1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
|
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
-- in module Language.Haskell.Syntax.Extension
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}
-- See Note [Language.Haskell.Syntax.* Hierarchy] for why not GHC.Hs.*
-- | Abstract Haskell syntax for expressions.
module Language.Haskell.Syntax.Expr where
import Language.Haskell.Syntax.Basic
import Language.Haskell.Syntax.Decls
import Language.Haskell.Syntax.Pat
import Language.Haskell.Syntax.Lit
import Language.Haskell.Syntax.Concrete
import Language.Haskell.Syntax.Extension
import Language.Haskell.Syntax.Type
import Language.Haskell.Syntax.Binds
-- others:
import GHC.Types.Name (OccName)
import GHC.Types.Fixity (LexicalFixity(Infix), Fixity)
import GHC.Types.SourceText (StringLiteral)
import GHC.Unit.Module (ModuleName)
import GHC.Data.FastString (FastString)
-- libraries:
import Data.Data hiding (Fixity(..))
import Data.Bool
import Data.Either
import Data.Eq
import Data.Maybe
import Data.List.NonEmpty ( NonEmpty )
{- Note [RecordDotSyntax field updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The extensions @OverloadedRecordDot@ @OverloadedRecordUpdate@ together
enable record updates like @a{foo.bar.baz = 1}@. Introducing this
syntax slightly complicates parsing. This note explains how it's done.
In the event a record is being constructed or updated, it's this
production that's in play:
@
aexp1 -> aexp1 '{' fbinds '}' {
...
mkHsRecordPV ... $1 (snd $3)
}
@
@fbinds@ is a list of field bindings. @mkHsRecordPV@ is a function of
the @DisambECP b@ typeclass, see Note [Ambiguous syntactic
categories].
The "normal" rules for an @fbind@ are:
@
fbind
: qvar '=' texp
| qvar
@
These rules compute values of @LHsRecField GhcPs (Located b)@. They
apply in the context of record construction, record updates, record
patterns and record expressions. That is, @b@ ranges over @HsExpr
GhcPs@, @HsPat GhcPs@ and @HsCmd GhcPs@.
When @OverloadedRecordDot@ and @OverloadedRecordUpdate@ are both
enabled, two additional @fbind@ rules are admitted:
@
| field TIGHT_INFIX_PROJ fieldToUpdate '=' texp
| field TIGHT_INFIX_PROJ fieldToUpdate
@
These rules only make sense when parsing record update expressions
(that is, patterns and commands cannot be parsed by these rules and
neither record constructions).
The results of these new rules cannot be represented by @LHsRecField
GhcPs (LHsExpr GhcPs)@ values as the type is defined today. We
minimize modifying existing code by having these new rules calculate
@LHsRecProj GhcPs (LHsExpr GhcPs)@ ("record projection") values
instead:
@
newtype FieldLabelStrings = FieldLabelStrings [XRec p (DotFieldOcc p)]
type RecProj arg = HsFieldBind FieldLabelStrings arg
type LHsRecProj p arg = XRec p (RecProj arg)
@
The @fbind@ rule is then given the type @fbind :: { forall b.
DisambECP b => PV (Fbind b) }@ accommodating both alternatives:
@
type Fbind b = Either
(LHsRecField GhcPs (LocatedA b))
( LHsRecProj GhcPs (LocatedA b))
@
In @data HsExpr p@, the @RecordUpd@ constuctor indicates regular
updates vs. projection updates by means of the @rupd_flds@ member
type, an @Either@ instance:
@
| RecordUpd
{ rupd_ext :: XRecordUpd p
, rupd_expr :: LHsExpr p
, rupd_flds :: Either [LHsRecUpdField p] [LHsRecUpdProj p]
}
@
Here,
@
type RecUpdProj p = RecProj p (LHsExpr p)
type LHsRecUpdProj p = XRec p (RecUpdProj p)
@
and @Left@ values indicating regular record update, @Right@ values
updates desugared to @setField@s.
If @OverloadedRecordUpdate@ is enabled, any updates parsed as
@LHsRecField GhcPs@ values are converted to @LHsRecUpdProj GhcPs@
values (see function @mkRdrRecordUpd@ in 'GHC.Parser.PostProcess').
-}
-- | RecordDotSyntax field updates
type LFieldLabelStrings p = XRec p (FieldLabelStrings p)
newtype FieldLabelStrings p =
FieldLabelStrings [XRec p (DotFieldOcc p)]
-- Field projection updates (e.g. @foo.bar.baz = 1@). See Note
-- [RecordDotSyntax field updates].
type RecProj p arg = HsFieldBind (LFieldLabelStrings p) arg
-- The phantom type parameter @p@ is for symmetry with @LHsRecField p
-- arg@ in the definition of @data Fbind@ (see GHC.Parser.Process).
type LHsRecProj p arg = XRec p (RecProj p arg)
-- These two synonyms are used in the definition of syntax @RecordUpd@
-- below.
type RecUpdProj p = RecProj p (LHsExpr p)
type LHsRecUpdProj p = XRec p (RecUpdProj p)
{-
************************************************************************
* *
\subsection{Expressions proper}
* *
************************************************************************
-}
-- * Expressions proper
-- | Located Haskell Expression
type LHsExpr p = XRec p (HsExpr p)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when
-- in a list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-------------------------
{- Note [NoSyntaxExpr]
~~~~~~~~~~~~~~~~~~~~~~
Syntax expressions can be missing (NoSyntaxExprRn or NoSyntaxExprTc)
for several reasons:
1. As described in Note [Rebindable if]
2. In order to suppress "not in scope: xyz" messages when a bit of
rebindable syntax does not apply. For example, when using an irrefutable
pattern in a BindStmt, we don't need a `fail` operator.
3. Rebindable syntax might just not make sense. For example, a BodyStmt
contains the syntax for `guard`, but that's used only in monad comprehensions.
If we had more of a whiz-bang type system, we might be able to rule this
case out statically.
-}
-- | Syntax Expression
--
-- SyntaxExpr is represents the function used in interpreting rebindable
-- syntax. In the parser, we have no information to supply; in the renamer,
-- we have the name of the function (but see
-- Note [Monad fail : Rebindable syntax, overloaded strings] for a wrinkle)
-- and in the type-checker we have a more elaborate structure 'SyntaxExprTc'.
--
-- In some contexts, rebindable syntax is not implemented, and so we have
-- constructors to represent that possibility in both the renamer and
-- typechecker instantiations.
