{Foreign function interface declaration}
* *
************************************************************************
-}
-- foreign declarations are distinguished as to whether they define or use a
-- Haskell name
--
-- * the Boolean value indicates whether the pre-standard deprecated syntax
-- has been used
-- | Located Foreign Declaration
type LForeignDecl pass = XRec pass (ForeignDecl pass)
-- | Foreign Declaration
data ForeignDecl pass
= ForeignImport
{ fd_i_ext :: XForeignImport pass -- Post typechecker, rep_ty ~ sig_ty
, fd_name :: LIdP pass -- defines this name
, fd_sig_ty :: LHsSigType pass -- sig_ty
, fd_fi :: ForeignImport }
| ForeignExport
{ fd_e_ext :: XForeignExport pass -- Post typechecker, rep_ty ~ sig_ty
, fd_name :: LIdP pass -- uses this name
, fd_sig_ty :: LHsSigType pass -- sig_ty
, fd_fe :: ForeignExport }
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnForeign',
-- 'GHC.Parser.Annotation.AnnImport','GHC.Parser.Annotation.AnnExport',
-- 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XForeignDecl !(XXForeignDecl pass)
{-
In both ForeignImport and ForeignExport:
sig_ty is the type given in the Haskell code
rep_ty is the representation for this type, i.e. with newtypes
coerced away and type functions evaluated.
Thus if the declaration is valid, then rep_ty will only use types
such as Int and IO that we know how to make foreign calls with.
-}
-- Specification Of an imported external entity in dependence on the calling
-- convention
--
data ForeignImport = -- import of a C entity
--
-- * the two strings specifying a header file or library
-- may be empty, which indicates the absence of a
-- header or object specification (both are not used
-- in the case of `CWrapper' and when `CFunction'
-- has a dynamic target)
--
-- * the calling convention is irrelevant for code
-- generation in the case of `CLabel', but is needed
-- for pretty printing
--
-- * `Safety' is irrelevant for `CLabel' and `CWrapper'
--
CImport (Located CCallConv) -- ccall or stdcall
(Located Safety) -- interruptible, safe or unsafe
(Maybe Header) -- name of C header
CImportSpec -- details of the C entity
(Located SourceText) -- original source text for
-- the C entity
deriving Data
-- details of an external C entity
--
data CImportSpec = CLabel CLabelString -- import address of a C label
| CFunction CCallTarget -- static or dynamic function
| CWrapper -- wrapper to expose closures
-- (former f.e.d.)
deriving Data
-- specification of an externally exported entity in dependence on the calling
-- convention
--
data ForeignExport = CExport (Located CExportSpec) -- contains the calling
-- convention
(Located SourceText) -- original source text for
-- the C entity
deriving Data
-- pretty printing of foreign declarations
--
instance Outputable ForeignImport where
ppr (CImport cconv safety mHeader spec (L _ srcText)) =
ppr cconv <+> ppr safety
<+> pprWithSourceText srcText (pprCEntity spec "")
where
pp_hdr = case mHeader of
Nothing -> empty
Just (Header _ header) -> ftext header
pprCEntity (CLabel lbl) _ =
doubleQuotes $ text "static" <+> pp_hdr <+> char '&' <> ppr lbl
pprCEntity (CFunction (StaticTarget st _lbl _ isFun)) src =
if dqNeeded then doubleQuotes ce else empty
where
dqNeeded = (take 6 src == "static")
|| isJust mHeader
|| not isFun
|| st /= NoSourceText
ce =
-- We may need to drop leading spaces first
(if take 6 src == "static" then text "static" else empty)
<+> pp_hdr
<+> (if isFun then empty else text "value")
<+> (pprWithSourceText st empty)
pprCEntity (CFunction DynamicTarget) _ =
doubleQuotes $ text "dynamic"
pprCEntity CWrapper _ = doubleQuotes $ text "wrapper"
instance Outputable ForeignExport where
ppr (CExport (L _ (CExportStatic _ lbl cconv)) _) =
ppr cconv <+> char '"' <> ppr lbl <> char '"'
{-
************************************************************************
* *
\subsection{Rewrite rules}
* *
************************************************************************
-}
-- | Located Rule Declarations
type LRuleDecls pass = XRec pass (RuleDecls pass)
-- Note [Pragma source text] in GHC.Types.SourceText
-- | Rule Declarations
data RuleDecls pass = HsRules { rds_ext :: XCRuleDecls pass
, rds_src :: SourceText
, rds_rules :: [LRuleDecl pass] }
| XRuleDecls !(XXRuleDecls pass)
-- | Located Rule Declaration
type LRuleDecl pass = XRec pass (RuleDecl pass)
-- | Rule Declaration
data RuleDecl pass
= HsRule -- Source rule
{ rd_ext :: XHsRule pass
-- ^ After renamer, free-vars from the LHS and RHS
, rd_name :: XRec pass (SourceText,RuleName)
-- ^ Note [Pragma source text] in "GHC.Types.Basic"
, rd_act :: Activation
, rd_tyvs :: Maybe [LHsTyVarBndr () (NoGhcTc pass)]
-- ^ Forall'd type vars
, rd_tmvs :: [LRuleBndr pass]
-- ^ Forall'd term vars, before typechecking; after typechecking
-- this includes all forall'd vars
