summaryrefslogtreecommitdiff
path: root/compiler/basicTypes/BasicTypes.lhs
blob: 98579ac4c33cb040dd355a121f9c5a0e88811beb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1997-1998
%
\section[BasicTypes]{Miscellanous types}

This module defines a miscellaneously collection of very simple
types that

\begin{itemize}
\item have no other obvious home
\item don't depend on any other complicated types
\item are used in more than one "part" of the compiler
\end{itemize}

\begin{code}
{-# LANGUAGE DeriveDataTypeable #-}

{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module BasicTypes(
	Version, bumpVersion, initialVersion,

	Arity, RepArity,
	
	Alignment,

        FunctionOrData(..),
	
	WarningTxt(..),

	Fixity(..), FixityDirection(..),
	defaultFixity, maxPrecedence, 
	negateFixity, funTyFixity,
	compareFixity,

	IPName(..), ipNameName, mapIPName,

	RecFlag(..), isRec, isNonRec, boolToRecFlag,

	RuleName,

	TopLevelFlag(..), isTopLevel, isNotTopLevel,

	OverlapFlag(..), 

	Boxity(..), isBoxed, 

        TupleSort(..), tupleSortBoxity, boxityNormalTupleSort,
        tupleParens,

	OccInfo(..), seqOccInfo, zapFragileOcc, isOneOcc, 
	isDeadOcc, isStrongLoopBreaker, isWeakLoopBreaker, isNoOcc,
        strongLoopBreaker, weakLoopBreaker, 

	InsideLam, insideLam, notInsideLam,
	OneBranch, oneBranch, notOneBranch,
	InterestingCxt,

        EP(..),

	HsBang(..), isBanged, isMarkedUnboxed, 
        StrictnessMark(..), isMarkedStrict,

	DefMethSpec(..),

        CompilerPhase(..), PhaseNum,
        Activation(..), isActive, isActiveIn,
        isNeverActive, isAlwaysActive, isEarlyActive,
        RuleMatchInfo(..), isConLike, isFunLike, 
        InlineSpec(..), 
        InlinePragma(..), defaultInlinePragma, alwaysInlinePragma, 
        neverInlinePragma, dfunInlinePragma, 
	isDefaultInlinePragma, 
        isInlinePragma, isInlinablePragma, isAnyInlinePragma,
        inlinePragmaSpec, inlinePragmaSat,
        inlinePragmaActivation, inlinePragmaRuleMatchInfo,
        setInlinePragmaActivation, setInlinePragmaRuleMatchInfo,

	SuccessFlag(..), succeeded, failed, successIf,
	
	FractionalLit(..), negateFractionalLit, integralFractionalLit
   ) where

import FastString
import Outputable

import Data.Data hiding (Fixity)
import Data.Function (on)
\end{code}

%************************************************************************
%*									*
\subsection[Arity]{Arity}
%*									*
%************************************************************************

\begin{code}
-- | The number of value arguments that can be applied to a value before it does
-- "real work". So:
--  fib 100     has arity 0
--  \x -> fib x has arity 1
type Arity = Int

-- | The number of represented arguments that can be applied to a value before it does
-- "real work". So:
--  fib 100                    has representation arity 0
--  \x -> fib x                has representation arity 1
--  \(# x, y #) -> fib (x + y) has representation arity 2
type RepArity = Int
\end{code}

%************************************************************************
%*									*
\subsection[Alignment]{Alignment}
%*									*
%************************************************************************

\begin{code}
type Alignment = Int -- align to next N-byte boundary (N must be a power of 2).
\end{code}

%************************************************************************
%*									*
\subsection[FunctionOrData]{FunctionOrData}
%*									*
%************************************************************************

\begin{code}
data FunctionOrData = IsFunction | IsData
    deriving (Eq, Ord, Data, Typeable)

instance Outputable FunctionOrData where
    ppr IsFunction = text "(function)"
    ppr IsData     = text "(data)"
\end{code}