--
-- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for
-- @(>>=)@, and then instantiated by the type checker with its type args
-- etc
type family SyntaxExpr p
{-
Note [Record selectors in the AST]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Here is how record selectors are expressed in GHC's AST:
Example data type
data T = MkT { size :: Int }
Record selectors:
| GhcPs | GhcRn | GhcTc |
----------------------------------------------------------------------------------|
size (assuming one | HsVar | HsRecSel | HsRecSel |
'size' in scope) | | | |
----------------------|--------------|----------------------|---------------------|
.size (assuming | HsProjection | getField @"size" | getField @"size" |
OverloadedRecordDot) | | | |
----------------------|--------------|----------------------|---------------------|
e.size (assuming | HsGetField | getField @"size" e | getField @"size" e |
OverloadedRecordDot) | | | |
NB 1: DuplicateRecordFields makes no difference to the first row of
this table, except that if 'size' is a field of more than one data
type, then a naked use of the record selector 'size' may well be
ambiguous. You have to use a qualified name. And there is no way to do
this if both data types are declared in the same module.
NB 2: The notation getField @"size" e is short for
HsApp (HsAppType (HsVar "getField") (HsWC (HsTyLit (HsStrTy "size")) [])) e.
We track the original parsed syntax via HsExpanded.
-}
{-
Note [Non-overloaded record field selectors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
data T = MkT { x,y :: Int }
f r x = x + y r
This parses with HsVar for x, y, r on the RHS of f. Later, the renamer
recognises that y in the RHS of f is really a record selector, and
changes it to a HsRecSel. In contrast x is locally bound, shadowing
the record selector, and stays as an HsVar.
The renamer adds the Name of the record selector into the XCFieldOcc
extension field, The typechecker keeps HsRecSel as HsRecSel, and
transforms the record-selector Name to an Id.
-}
-- | A Haskell expression.
data HsExpr p
= HsVar (XVar p)
(LIdP p) -- ^ Variable
-- See Note [Located RdrNames]
| HsUnboundVar (XUnboundVar p)
OccName -- ^ Unbound variable; also used for "holes"
-- (_ or _x).
-- Turned from HsVar to HsUnboundVar by the
-- renamer, when it finds an out-of-scope
-- variable or hole.
-- The (XUnboundVar p) field becomes an HoleExprRef
-- after typechecking; this is where the
-- erroring expression will be written after
-- solving. See Note [Holes] in GHC.Tc.Types.Constraint.
| HsRecSel (XRecSel p)
(FieldOcc p) -- ^ Variable pointing to record selector
-- See Note [Non-overloaded record field selectors] and
-- Note [Record selectors in the AST]
| HsOverLabel (XOverLabel p) FastString
-- ^ Overloaded label (Note [Overloaded labels] in GHC.OverloadedLabels)
| HsIPVar (XIPVar p)
HsIPName -- ^ Implicit parameter (not in use after typechecking)
| HsOverLit (XOverLitE p)
(HsOverLit p) -- ^ Overloaded literals
| HsLit (XLitE p)
(HsLit p) -- ^ Simple (non-overloaded) literals
| HsLam (XLam p)
(MatchGroup p (LHsExpr p))
-- ^ Lambda abstraction. Currently always a single match
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Lambda-case
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCases','GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsLamCase (XLamCase p) LamCaseVariant (MatchGroup p (LHsExpr p))
| HsApp (XApp p) (LHsExpr p) (LHsExpr p) -- ^ Application
| HsAppType (XAppTypeE p) -- After typechecking: the type argument
(LHsExpr p)
!(LHsToken "@" p)
(LHsWcType (NoGhcTc p)) -- ^ Visible type application
--
-- Explicit type argument; e.g f @Int x y
-- NB: Has wildcards, but no implicit quantification
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnAt',
-- | Operator applications:
-- NB Bracketed ops such as (+) come out as Vars.
-- NB Sadly, we need an expr for the operator in an OpApp/Section since
-- the renamer may turn a HsVar into HsRecSel or HsUnboundVar
| OpApp (XOpApp p)
(LHsExpr p) -- left operand
(LHsExpr p) -- operator
(LHsExpr p) -- right operand
-- | Negation operator. Contains the negated expression and the name
-- of 'negate'
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnMinus'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| NegApp (XNegApp p)
(LHsExpr p)
(SyntaxExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsPar (XPar p)
!(LHsToken "(" p)
(LHsExpr p) -- ^ Parenthesised expr; see Note [Parens in HsSyn]
!(LHsToken ")" p)
| SectionL (XSectionL p)
(LHsExpr p) -- operand; see Note [Sections in HsSyn]
(LHsExpr p) -- operator
| SectionR (XSectionR p)
(LHsExpr p) -- operator; see Note [Sections in HsSyn]
(LHsExpr p) -- operand
-- | Used for explicit tuples and sections thereof
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- Note [ExplicitTuple]
| ExplicitTuple
(XExplicitTuple p)
[HsTupArg p]
Boxity
-- | Used for unboxed sum types
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(#'@,
-- 'GHC.Parser.Annotation.AnnVbar', 'GHC.Parser.Annotation.AnnClose' @'#)'@,
--
-- There will be multiple 'GHC.Parser.Annotation.AnnVbar', (1 - alternative) before
-- the expression, (arity - alternative) after it
| ExplicitSum
(XExplicitSum p)
ConTag -- Alternative (one-based)
SumWidth -- Sum arity
(LHsExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
-- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCase (XCase p)
(LHsExpr p)
(MatchGroup p (LHsExpr p))
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
-- 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnElse',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsIf (XIf p) -- GhcPs: this is a Bool; False <=> do not use
-- rebindable syntax
(LHsExpr p) -- predicate
(LHsExpr p) -- then part
(LHsExpr p) -- else part
-- | Multi-way if
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf'
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsMultiIf (XMultiIf p) [LGRHS p (LHsExpr p)]
-- | let(rec)
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsLet (XLet p)
!(LHsToken "let" p)
(HsLocalBinds p)
!(LHsToken "in" p)
(LHsExpr p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
-- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsDo (XDo p) -- Type of the whole expression
HsDoFlavour
(XRec p [ExprLStmt p]) -- "do":one or more stmts
-- | Syntactic list: [a,b,c,...]