, rd_lhs :: XRec pass (HsExpr pass)
, rd_rhs :: XRec pass (HsExpr pass)
}
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' :
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnTilde',
-- 'GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnClose',
-- 'GHC.Parser.Annotation.AnnForall','GHC.Parser.Annotation.AnnDot',
-- 'GHC.Parser.Annotation.AnnEqual',
| XRuleDecl !(XXRuleDecl pass)
data HsRuleRn = HsRuleRn NameSet NameSet -- Free-vars from the LHS and RHS
deriving Data
-- | Located Rule Binder
type LRuleBndr pass = XRec pass (RuleBndr pass)
-- | Rule Binder
data RuleBndr pass
= RuleBndr (XCRuleBndr pass) (LIdP pass)
| RuleBndrSig (XRuleBndrSig pass) (LIdP pass) (HsPatSigType pass)
| XRuleBndr !(XXRuleBndr pass)
-- ^
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnDcolon','GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
collectRuleBndrSigTys :: [RuleBndr pass] -> [HsPatSigType pass]
collectRuleBndrSigTys bndrs = [ty | RuleBndrSig _ _ ty <- bndrs]
pprFullRuleName :: GenLocated a (SourceText, RuleName) -> SDoc
pprFullRuleName (L _ (st, n)) = pprWithSourceText st (doubleQuotes $ ftext n)
{-
************************************************************************
* *
\subsection[DocDecl]{Document comments}
* *
************************************************************************
-}
-- | Located Documentation comment Declaration
type LDocDecl pass = XRec pass (DocDecl pass)
-- | Documentation comment Declaration
data DocDecl pass
= DocCommentNext (LHsDoc pass)
| DocCommentPrev (LHsDoc pass)
| DocCommentNamed String (LHsDoc pass)
| DocGroup Int (LHsDoc pass)
deriving instance (Data pass, Data (IdP pass)) => Data (DocDecl pass)
-- Okay, I need to reconstruct the document comments, but for now:
instance Outputable (DocDecl name) where
ppr _ = text "<document comment>"
docDeclDoc :: DocDecl pass -> LHsDoc pass
docDeclDoc (DocCommentNext d) = d
docDeclDoc (DocCommentPrev d) = d
docDeclDoc (DocCommentNamed _ d) = d
docDeclDoc (DocGroup _ d) = d
{-
************************************************************************
* *
\subsection[DeprecDecl]{Deprecations}
* *
************************************************************************
We use exported entities for things to deprecate.
-}
-- | Located Warning Declarations
type LWarnDecls pass = XRec pass (WarnDecls pass)
-- Note [Pragma source text] in GHC.Types.SourceText
-- | Warning pragma Declarations
data WarnDecls pass = Warnings { wd_ext :: XWarnings pass
, wd_src :: SourceText
, wd_warnings :: [LWarnDecl pass]
}
| XWarnDecls !(XXWarnDecls pass)
-- | Located Warning pragma Declaration
type LWarnDecl pass = XRec pass (WarnDecl pass)
-- | Warning pragma Declaration
data WarnDecl pass = Warning (XWarning pass) [LIdP pass] (WarningTxt pass)
| XWarnDecl !(XXWarnDecl pass)
{-
************************************************************************
* *
\subsection[AnnDecl]{Annotations}
* *
************************************************************************
-}
-- | Located Annotation Declaration
type LAnnDecl pass = XRec pass (AnnDecl pass)
-- | Annotation Declaration
data AnnDecl pass = HsAnnotation
(XHsAnnotation pass)
SourceText -- Note [Pragma source text] in GHC.Types.SourceText
(AnnProvenance pass) (XRec pass (HsExpr pass))
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnType'
-- 'GHC.Parser.Annotation.AnnModule'
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XAnnDecl !(XXAnnDecl pass)
-- | Annotation Provenance
data AnnProvenance pass = ValueAnnProvenance (LIdP pass)
| TypeAnnProvenance (LIdP pass)
| ModuleAnnProvenance
-- deriving instance Functor AnnProvenance
-- deriving instance Foldable AnnProvenance
-- deriving instance Traversable AnnProvenance
-- deriving instance (Data pass) => Data (AnnProvenance pass)
annProvenanceName_maybe :: forall p. UnXRec p => AnnProvenance p -> Maybe (IdP p)
annProvenanceName_maybe (ValueAnnProvenance (unXRec @p -> name)) = Just name
annProvenanceName_maybe (TypeAnnProvenance (unXRec @p -> name)) = Just name
annProvenanceName_maybe ModuleAnnProvenance = Nothing
{-
************************************************************************
* *
\subsection[RoleAnnot]{Role annotations}
* *
************************************************************************
-}
-- | Located Role Annotation Declaration
type LRoleAnnotDecl pass = XRec pass (RoleAnnotDecl pass)
-- See #8185 for more info about why role annotations are
-- top-level declarations
-- | Role Annotation Declaration
data RoleAnnotDecl pass
= RoleAnnotDecl (XCRoleAnnotDecl pass)
(LIdP pass) -- type constructor
[XRec pass (Maybe Role)] -- optional annotations
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
-- 'GHC.Parser.Annotation.AnnRole'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XRoleAnnotDecl !(XXRoleAnnotDecl pass)
|