%************************************************************************
%*									*
\subsection[Version]{Module and identifier version numbers}
%*									*
%************************************************************************

\begin{code}
type Version = Int

bumpVersion :: Version -> Version 
bumpVersion v = v+1

initialVersion :: Version
initialVersion = 1
\end{code}

%************************************************************************
%*									*
		Deprecations
%*									*
%************************************************************************


\begin{code}
-- reason/explanation from a WARNING or DEPRECATED pragma
data WarningTxt = WarningTxt [FastString]
                | DeprecatedTxt [FastString]
    deriving (Eq, Data, Typeable)

instance Outputable WarningTxt where
    ppr (WarningTxt    ws) = doubleQuotes (vcat (map ftext ws))
    ppr (DeprecatedTxt ds) = text "Deprecated:" <+>
                             doubleQuotes (vcat (map ftext ds))
\end{code}

%************************************************************************
%*									*
\subsection{Implicit parameter identity}
%*									*
%************************************************************************

The @IPName@ type is here because it is used in TypeRep (i.e. very
early in the hierarchy), but also in HsSyn.

\begin{code}
newtype IPName name = IPName name	-- ?x
  deriving( Eq, Data, Typeable )

instance Functor IPName where
    fmap = mapIPName

ipNameName :: IPName name -> name
ipNameName (IPName n) = n

mapIPName :: (a->b) -> IPName a -> IPName b
mapIPName f (IPName n) = IPName (f n)

instance Outputable name => Outputable (IPName name) where
    ppr (IPName n) = char '?' <> ppr n -- Ordinary implicit parameters
\end{code}

%************************************************************************
%*									*
		Rules
%*									*
%************************************************************************

\begin{code}
type RuleName = FastString
\end{code}

%************************************************************************
%*									*
\subsection[Fixity]{Fixity info}
%*									*
%************************************************************************

\begin{code}
------------------------
data Fixity = Fixity Int FixityDirection
  deriving (Data, Typeable)

instance Outputable Fixity where
    ppr (Fixity prec dir) = hcat [ppr dir, space, int prec]

instance Eq Fixity where		-- Used to determine if two fixities conflict
  (Fixity p1 dir1) == (Fixity p2 dir2) = p1==p2 && dir1 == dir2

------------------------
data FixityDirection = InfixL | InfixR | InfixN 
		     deriving (Eq, Data, Typeable)

instance Outputable FixityDirection where
    ppr InfixL = ptext (sLit "infixl")
    ppr InfixR = ptext (sLit "infixr")
    ppr InfixN = ptext (sLit "infix")

------------------------
maxPrecedence :: Int
maxPrecedence = 9
defaultFixity :: Fixity
defaultFixity = Fixity maxPrecedence InfixL

negateFixity, funTyFixity :: Fixity
-- Wired-in fixities
negateFixity = Fixity 6 InfixL 	-- Fixity of unary negate
funTyFixity  = Fixity 0	InfixR	-- Fixity of '->'
\end{code}

Consider

\begin{verbatim}
	a `op1` b `op2` c
\end{verbatim}
@(compareFixity op1 op2)@ tells which way to arrange appication, or
whether there's an error.

\begin{code}
compareFixity :: Fixity -> Fixity
	      -> (Bool,		-- Error please
		  Bool)		-- Associate to the right: a op1 (b op2 c)
compareFixity (Fixity prec1 dir1) (Fixity prec2 dir2)
  = case prec1 `compare` prec2 of
	GT -> left
	LT -> right
	EQ -> case (dir1, dir2) of
			(InfixR, InfixR) -> right
			(InfixL, InfixL) -> left
			_		 -> error_please
  where
    right	 = (False, True)
    left         = (False, False)
    error_please = (True,  False)
\end{code}