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- See Note [Empty lists]
| ExplicitList
(XExplicitList p) -- Gives type of components of list
[LHsExpr p]
-- | Record construction
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| RecordCon
{ rcon_ext :: XRecordCon p
, rcon_con :: XRec p (ConLikeP p) -- The constructor
, rcon_flds :: HsRecordBinds p } -- The fields
-- | Record update
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@
-- 'GHC.Parser.Annotation.AnnComma, 'GHC.Parser.Annotation.AnnDot',
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| RecordUpd
{ rupd_ext :: XRecordUpd p
, rupd_expr :: LHsExpr p
, rupd_flds :: Either [LHsRecUpdField p] [LHsRecUpdProj p]
}
-- For a type family, the arg types are of the *instance* tycon,
-- not the family tycon
-- | Record field selection e.g @z.x@.
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDot'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- This case only arises when the OverloadedRecordDot langauge
-- extension is enabled. See Note [Record selectors in the AST].
| HsGetField {
gf_ext :: XGetField p
, gf_expr :: LHsExpr p
, gf_field :: XRec p (DotFieldOcc p)
}
-- | Record field selector. e.g. @(.x)@ or @(.x.y)@
--
-- This case only arises when the OverloadedRecordDot langauge
-- extensions is enabled. See Note [Record selectors in the AST].
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenP'
-- 'GHC.Parser.Annotation.AnnDot', 'GHC.Parser.Annotation.AnnCloseP'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsProjection {
proj_ext :: XProjection p
, proj_flds :: NonEmpty (XRec p (DotFieldOcc p))
}
-- | Expression with an explicit type signature. @e :: type@
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| ExprWithTySig
(XExprWithTySig p)
(LHsExpr p)
(LHsSigWcType (NoGhcTc p))
-- | Arithmetic sequence
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
-- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnDotdot',
-- 'GHC.Parser.Annotation.AnnClose' @']'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| ArithSeq
(XArithSeq p)
(Maybe (SyntaxExpr p))
-- For OverloadedLists, the fromList witness
(ArithSeqInfo p)
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-----------------------------------------------------------
-- MetaHaskell Extensions
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpenE','GHC.Parser.Annotation.AnnOpenEQ',
-- 'GHC.Parser.Annotation.AnnClose','GHC.Parser.Annotation.AnnCloseQ'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsTypedBracket (XTypedBracket p) (LHsExpr p)
| HsUntypedBracket (XUntypedBracket p) (HsQuote p)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsTypedSplice (XTypedSplice p) (LHsExpr p) -- `$$z` or `$$(f 4)`
| HsUntypedSplice (XUntypedSplice p) (HsUntypedSplice p)
-----------------------------------------------------------
-- Arrow notation extension
-- | @proc@ notation for Arrows
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnProc',
-- 'GHC.Parser.Annotation.AnnRarrow'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsProc (XProc p)
(LPat p) -- arrow abstraction, proc
(LHsCmdTop p) -- body of the abstraction
-- always has an empty stack
---------------------------------------
-- static pointers extension
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnStatic',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsStatic (XStatic p) -- Free variables of the body, and type after typechecking
(LHsExpr p) -- Body
---------------------------------------
-- Expressions annotated with pragmas, written as {-# ... #-}
| HsPragE (XPragE p) (HsPragE p) (LHsExpr p)
| XExpr !(XXExpr p)
-- Note [Trees That Grow] in Language.Haskell.Syntax.Extension for the
-- general idea, and Note [Rebindable syntax and HsExpansion] in GHC.Hs.Expr
-- for an example of how we use it.
-- ---------------------------------------------------------------------
data DotFieldOcc p
= DotFieldOcc
{ dfoExt :: XCDotFieldOcc p
, dfoLabel :: XRec p FieldLabelString
}
| XDotFieldOcc !(XXDotFieldOcc p)
-- ---------------------------------------------------------------------
-- | A pragma, written as {-# ... #-}, that may appear within an expression.
data HsPragE p
= HsPragSCC (XSCC p)
StringLiteral -- "set cost centre" SCC pragma
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
-- 'GHC.Parser.Annotation.AnnOpen' @'{-\# GENERATED'@,
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnColon','GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnMinus',
-- 'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnColon',
-- 'GHC.Parser.Annotation.AnnVal',
-- 'GHC.Parser.Annotation.AnnClose' @'\#-}'@
| XHsPragE !(XXPragE p)
-- | Located Haskell Tuple Argument
--
-- 'HsTupArg' is used for tuple sections
-- @(,a,)@ is represented by
-- @ExplicitTuple [Missing ty1, Present a, Missing ty3]@
-- Which in turn stands for @(\x:ty1 \y:ty2. (x,a,y))@
type LHsTupArg id = XRec id (HsTupArg id)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Haskell Tuple Argument
data HsTupArg id
= Present (XPresent id) (LHsExpr id) -- ^ The argument
| Missing (XMissing id) -- ^ The argument is missing, but this is its type
| XTupArg !(XXTupArg id) -- ^ Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-- | Which kind of lambda case are we dealing with?
data LamCaseVariant
= LamCase -- ^ `\case`
| LamCases -- ^ `\cases`
deriving (Data, Eq)
{-
Note [Parens in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~
HsPar (and ParPat in patterns, HsParTy in types) is used as follows
* HsPar is required; the pretty printer does not add parens.
* HsPars are respected when rearranging operator fixities.
So a * (b + c) means what it says (where the parens are an HsPar)
* For ParPat and HsParTy the pretty printer does add parens but this should be
a no-op for ParsedSource, based on the pretty printer round trip feature
introduced in
https://phabricator.haskell.org/rGHC499e43824bda967546ebf95ee33ec1f84a114a7c
* ParPat and HsParTy are pretty printed as '( .. )' regardless of whether or
not they are strictly necessary. This should be addressed when #13238 is
completed, to be treated the same as HsPar.
Note [Sections in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~
Sections should always appear wrapped in an HsPar, thus
HsPar (SectionR ...)
The parser parses sections in a wider variety of situations
(See Note [Parsing sections]), but the renamer checks for those
parens. This invariant makes pretty-printing easier; we don't need
a special case for adding the parens round sections.
Note [Rebindable if]
~~~~~~~~~~~~~~~~~~~~
The rebindable syntax for 'if' is a bit special, because when
rebindable syntax is *off* we do not want to treat
(if c then t else e)
as if it was an application (ifThenElse c t e). Why not?
Because we allow an 'if' to return *unboxed* results, thus
if blah then 3# else 4#
whereas that would not be possible using a all to a polymorphic function
(because you can't call a polymorphic function at an unboxed type).
So we use NoSyntaxExpr to mean "use the old built-in typing rule".
A further complication is that, in the `deriving` code, we never want
to use rebindable syntax. So, even in GhcPs, we want to denote whether
to use rebindable syntax or not. This is done via the type instance
for XIf GhcPs.
Note [Record Update HsWrapper]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a wrapper in RecordUpd which is used for the *required*
constraints for pattern synonyms. This wrapper is created in the
typechecking and is then directly used in the desugaring without
modification.
For example, if we have the record pattern synonym P,
pattern P :: (Show a) => a -> Maybe a
pattern P{x} = Just x
foo = (Just True) { x = False }
then `foo` desugars to something like
foo = case Just True of
P x -> P False
hence we need to provide the correct dictionaries to P's matcher on
the RHS so that we can build the expression.
Note [Located RdrNames]
~~~~~~~~~~~~~~~~~~~~~~~
A number of syntax elements have seemingly redundant locations
attached to them. This is deliberate, to allow transformations making
use of the exact print annotations to easily correlate a Located Name
in the RenamedSource with a Located RdrName in the ParsedSource.
There are unfortunately enough differences between the ParsedSource
and the RenamedSource that the exact print annotations cannot be used
directly with RenamedSource, so this allows a simple mapping to be
used based on the location.
Note [ExplicitTuple]
~~~~~~~~~~~~~~~~~~~~
An ExplicitTuple is never just a data constructor like (,,,).
That is, the `[LHsTupArg p]` argument of `ExplicitTuple` has at least
one `Present` member (and is thus never empty).
A tuple data constructor like () or (,,,) is parsed as an `HsVar`, not an
`ExplicitTuple`, and stays that way. This is important for two reasons:
1. We don't need -XTupleSections for (,,,)
2. The type variables in (,,,) can be instantiated with visible type application.
That is,
(,,) :: forall a b c. a -> b -> c -> (a,b,c)
(True,,) :: forall {b} {c}. b -> c -> (Bool,b,c)
Note that the tuple section has *inferred* arguments, while the data
constructor has *specified* ones.
(See Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl
for background.)
Sadly, the grammar for this is actually ambiguous, and it's only thanks to the
preference of a shift in a shift/reduce conflict that the parser works as this
Note details. Search for a reference to this Note in GHC.Parser for further
explanation.
Note [Empty lists]
~~~~~~~~~~~~~~~~~~
An empty list could be considered either a data constructor (stored with
HsVar) or an ExplicitList. This Note describes how empty lists flow through the
various phases and why.
Parsing
-------
An empty list is parsed by the sysdcon nonterminal. It thus comes to life via
HsVar nilDataCon (defined in GHC.Builtin.Types). A freshly-parsed (HsExpr GhcPs) empty list
is never a ExplicitList.
Renaming
--------
If -XOverloadedLists is enabled, we must type-check the empty list as if it
were a call to fromListN. (This is true regardless of the setting of
-XRebindableSyntax.) This is very easy if the empty list is an ExplicitList,
but an annoying special case if it's an HsVar. So the renamer changes a
HsVar nilDataCon to an ExplicitList [], but only if -XOverloadedLists is on.
(Why not always? Read on, dear friend.) This happens in the HsVar case of rnExpr.
Type-checking
-------------
We want to accept an expression like [] @Int. To do this, we must infer that
[] :: forall a. [a]. This is easy if [] is a HsVar with the right DataCon inside.
However, the type-checking for explicit lists works differently: [x,y,z] is never
polymorphic. Instead, we unify the types of x, y, and z together, and use the
unified type as the argument to the cons and nil constructors. Thus, treating
[] as an empty ExplicitList in the type-checker would prevent [] @Int from working.
However, if -XOverloadedLists is on, then [] @Int really shouldn't be allowed:
it's just like fromListN 0 [] @Int. Since
fromListN :: forall list. IsList list => Int -> [Item list] -> list
that expression really should be rejected. Thus, the renamer's behaviour is
exactly what we want: treat [] as a datacon when -XNoOverloadedLists, and as
an empty ExplicitList when -XOverloadedLists.
See also #13680, which requested [] @Int to work.
-}
{-
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendLExpr (but don't print double parens of course).
For operator applications we don't add parens, because the operator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
-}
{-
************************************************************************
* *
\subsection{Commands (in arrow abstractions)}
* *
************************************************************************
We re-use HsExpr to represent these.
-}
-- | Located Haskell Command (for arrow syntax)
type LHsCmd id = XRec id (HsCmd id)
-- | Haskell Command (e.g. a "statement" in an Arrow proc block)
data HsCmd id
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.Annlarrowtail',
-- 'GHC.Parser.Annotation.Annrarrowtail','GHC.Parser.Annotation.AnnLarrowtail',
-- 'GHC.Parser.Annotation.AnnRarrowtail'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
= HsCmdArrApp -- Arrow tail, or arrow application (f -< arg)
(XCmdArrApp id) -- type of the arrow expressions f,
-- of the form a t t', where arg :: t
(LHsExpr id) -- arrow expression, f
(LHsExpr id) -- input expression, arg
HsArrAppType -- higher-order (-<<) or first-order (-<)
Bool -- True => right-to-left (f -< arg)
-- False => left-to-right (arg >- f)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenB' @'(|'@,
-- 'GHC.Parser.Annotation.AnnCloseB' @'|)'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdArrForm -- Command formation, (| e cmd1 .. cmdn |)
(XCmdArrForm id)
(LHsExpr id) -- The operator.
-- After type-checking, a type abstraction to be
-- applied to the type of the local environment tuple
LexicalFixity -- Whether the operator appeared prefix or infix when
-- parsed.
(Maybe Fixity) -- fixity (filled in by the renamer), for forms that
-- were converted from OpApp's by the renamer
[LHsCmdTop id] -- argument commands
| HsCmdApp (XCmdApp id)
(LHsCmd id)
(LHsExpr id)
| HsCmdLam (XCmdLam id)
(MatchGroup id (LHsCmd id)) -- kappa
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnRarrow',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdPar (XCmdPar id)
!(LHsToken "(" id)
(LHsCmd id) -- parenthesised command
!(LHsToken ")" id)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
-- 'GHC.Parser.Annotation.AnnClose' @')'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdCase (XCmdCase id)
(LHsExpr id)
(MatchGroup id (LHsCmd id)) -- bodies are HsCmd's
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
-- 'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
-- | Lambda-case
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
-- 'GHC.Parser.Annotation.AnnCases','GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdLamCase (XCmdLamCase id) LamCaseVariant
(MatchGroup id (LHsCmd id)) -- bodies are HsCmd's
| HsCmdIf (XCmdIf id)
(SyntaxExpr id) -- cond function
(LHsExpr id) -- predicate
(LHsCmd id) -- then part
(LHsCmd id) -- else part
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
-- 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnElse',
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdLet (XCmdLet id)
!(LHsToken "let" id)
(HsLocalBinds id) -- let(rec)
!(LHsToken "in" id)
(LHsCmd id)
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,
-- 'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| HsCmdDo (XCmdDo id) -- Type of the whole expression
(XRec id [CmdLStmt id])
-- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
-- 'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
-- 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnClose'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| XCmd !(XXCmd id) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-- | Haskell arrow application type.