%************************************************************************
%*									*
\subsection[Top-level/local]{Top-level/not-top level flag}
%*									*
%************************************************************************

\begin{code}
data TopLevelFlag
  = TopLevel
  | NotTopLevel

isTopLevel, isNotTopLevel :: TopLevelFlag -> Bool

isNotTopLevel NotTopLevel = True
isNotTopLevel TopLevel    = False

isTopLevel TopLevel	= True
isTopLevel NotTopLevel  = False

instance Outputable TopLevelFlag where
  ppr TopLevel    = ptext (sLit "<TopLevel>")
  ppr NotTopLevel = ptext (sLit "<NotTopLevel>")
\end{code}


%************************************************************************
%*									*
		Boxity flag
%*									*
%************************************************************************

\begin{code}
data Boxity
  = Boxed
  | Unboxed
  deriving( Eq, Data, Typeable )

isBoxed :: Boxity -> Bool
isBoxed Boxed   = True
isBoxed Unboxed = False
\end{code}


%************************************************************************
%*									*
		Recursive/Non-Recursive flag
%*									*
%************************************************************************

\begin{code}
data RecFlag = Recursive 
	     | NonRecursive
	     deriving( Eq, Data, Typeable )

isRec :: RecFlag -> Bool
isRec Recursive    = True
isRec NonRecursive = False

isNonRec :: RecFlag -> Bool
isNonRec Recursive    = False
isNonRec NonRecursive = True

boolToRecFlag :: Bool -> RecFlag
boolToRecFlag True  = Recursive
boolToRecFlag False = NonRecursive

instance Outputable RecFlag where
  ppr Recursive    = ptext (sLit "Recursive")
  ppr NonRecursive = ptext (sLit "NonRecursive")
\end{code}

%************************************************************************
%*									*
		Instance overlap flag
%*									*
%************************************************************************

\begin{code}
data OverlapFlag
  -- | This instance must not overlap another
  = NoOverlap { isSafeOverlap :: Bool }

  -- | Silently ignore this instance if you find a 
  -- more specific one that matches the constraint
  -- you are trying to resolve
  --
  -- Example: constraint (Foo [Int])
  -- 	    instances  (Foo [Int])
  --		       (Foo [a])	OverlapOk
  -- Since the second instance has the OverlapOk flag,
  -- the first instance will be chosen (otherwise 
  -- its ambiguous which to choose)
  | OverlapOk { isSafeOverlap :: Bool }

  -- | Like OverlapOk, but also ignore this instance 
  -- if it doesn't match the constraint you are
  -- trying to resolve, but could match if the type variables
  -- in the constraint were instantiated
  --
  -- Example: constraint (Foo [b])
  --	    instances  (Foo [Int])	Incoherent
  --		       (Foo [a])
  -- Without the Incoherent flag, we'd complain that
  -- instantiating 'b' would change which instance 
  -- was chosen
  | Incoherent { isSafeOverlap :: Bool }
  deriving (Eq, Data, Typeable)

instance Outputable OverlapFlag where
   ppr (NoOverlap  b) = empty <+> pprSafeOverlap b
   ppr (OverlapOk  b) = ptext (sLit "[overlap ok]") <+> pprSafeOverlap b
   ppr (Incoherent b) = ptext (sLit "[incoherent]") <+> pprSafeOverlap b

pprSafeOverlap :: Bool -> SDoc
pprSafeOverlap True  = ptext $ sLit "[safe]"
pprSafeOverlap False = empty
\end{code}