data HsArrAppType
-- | First order arrow application '-<'
= HsHigherOrderApp
-- | Higher order arrow application '-<<'
| HsFirstOrderApp
deriving Data
{- | Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
-}
-- | Located Haskell Top-level Command
type LHsCmdTop p = XRec p (HsCmdTop p)
-- | Haskell Top-level Command
data HsCmdTop p
= HsCmdTop (XCmdTop p)
(LHsCmd p)
| XCmdTop !(XXCmdTop p) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-----------------------
{-
************************************************************************
* *
\subsection{Record binds}
* *
************************************************************************
-}
-- | Haskell Record Bindings
type HsRecordBinds p = HsRecFields p (LHsExpr p)
{-
************************************************************************
* *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
* *
************************************************************************
@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.
It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it. This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
-}
data MatchGroup p body
= MG { mg_ext :: XMG p body -- Post-typechecker, types of args and result, and origin
, mg_alts :: XRec p [LMatch p body] } -- The alternatives
-- The type is the type of the entire group
-- t1 -> ... -> tn -> tr
-- where there are n patterns
| XMatchGroup !(XXMatchGroup p body)
-- | Located Match
type LMatch id body = XRec id (Match id body)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when in a
-- list
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data Match p body
= Match {
m_ext :: XCMatch p body,
m_ctxt :: HsMatchContext p,
-- See Note [m_ctxt in Match]
m_pats :: [LPat p], -- The patterns
m_grhss :: (GRHSs p body)
}
| XMatch !(XXMatch p body)
{-
Note [m_ctxt in Match]
~~~~~~~~~~~~~~~~~~~~~~
A Match can occur in a number of contexts, such as a FunBind, HsCase, HsLam and
so on.
In order to simplify tooling processing and pretty print output, the provenance
is captured in an HsMatchContext.
This is particularly important for the exact print annotations for a
multi-equation FunBind.
The parser initially creates a FunBind with a single Match in it for
every function definition it sees.
These are then grouped together by getMonoBind into a single FunBind,
where all the Matches are combined.
In the process, all the original FunBind fun_id's bar one are
discarded, including the locations.
This causes a problem for source to source conversions via exact print
annotations, so the original fun_ids and infix flags are preserved in
the Match, when it originates from a FunBind.
Example infix function definition requiring individual exact print
annotations
(&&& ) [] [] = []
xs &&& [] = xs
( &&& ) [] ys = ys
-}
isInfixMatch :: Match id body -> Bool
isInfixMatch match = case m_ctxt match of
FunRhs {mc_fixity = Infix} -> True
_ -> False
-- | Guarded Right-Hand Sides
--
-- GRHSs are used both for pattern bindings and for Matches
--
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere',
-- 'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
-- 'GHC.Parser.Annotation.AnnRarrow','GHC.Parser.Annotation.AnnSemi'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data GRHSs p body
= GRHSs {
grhssExt :: XCGRHSs p body,
grhssGRHSs :: [LGRHS p body], -- ^ Guarded RHSs
grhssLocalBinds :: HsLocalBinds p -- ^ The where clause
}
| XGRHSs !(XXGRHSs p body)
-- | Located Guarded Right-Hand Side
type LGRHS id body = XRec id (GRHS id body)
-- | Guarded Right Hand Side.
data GRHS p body = GRHS (XCGRHS p body)
[GuardLStmt p] -- Guards
body -- Right hand side
| XGRHS !(XXGRHS p body)
-- We know the list must have at least one @Match@ in it.
{-
************************************************************************
* *
\subsection{Do stmts and list comprehensions}
* *
************************************************************************
-}
-- | Located @do@ block Statement
type LStmt id body = XRec id (StmtLR id id body)
-- | Located Statement with separate Left and Right id's
type LStmtLR idL idR body = XRec idL (StmtLR idL idR body)
-- | @do@ block Statement
type Stmt id body = StmtLR id id body
-- | Command Located Statement
type CmdLStmt id = LStmt id (LHsCmd id)
-- | Command Statement
type CmdStmt id = Stmt id (LHsCmd id)
-- | Expression Located Statement
type ExprLStmt id = LStmt id (LHsExpr id)
-- | Expression Statement
type ExprStmt id = Stmt id (LHsExpr id)
-- | Guard Located Statement
type GuardLStmt id = LStmt id (LHsExpr id)
-- | Guard Statement
type GuardStmt id = Stmt id (LHsExpr id)
-- | Ghci Located Statement
type GhciLStmt id = LStmt id (LHsExpr id)
-- | Ghci Statement
type GhciStmt id = Stmt id (LHsExpr id)
-- The SyntaxExprs in here are used *only* for do-notation and monad
-- comprehensions, which have rebindable syntax. Otherwise they are unused.
-- | Exact print annotations when in qualifier lists or guards
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
-- 'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnThen',
-- 'GHC.Parser.Annotation.AnnBy','GHC.Parser.Annotation.AnnBy',
-- 'GHC.Parser.Annotation.AnnGroup','GHC.Parser.Annotation.AnnUsing'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
data StmtLR idL idR body -- body should always be (LHs**** idR)
= LastStmt -- Always the last Stmt in ListComp, MonadComp,
-- and (after the renamer, see GHC.Rename.Expr.checkLastStmt) DoExpr, MDoExpr
-- Not used for GhciStmtCtxt, PatGuard, which scope over other stuff
(XLastStmt idL idR body)
body
(Maybe Bool) -- Whether return was stripped
-- Just True <=> return with a dollar was stripped by ApplicativeDo
-- Just False <=> return without a dollar was stripped by ApplicativeDo
-- Nothing <=> Nothing was stripped
(SyntaxExpr idR) -- The return operator
-- The return operator is used only for MonadComp
-- For ListComp we use the baked-in 'return'
-- For DoExpr, MDoExpr, we don't apply a 'return' at all
-- See Note [Monad Comprehensions]
-- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLarrow'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| BindStmt (XBindStmt idL idR body)
-- ^ Post renaming has optional fail and bind / (>>=) operator.
-- Post typechecking, also has multiplicity of the argument
-- and the result type of the function passed to bind;
-- that is, (P, S) in (>>=) :: Q -> (R % P -> S) -> T
-- See Note [The type of bind in Stmts]
(LPat idL)
body
-- | 'ApplicativeStmt' represents an applicative expression built with
-- '<$>' and '<*>'. It is generated by the renamer, and is desugared into the
-- appropriate applicative expression by the desugarer, but it is intended
-- to be invisible in error messages.
--
-- For full details, see Note [ApplicativeDo] in "GHC.Rename.Expr"
--
| ApplicativeStmt
(XApplicativeStmt idL idR body) -- Post typecheck, Type of the body
[ ( SyntaxExpr idR
, ApplicativeArg idL) ]
-- [(<$>, e1), (<*>, e2), ..., (<*>, en)]
(Maybe (SyntaxExpr idR)) -- 'join', if necessary
| BodyStmt (XBodyStmt idL idR body) -- Post typecheck, element type
-- of the RHS (used for arrows)
body -- See Note [BodyStmt]
(SyntaxExpr idR) -- The (>>) operator
(SyntaxExpr idR) -- The `guard` operator; used only in MonadComp
-- See notes [Monad Comprehensions]
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet'
-- 'GHC.Parser.Annotation.AnnOpen' @'{'@,'GHC.Parser.Annotation.AnnClose' @'}'@,
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| LetStmt (XLetStmt idL idR body) (HsLocalBindsLR idL idR)
-- ParStmts only occur in a list/monad comprehension
| ParStmt (XParStmt idL idR body) -- Post typecheck,
-- S in (>>=) :: Q -> (R -> S) -> T
[ParStmtBlock idL idR]
(HsExpr idR) -- Polymorphic `mzip` for monad comprehensions
(SyntaxExpr idR) -- The `>>=` operator
-- See notes [Monad Comprehensions]
-- After renaming, the ids are the binders
-- bound by the stmts and used after them
| TransStmt {
trS_ext :: XTransStmt idL idR body, -- Post typecheck,
-- R in (>>=) :: Q -> (R -> S) -> T
trS_form :: TransForm,
trS_stmts :: [ExprLStmt idL], -- Stmts to the *left* of the 'group'
-- which generates the tuples to be grouped
trS_bndrs :: [(IdP idR, IdP idR)], -- See Note [TransStmt binder map]
trS_using :: LHsExpr idR,
trS_by :: Maybe (LHsExpr idR), -- "by e" (optional)
-- Invariant: if trS_form = GroupBy, then grp_by = Just e
trS_ret :: SyntaxExpr idR, -- The monomorphic 'return' function for
-- the inner monad comprehensions
trS_bind :: SyntaxExpr idR, -- The '(>>=)' operator
trS_fmap :: HsExpr idR -- The polymorphic 'fmap' function for desugaring
-- Only for 'group' forms
-- Just a simple HsExpr, because it's
-- too polymorphic for tcSyntaxOp
} -- See Note [Monad Comprehensions]
-- Recursive statement (see Note [How RecStmt works] below)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnRec'
-- For details on above see Note [exact print annotations] in GHC.Parser.Annotation
| RecStmt
{ recS_ext :: XRecStmt idL idR body
, recS_stmts :: XRec idR [LStmtLR idL idR body]
-- Assume XRec is the same for idL and idR, pick one arbitrarily
-- The next two fields are only valid after renaming
, recS_later_ids :: [IdP idR]
-- The ids are a subset of the variables bound by the
-- stmts that are used in stmts that follow the RecStmt
, recS_rec_ids :: [IdP idR]
-- Ditto, but these variables are the "recursive" ones,
-- that are used before they are bound in the stmts of
-- the RecStmt.
-- An Id can be in both groups
-- Both sets of Ids are (now) treated monomorphically
-- See Note [How RecStmt works] for why they are separate
-- Rebindable syntax
, recS_bind_fn :: SyntaxExpr idR -- The bind function
, recS_ret_fn :: SyntaxExpr idR -- The return function
, recS_mfix_fn :: SyntaxExpr idR -- The mfix function
}
| XStmtLR !(XXStmtLR idL idR body)
data TransForm -- The 'f' below is the 'using' function, 'e' is the by function
= ThenForm -- then f or then f by e (depending on trS_by)
| GroupForm -- then group using f or then group by e using f (depending on trS_by)
deriving Data
-- | Parenthesised Statement Block
data ParStmtBlock idL idR
= ParStmtBlock
(XParStmtBlock idL idR)
[ExprLStmt idL]
[IdP idR] -- The variables to be returned
(SyntaxExpr idR) -- The return operator
| XParStmtBlock !(XXParStmtBlock idL idR)
-- | The fail operator
--
-- This is used for `.. <-` "bind statements" in do notation, including
-- non-monadic "binds" in applicative.
--
-- The fail operator is 'Just expr' if it potentially fail monadically. if the
-- pattern match cannot fail, or shouldn't fail monadically (regular incomplete
-- pattern exception), it is 'Nothing'.
--
-- See Note [Monad fail : Rebindable syntax, overloaded strings] for the type of
-- expression in the 'Just' case, and why it is so.
--
-- See Note [Failing pattern matches in Stmts] for which contexts for
-- '@BindStmt@'s should use the monadic fail and which shouldn't.
type FailOperator id = Maybe (SyntaxExpr id)
-- | Applicative Argument
data ApplicativeArg idL
= ApplicativeArgOne -- A single statement (BindStmt or BodyStmt)
{ xarg_app_arg_one :: XApplicativeArgOne idL
-- ^ The fail operator, after renaming
--
-- The fail operator is needed if this is a BindStmt
-- where the pattern can fail. E.g.:
-- (Just a) <- stmt
-- The fail operator will be invoked if the pattern
-- match fails.
-- It is also used for guards in MonadComprehensions.
-- The fail operator is Nothing
-- if the pattern match can't fail
, app_arg_pattern :: LPat idL -- WildPat if it was a BodyStmt (see below)
, arg_expr :: LHsExpr idL
, is_body_stmt :: Bool
-- ^ True <=> was a BodyStmt,
-- False <=> was a BindStmt.