%************************************************************************
%*									*
		Tuples
%*									*
%************************************************************************

\begin{code}
data TupleSort
  = BoxedTuple
  | UnboxedTuple
  | ConstraintTuple
  deriving( Eq, Data, Typeable )

tupleSortBoxity :: TupleSort -> Boxity
tupleSortBoxity BoxedTuple     = Boxed
tupleSortBoxity UnboxedTuple   = Unboxed
tupleSortBoxity ConstraintTuple = Boxed

boxityNormalTupleSort :: Boxity -> TupleSort
boxityNormalTupleSort Boxed   = BoxedTuple
boxityNormalTupleSort Unboxed = UnboxedTuple

tupleParens :: TupleSort -> SDoc -> SDoc
tupleParens BoxedTuple      p = parens p
tupleParens ConstraintTuple p = parens p -- The user can't write fact tuples 
                                         -- directly, we overload the (,,) syntax
tupleParens UnboxedTuple p = ptext (sLit "(#") <+> p <+> ptext (sLit "#)")
\end{code}

%************************************************************************
%*									*
\subsection[Generic]{Generic flag}
%*									*
%************************************************************************

This is the "Embedding-Projection pair" datatype, it contains 
two pieces of code (normally either RenamedExpr's or Id's)
If we have a such a pair (EP from to), the idea is that 'from' and 'to'
represents functions of type 

	from :: T -> Tring
	to   :: Tring -> T

And we should have 

	to (from x) = x

T and Tring are arbitrary, but typically T is the 'main' type while
Tring is the 'representation' type.  (This just helps us remember 
whether to use 'from' or 'to'.

\begin{code}
data EP a = EP { fromEP :: a,	-- :: T -> Tring
		 toEP   :: a }	-- :: Tring -> T
\end{code}

Embedding-projection pairs are used in several places:

First of all, each type constructor has an EP associated with it, the
code in EP converts (datatype T) from T to Tring and back again.

Secondly, when we are filling in Generic methods (in the typechecker, 
tcMethodBinds), we are constructing bimaps by induction on the structure
of the type of the method signature.


%************************************************************************
%*									*
\subsection{Occurrence information}
%*									*
%************************************************************************

This data type is used exclusively by the simplifier, but it appears in a
SubstResult, which is currently defined in VarEnv, which is pretty near
the base of the module hierarchy.  So it seemed simpler to put the
defn of OccInfo here, safely at the bottom

\begin{code}
-- | Identifier occurrence information
data OccInfo 
  = NoOccInfo		-- ^ There are many occurrences, or unknown occurences

  | IAmDead		-- ^ Marks unused variables.  Sometimes useful for
			-- lambda and case-bound variables.

  | OneOcc
	!InsideLam
 	!OneBranch
	!InterestingCxt -- ^ Occurs exactly once, not inside a rule

  -- | This identifier breaks a loop of mutually recursive functions. The field
  -- marks whether it is only a loop breaker due to a reference in a rule
  | IAmALoopBreaker	-- Note [LoopBreaker OccInfo]
	!RulesOnly

type RulesOnly = Bool
\end{code}

Note [LoopBreaker OccInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
   IAmALoopBreaker True  <=> A "weak" or rules-only loop breaker
   		   	     Do not preInlineUnconditionally

   IAmALoopBreaker False <=> A "strong" loop breaker
                             Do not inline at all

See OccurAnal Note [Weak loop breakers]


\begin{code}
isNoOcc :: OccInfo -> Bool
isNoOcc NoOccInfo = True
isNoOcc _         = False

seqOccInfo :: OccInfo -> ()
seqOccInfo occ = occ `seq` ()

-----------------
type InterestingCxt = Bool	-- True <=> Function: is applied
				--	    Data value: scrutinised by a case with
				--			at least one non-DEFAULT branch

-----------------
type InsideLam = Bool	-- True <=> Occurs inside a non-linear lambda
			-- Substituting a redex for this occurrence is
			-- dangerous because it might duplicate work.
insideLam, notInsideLam :: InsideLam
insideLam    = True
notInsideLam = False

-----------------
type OneBranch = Bool	-- True <=> Occurs in only one case branch
			--	so no code-duplication issue to worry about
oneBranch, notOneBranch :: OneBranch
oneBranch    = True
notOneBranch = False

strongLoopBreaker, weakLoopBreaker :: OccInfo
strongLoopBreaker = IAmALoopBreaker False
weakLoopBreaker   = IAmALoopBreaker True

isWeakLoopBreaker :: OccInfo -> Bool
isWeakLoopBreaker (IAmALoopBreaker _) = True
isWeakLoopBreaker _                   = False

isStrongLoopBreaker :: OccInfo -> Bool
isStrongLoopBreaker (IAmALoopBreaker False) = True   -- Loop-breaker that breaks a non-rule cycle
isStrongLoopBreaker _                       = False

isDeadOcc :: OccInfo -> Bool
isDeadOcc IAmDead = True
isDeadOcc _       = False

isOneOcc :: OccInfo -> Bool
isOneOcc (OneOcc {}) = True
isOneOcc _           = False

zapFragileOcc :: OccInfo -> OccInfo
zapFragileOcc (OneOcc {}) = NoOccInfo
zapFragileOcc occ         = occ
\end{code}

\begin{code}
instance Outputable OccInfo where
  -- only used for debugging; never parsed.  KSW 1999-07
  ppr NoOccInfo  	   = empty
  ppr (IAmALoopBreaker ro) = ptext (sLit "LoopBreaker") <> if ro then char '!' else empty
  ppr IAmDead		   = ptext (sLit "Dead")
  ppr (OneOcc inside_lam one_branch int_cxt)
	= ptext (sLit "Once") <> pp_lam <> pp_br <> pp_args
	where
	  pp_lam | inside_lam = char 'L'
		 | otherwise  = empty
	  pp_br  | one_branch = empty
		 | otherwise  = char '*'
	  pp_args | int_cxt   = char '!'
		  | otherwise = empty

instance Show OccInfo where
  showsPrec p occ = showsPrecSDoc p (ppr occ)
\end{code}

%************************************************************************
%*									*
		Strictness indication
%*									*
%************************************************************************

The strictness annotations on types in data type declarations
e.g. 	data T = MkT !Int !(Bool,Bool)

\begin{code}
-------------------------
-- HsBang describes what the *programmer* wrote
-- This info is retained in the DataCon.dcStrictMarks field
data HsBang = HsNoBang	

	    | HsStrict	

	    | HsUnpack	       -- {-# UNPACK #-} ! (GHC extension, meaning "unbox")

	    | HsUnpackFailed   -- An UNPACK pragma that we could not make 
	      		       -- use of, because the type isn't unboxable; 
                               -- equivalant to HsStrict except for checkValidDataCon
            | HsNoUnpack       -- {-# NOUNPACK #-} ! (GHC extension, meaning "strict but not unboxed")
  deriving (Eq, Data, Typeable)

instance Outputable HsBang where
    ppr HsNoBang       = empty
    ppr HsStrict       = char '!'
    ppr HsUnpack       = ptext (sLit "{-# UNPACK #-} !")
    ppr HsUnpackFailed = ptext (sLit "{-# UNPACK (failed) #-} !")
    ppr HsNoUnpack     = ptext (sLit "{-# NOUNPACK #-} !")

isBanged :: HsBang -> Bool
isBanged HsNoBang = False
isBanged _        = True

isMarkedUnboxed :: HsBang -> Bool
isMarkedUnboxed HsUnpack = True
isMarkedUnboxed _        = False

-------------------------
-- StrictnessMark is internal only, used to indicate strictness 
-- of the DataCon *worker* fields
data StrictnessMark = MarkedStrict | NotMarkedStrict	

instance Outputable StrictnessMark where
  ppr MarkedStrict     = ptext (sLit "!")
  ppr NotMarkedStrict  = empty

isMarkedStrict :: StrictnessMark -> Bool
isMarkedStrict NotMarkedStrict = False
isMarkedStrict _               = True   -- All others are strict
\end{code}


%************************************************************************
%*									*
		Default method specfication
%*									*
%************************************************************************