-- See Note [Applicative BodyStmt]
}
| ApplicativeArgMany -- do { stmts; return vars }
{ xarg_app_arg_many :: XApplicativeArgMany idL
, app_stmts :: [ExprLStmt idL] -- stmts
, final_expr :: HsExpr idL -- return (v1,..,vn), or just (v1,..,vn)
, bv_pattern :: LPat idL -- (v1,...,vn)
, stmt_context :: HsDoFlavour
-- ^ context of the do expression, used in pprArg
}
| XApplicativeArg !(XXApplicativeArg idL)
{-
Note [The type of bind in Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Stmts, notably BindStmt, keep the (>>=) bind operator.
We do NOT assume that it has type
(>>=) :: m a -> (a -> m b) -> m b
In some cases (see #303, #1537) it might have a more
exotic type, such as
(>>=) :: m i j a -> (a -> m j k b) -> m i k b
So we must be careful not to make assumptions about the type.
In particular, the monad may not be uniform throughout.
Note [TransStmt binder map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [(idR,idR)] in a TransStmt behaves as follows:
* Before renaming: []
* After renaming:
[ (x27,x27), ..., (z35,z35) ]
These are the variables
bound by the stmts to the left of the 'group'
and used either in the 'by' clause,
or in the stmts following the 'group'
Each item is a pair of identical variables.
* After typechecking:
[ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ]
Each pair has the same unique, but different *types*.
Note [BodyStmt]
~~~~~~~~~~~~~~~
BodyStmts are a bit tricky, because what they mean
depends on the context. Consider the following contexts:
A do expression of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E any_ty: do { ....; E; ... }
E :: m any_ty
Translation: E >> ...
A list comprehensions of type [elt_ty]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E Bool: [ .. | .... E ]
[ .. | ..., E, ... ]
[ .. | .... | ..., E | ... ]
E :: Bool
Translation: if E then fail else ...
A guard list, guarding a RHS of type rhs_ty
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E BooParStmtBlockl: f x | ..., E, ... = ...rhs...
E :: Bool
Translation: if E then fail else ...
A monad comprehension of type (m res_ty)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* BodyStmt E Bool: [ .. | .... E ]
E :: Bool
Translation: guard E >> ...
Array comprehensions are handled like list comprehensions.
Note [How RecStmt works]
~~~~~~~~~~~~~~~~~~~~~~~~
Example:
HsDo [ BindStmt x ex
, RecStmt { recS_rec_ids = [a, c]
, recS_stmts = [ BindStmt b (return (a,c))
, LetStmt a = ...b...
, BindStmt c ec ]
, recS_later_ids = [a, b]
, return (a b) ]
Here, the RecStmt binds a,b,c; but
- Only a,b are used in the stmts *following* the RecStmt,
- Only a,c are used in the stmts *inside* the RecStmt
*before* their bindings
Why do we need *both* rec_ids and later_ids? For monads they could be
combined into a single set of variables, but not for arrows. That
follows from the types of the respective feedback operators:
mfix :: MonadFix m => (a -> m a) -> m a
loop :: ArrowLoop a => a (b,d) (c,d) -> a b c
* For mfix, the 'a' covers the union of the later_ids and the rec_ids
* For 'loop', 'c' is the later_ids and 'd' is the rec_ids
Note [Typing a RecStmt]
~~~~~~~~~~~~~~~~~~~~~~~
A (RecStmt stmts) types as if you had written
(v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) ->
do { stmts
; return (v1,..vn, r1, ..., rm) })
where v1..vn are the later_ids
r1..rm are the rec_ids
Note [Monad Comprehensions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monad comprehensions require separate functions like 'return' and
'>>=' for desugaring. These functions are stored in the statements
used in monad comprehensions. For example, the 'return' of the 'LastStmt'
expression is used to lift the body of the monad comprehension:
[ body | stmts ]
=>
stmts >>= \bndrs -> return body
In transform and grouping statements ('then ..' and 'then group ..') the
'return' function is required for nested monad comprehensions, for example:
[ body | stmts, then f, rest ]
=>
f [ env | stmts ] >>= \bndrs -> [ body | rest ]
BodyStmts require the 'Control.Monad.guard' function for boolean
expressions:
[ body | exp, stmts ]
=>
guard exp >> [ body | stmts ]
Parallel statements require the 'Control.Monad.Zip.mzip' function:
[ body | stmts1 | stmts2 | .. ]
=>
mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body
In any other context than 'MonadComp', the fields for most of these
'SyntaxExpr's stay bottom.
Note [Applicative BodyStmt]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
(#12143) For the purposes of ApplicativeDo, we treat any BodyStmt
as if it was a BindStmt with a wildcard pattern. For example,
do
x <- A
B
return x
is transformed as if it were
do
x <- A
_ <- B
return x
so it transforms to
(\(x,_) -> x) <$> A <*> B
But we have to remember when we treat a BodyStmt like a BindStmt,
because in error messages we want to emit the original syntax the user
wrote, not our internal representation. So ApplicativeArgOne has a
Bool flag that is True when the original statement was a BodyStmt, so
that we can pretty-print it correctly.
-}
{-
************************************************************************
* *
Template Haskell quotation brackets
* *
************************************************************************
-}
{-
Note [Quasi-quote overview]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The "quasi-quote" extension is described by Geoff Mainland's paper
"Why it's nice to be quoted: quasiquoting for Haskell" (Haskell
Workshop 2007).
Briefly, one writes
[p| stuff |]
and the arbitrary string "stuff" gets parsed by the parser 'p', whose type
should be Language.Haskell.TH.Quote.QuasiQuoter. 'p' must be defined in
another module, because we are going to run it here. It's a bit like an
/untyped/ TH splice where the parser is applied the "stuff" as a string, thus:
$(p "stuff")
Notice that it's an /untyped/ TH splice: it can occur in patterns and types, as well
as in expressions; and it runs in the renamer.