The DefMethSpec enumeration just indicates what sort of default method
is used for a class. It is generated from source code, and present in 
interface files; it is converted to Class.DefMeth before begin put in a 
Class object.

\begin{code}
data DefMethSpec = NoDM        -- No default method
                 | VanillaDM   -- Default method given with polymorphic code
                 | GenericDM   -- Default method given with generic code

instance Outputable DefMethSpec where
  ppr NoDM      = empty
  ppr VanillaDM = ptext (sLit "{- Has default method -}")
  ppr GenericDM = ptext (sLit "{- Has generic default method -}")
\end{code}

%************************************************************************
%*									*
\subsection{Success flag}
%*									*
%************************************************************************

\begin{code}
data SuccessFlag = Succeeded | Failed

instance Outputable SuccessFlag where
    ppr Succeeded = ptext (sLit "Succeeded")
    ppr Failed    = ptext (sLit "Failed")

successIf :: Bool -> SuccessFlag
successIf True  = Succeeded
successIf False = Failed

succeeded, failed :: SuccessFlag -> Bool
succeeded Succeeded = True
succeeded Failed    = False

failed Succeeded = False
failed Failed    = True
\end{code}


%************************************************************************
%*									*
\subsection{Activation}
%*									*
%************************************************************************

When a rule or inlining is active

\begin{code}
type PhaseNum = Int  -- Compilation phase
                     -- Phases decrease towards zero
                     -- Zero is the last phase

data CompilerPhase
  = Phase PhaseNum
  | InitialPhase    -- The first phase -- number = infinity!

instance Outputable CompilerPhase where
   ppr (Phase n)    = int n
   ppr InitialPhase = ptext (sLit "InitialPhase")

data Activation = NeverActive
		| AlwaysActive
                | ActiveBefore PhaseNum -- Active only *before* this phase
                | ActiveAfter PhaseNum  -- Active in this phase and later
		deriving( Eq, Data, Typeable )	-- Eq used in comparing rules in HsDecls

data RuleMatchInfo = ConLike 			-- See Note [CONLIKE pragma]
                   | FunLike
                   deriving( Eq, Data, Typeable, Show )
	-- Show needed for Lexer.x

data InlinePragma  	     -- Note [InlinePragma]
  = InlinePragma
      { inl_inline :: InlineSpec

      , inl_sat    :: Maybe Arity    -- Just n <=> Inline only when applied to n 
      		      	    	     --            explicit (non-type, non-dictionary) args
				     --   That is, inl_sat describes the number of *source-code*
                                     --   arguments the thing must be applied to.  We add on the 
                                     --   number of implicit, dictionary arguments when making
			             --   the InlineRule, and don't look at inl_sat further

      , inl_act    :: Activation     -- Says during which phases inlining is allowed

      , inl_rule   :: RuleMatchInfo  -- Should the function be treated like a constructor?
    } deriving( Eq, Data, Typeable )

data InlineSpec   -- What the user's INLINE pragama looked like
  = Inline
  | Inlinable
  | NoInline
  | EmptyInlineSpec
  deriving( Eq, Data, Typeable, Show )
	-- Show needed for Lexer.x
\end{code}

Note [InlinePragma]
~~~~~~~~~~~~~~~~~~~
This data type mirrors what you can write in an INLINE or NOINLINE pragma in 
the source program.

If you write nothing at all, you get defaultInlinePragma:
   inl_inline = False
   inl_act    = AlwaysActive
   inl_rule   = FunLike

It's not possible to get that combination by *writing* something, so 
if an Id has defaultInlinePragma it means the user didn't specify anything.

If inl_inline = True, then the Id should have an InlineRule unfolding.

Note [CONLIKE pragma]
~~~~~~~~~~~~~~~~~~~~~
The ConLike constructor of a RuleMatchInfo is aimed at the following.
Consider first
    {-# RULE "r/cons" forall a as. r (a:as) = f (a+1) #-}
    g b bs = let x = b:bs in ..x...x...(r x)...
Now, the rule applies to the (r x) term, because GHC "looks through" 
the definition of 'x' to see that it is (b:bs).

Now consider
    {-# RULE "r/f" forall v. r (f v) = f (v+1) #-}
    g v = let x = f v in ..x...x...(r x)...
Normally the (r x) would *not* match the rule, because GHC would be
scared about duplicating the redex (f v), so it does not "look
through" the bindings.  

However the CONLIKE modifier says to treat 'f' like a constructor in
this situation, and "look through" the unfolding for x.  So (r x)
fires, yielding (f (v+1)).

This is all controlled with a user-visible pragma:
     {-# NOINLINE CONLIKE [1] f #-}

The main effects of CONLIKE are:

    - The occurrence analyser (OccAnal) and simplifier (Simplify) treat
      CONLIKE thing like constructors, by ANF-ing them

    - New function coreUtils.exprIsExpandable is like exprIsCheap, but
      additionally spots applications of CONLIKE functions

    - A CoreUnfolding has a field that caches exprIsExpandable

    - The rule matcher consults this field.  See
      Note [Expanding variables] in Rules.lhs.

\begin{code}
isConLike :: RuleMatchInfo -> Bool
isConLike ConLike = True
isConLike _            = False

isFunLike :: RuleMatchInfo -> Bool
isFunLike FunLike = True
isFunLike _            = False

isEmptyInlineSpec :: InlineSpec -> Bool
isEmptyInlineSpec EmptyInlineSpec = True
isEmptyInlineSpec _               = False

defaultInlinePragma, alwaysInlinePragma, neverInlinePragma, dfunInlinePragma
  :: InlinePragma
defaultInlinePragma = InlinePragma { inl_act = AlwaysActive
                                   , inl_rule = FunLike
                                   , inl_inline = EmptyInlineSpec
                                   , inl_sat = Nothing }

alwaysInlinePragma = defaultInlinePragma { inl_inline = Inline }
neverInlinePragma  = defaultInlinePragma { inl_act    = NeverActive }

inlinePragmaSpec :: InlinePragma -> InlineSpec
inlinePragmaSpec = inl_inline

-- A DFun has an always-active inline activation so that 
-- exprIsConApp_maybe can "see" its unfolding
-- (However, its actual Unfolding is a DFunUnfolding, which is
--  never inlined other than via exprIsConApp_maybe.)
dfunInlinePragma   = defaultInlinePragma { inl_act  = AlwaysActive
                                         , inl_rule = ConLike }

isDefaultInlinePragma :: InlinePragma -> Bool
isDefaultInlinePragma (InlinePragma { inl_act = activation
                                    , inl_rule = match_info
                                    , inl_inline = inline })
  = isEmptyInlineSpec inline && isAlwaysActive activation && isFunLike match_info

isInlinePragma :: InlinePragma -> Bool
isInlinePragma prag = case inl_inline prag of
                        Inline -> True
                        _      -> False

isInlinablePragma :: InlinePragma -> Bool
isInlinablePragma prag = case inl_inline prag of
                           Inlinable -> True
                           _         -> False

isAnyInlinePragma :: InlinePragma -> Bool
-- INLINE or INLINABLE
isAnyInlinePragma prag = case inl_inline prag of
                        Inline    -> True
                        Inlinable -> True
                        _         -> False
 
inlinePragmaSat :: InlinePragma -> Maybe Arity
inlinePragmaSat = inl_sat

inlinePragmaActivation :: InlinePragma -> Activation
inlinePragmaActivation (InlinePragma { inl_act = activation }) = activation

inlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo
inlinePragmaRuleMatchInfo (InlinePragma { inl_rule = info }) = info

setInlinePragmaActivation :: InlinePragma -> Activation -> InlinePragma
setInlinePragmaActivation prag activation = prag { inl_act = activation }