-}
-- | Haskell Splice
data HsUntypedSplice id
= HsUntypedSpliceExpr -- $z or $(f 4)
(XUntypedSpliceExpr id)
(LHsExpr id)
| HsQuasiQuote -- See Note [Quasi-quote overview]
(XQuasiQuote id)
(IdP id) -- The quoter (the bit between `[` and `|`)
(XRec id FastString) -- The enclosed string
| XUntypedSplice !(XXUntypedSplice id) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
-- | Haskell (Untyped) Quote = Expr + Pat + Type + Var
data HsQuote p
= ExpBr (XExpBr p) (LHsExpr p) -- [| expr |]
| PatBr (XPatBr p) (LPat p) -- [p| pat |]
| DecBrL (XDecBrL p) [LHsDecl p] -- [d| decls |]; result of parser
| DecBrG (XDecBrG p) (HsGroup p) -- [d| decls |]; result of renamer
| TypBr (XTypBr p) (LHsType p) -- [t| type |]
| VarBr (XVarBr p) Bool (LIdP p) -- True: 'x, False: ''T
| XQuote !(XXQuote p) -- Extension point; see Note [Trees That Grow]
-- in Language.Haskell.Syntax.Extension
{-
************************************************************************
* *
\subsection{Enumerations and list comprehensions}
* *
************************************************************************
-}
-- | Arithmetic Sequence Information
data ArithSeqInfo id
= From (LHsExpr id)
| FromThen (LHsExpr id)
(LHsExpr id)
| FromTo (LHsExpr id)
(LHsExpr id)
| FromThenTo (LHsExpr id)
(LHsExpr id)
(LHsExpr id)
-- AZ: Should ArithSeqInfo have a TTG extension?
{-
************************************************************************
* *
\subsection{HsMatchCtxt}
* *
************************************************************************
-}
-- | Haskell Match Context
--
-- Context of a pattern match. This is more subtle than it would seem. See
-- Note [FunBind vs PatBind].
data HsMatchContext p
= FunRhs
-- ^ A pattern matching on an argument of a
-- function binding
{ mc_fun :: LIdP p -- ^ function binder of @f@
, mc_fixity :: LexicalFixity -- ^ fixing of @f@
, mc_strictness :: SrcStrictness -- ^ was @f@ banged?
-- See Note [FunBind vs PatBind]
}
| LambdaExpr -- ^Patterns of a lambda
| CaseAlt -- ^Patterns and guards in a case alternative
| LamCaseAlt LamCaseVariant -- ^Patterns and guards in @\case@ and @\cases@
| IfAlt -- ^Guards of a multi-way if alternative
| ArrowMatchCtxt -- ^A pattern match inside arrow notation
HsArrowMatchContext
| PatBindRhs -- ^A pattern binding eg [y] <- e = e
| PatBindGuards -- ^Guards of pattern bindings, e.g.,
-- (Just b) | Just _ <- x = e
-- | otherwise = e'
| RecUpd -- ^Record update [used only in GHC.HsToCore.Expr to
-- tell matchWrapper what sort of
-- runtime error message to generate]
| StmtCtxt (HsStmtContext p) -- ^Pattern of a do-stmt, list comprehension,
-- pattern guard, etc
| ThPatSplice -- ^A Template Haskell pattern splice
| ThPatQuote -- ^A Template Haskell pattern quotation [p| (a,b) |]
| PatSyn -- ^A pattern synonym declaration
isPatSynCtxt :: HsMatchContext p -> Bool
isPatSynCtxt ctxt =
case ctxt of
PatSyn -> True
_ -> False
-- | Haskell Statement Context.
data HsStmtContext p
= HsDoStmt HsDoFlavour -- ^Context for HsDo (do-notation and comprehensions)
| PatGuard (HsMatchContext p) -- ^Pattern guard for specified thing
| ParStmtCtxt (HsStmtContext p) -- ^A branch of a parallel stmt
| TransStmtCtxt (HsStmtContext p) -- ^A branch of a transform stmt
| ArrowExpr -- ^do-notation in an arrow-command context
-- | Haskell arrow match context.
data HsArrowMatchContext
= ProcExpr -- ^ A proc expression
| ArrowCaseAlt -- ^ A case alternative inside arrow notation
| ArrowLamCaseAlt LamCaseVariant -- ^ A \case or \cases alternative inside arrow notation
| KappaExpr -- ^ An arrow kappa abstraction
data HsDoFlavour
= DoExpr (Maybe ModuleName) -- ^[ModuleName.]do { ... }
| MDoExpr (Maybe ModuleName) -- ^[ModuleName.]mdo { ... } ie recursive do-expression
| GhciStmtCtxt -- ^A command-line Stmt in GHCi pat <- rhs
| ListComp
| MonadComp
qualifiedDoModuleName_maybe :: HsStmtContext p -> Maybe ModuleName
qualifiedDoModuleName_maybe ctxt = case ctxt of
HsDoStmt (DoExpr m) -> m
HsDoStmt (MDoExpr m) -> m
_ -> Nothing
isComprehensionContext :: HsStmtContext id -> Bool
-- Uses comprehension syntax [ e | quals ]
isComprehensionContext (ParStmtCtxt c) = isComprehensionContext c
isComprehensionContext (TransStmtCtxt c) = isComprehensionContext c
isComprehensionContext ArrowExpr = False
isComprehensionContext (PatGuard _) = False
isComprehensionContext (HsDoStmt flavour) = isDoComprehensionContext flavour
isDoComprehensionContext :: HsDoFlavour -> Bool
isDoComprehensionContext GhciStmtCtxt = False
isDoComprehensionContext (DoExpr _) = False
isDoComprehensionContext (MDoExpr _) = False
isDoComprehensionContext ListComp = True
isDoComprehensionContext MonadComp = True
-- | Is this a monadic context?
isMonadStmtContext :: HsStmtContext id -> Bool
isMonadStmtContext (ParStmtCtxt ctxt) = isMonadStmtContext ctxt
isMonadStmtContext (TransStmtCtxt ctxt) = isMonadStmtContext ctxt
isMonadStmtContext (HsDoStmt flavour) = isMonadDoStmtContext flavour
isMonadStmtContext (PatGuard _) = False
isMonadStmtContext ArrowExpr = False
isMonadDoStmtContext :: HsDoFlavour -> Bool
isMonadDoStmtContext ListComp = False
isMonadDoStmtContext MonadComp = True
isMonadDoStmtContext DoExpr{} = True
isMonadDoStmtContext MDoExpr{} = True
isMonadDoStmtContext GhciStmtCtxt = True
isMonadCompContext :: HsStmtContext id -> Bool
isMonadCompContext (HsDoStmt flavour) = isMonadDoCompContext flavour
isMonadCompContext (ParStmtCtxt _) = False
isMonadCompContext (TransStmtCtxt _) = False
isMonadCompContext (PatGuard _) = False
isMonadCompContext ArrowExpr = False
isMonadDoCompContext :: HsDoFlavour -> Bool
isMonadDoCompContext MonadComp = True
isMonadDoCompContext ListComp = False
isMonadDoCompContext GhciStmtCtxt = False
isMonadDoCompContext (DoExpr _) = False
isMonadDoCompContext (MDoExpr _) = False
|