setInlinePragmaRuleMatchInfo :: InlinePragma -> RuleMatchInfo -> InlinePragma
setInlinePragmaRuleMatchInfo prag info = prag { inl_rule = info }

instance Outputable Activation where
   ppr AlwaysActive     = brackets (ptext (sLit "ALWAYS"))
   ppr NeverActive      = brackets (ptext (sLit "NEVER"))
   ppr (ActiveBefore n) = brackets (char '~' <> int n)
   ppr (ActiveAfter n)  = brackets (int n)

instance Outputable RuleMatchInfo where
   ppr ConLike = ptext (sLit "CONLIKE")
   ppr FunLike = ptext (sLit "FUNLIKE")

instance Outputable InlineSpec where
   ppr Inline          = ptext (sLit "INLINE")
   ppr NoInline        = ptext (sLit "NOINLINE")
   ppr Inlinable       = ptext (sLit "INLINABLE")
   ppr EmptyInlineSpec = empty

instance Outputable InlinePragma where
  ppr (InlinePragma { inl_inline = inline, inl_act = activation
                    , inl_rule = info, inl_sat = mb_arity })
    = ppr inline <> pp_act inline activation <+> pp_sat <+> pp_info 
    where
      pp_act Inline   AlwaysActive = empty	
      pp_act NoInline NeverActive  = empty
      pp_act _        act          = ppr act

      pp_sat | Just ar <- mb_arity = parens (ptext (sLit "sat-args=") <> int ar)
             | otherwise           = empty
      pp_info | isFunLike info = empty
              | otherwise      = ppr info

isActive :: CompilerPhase -> Activation -> Bool
isActive InitialPhase AlwaysActive      = True
isActive InitialPhase (ActiveBefore {}) = True
isActive InitialPhase _                 = False
isActive (Phase p)    act               = isActiveIn p act

isActiveIn :: PhaseNum -> Activation -> Bool
isActiveIn _ NeverActive      = False
isActiveIn _ AlwaysActive     = True
isActiveIn p (ActiveAfter n)  = p <= n
isActiveIn p (ActiveBefore n) = p >  n

isNeverActive, isAlwaysActive, isEarlyActive :: Activation -> Bool
isNeverActive NeverActive = True
isNeverActive _           = False

isAlwaysActive AlwaysActive = True
isAlwaysActive _            = False

isEarlyActive AlwaysActive      = True
isEarlyActive (ActiveBefore {}) = True
isEarlyActive _		        = False
\end{code}



\begin{code}
-- Used (instead of Rational) to represent exactly the floating point literal that we
-- encountered in the user's source program. This allows us to pretty-print exactly what
-- the user wrote, which is important e.g. for floating point numbers that can't represented
-- as Doubles (we used to via Double for pretty-printing). See also #2245.
data FractionalLit
  = FL { fl_text :: String         -- How the value was written in the source
       , fl_value :: Rational      -- Numeric value of the literal
       }
  deriving (Data, Typeable, Show)
  -- The Show instance is required for the derived Lexer.x:Token instance when DEBUG is on

negateFractionalLit :: FractionalLit -> FractionalLit
negateFractionalLit (FL { fl_text = '-':text, fl_value = value }) = FL { fl_text = text, fl_value = negate value }
negateFractionalLit (FL { fl_text = text, fl_value = value }) = FL { fl_text = '-':text, fl_value = negate value }

integralFractionalLit :: Integer -> FractionalLit
integralFractionalLit i = FL { fl_text = show i, fl_value = fromInteger i }

-- Comparison operations are needed when grouping literals
-- for compiling pattern-matching (module MatchLit)

instance Eq FractionalLit where
  (==) = (==) `on` fl_value

instance Ord FractionalLit where
  compare = compare `on` fl_value

instance Outputable FractionalLit where
  ppr = text . fl_text
\end{code}