summaryrefslogtreecommitdiff
path: root/compiler/basicTypes/UniqSupply.lhs
blob: 41ad5c0f60dadb5846cfe77716e77673443ab0e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
%
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[UniqSupply]{The @UniqueSupply@ data type and a (monadic) supply thereof}

\begin{code}
module UniqSupply (

	UniqSupply,		-- Abstractly

	uniqFromSupply, uniqsFromSupply,	-- basic ops

	UniqSM,		-- type: unique supply monad
	initUs, initUs_, thenUs, thenUs_, returnUs, fixUs, getUs, withUs,
	getUniqueUs, getUniquesUs,
	mapUs, mapAndUnzipUs, mapAndUnzip3Us,
	thenMaybeUs, mapAccumLUs,
	lazyThenUs, lazyMapUs,

	mkSplitUniqSupply,
	splitUniqSupply
  ) where

#include "HsVersions.h"

import Unique

import GLAEXTS
import UNSAFE_IO	( unsafeInterleaveIO )

w2i x = word2Int# x
i2w x = int2Word# x
i2w_s x = (x :: Int#)
\end{code}


%************************************************************************
%*									*
\subsection{Splittable Unique supply: @UniqSupply@}
%*									*
%************************************************************************

A value of type @UniqSupply@ is unique, and it can
supply {\em one} distinct @Unique@.  Also, from the supply, one can
also manufacture an arbitrary number of further @UniqueSupplies@,
which will be distinct from the first and from all others.

\begin{code}
data UniqSupply
  = MkSplitUniqSupply Int	-- make the Unique with this
		   UniqSupply UniqSupply
				-- when split => these two supplies
\end{code}

\begin{code}
mkSplitUniqSupply :: Char -> IO UniqSupply

splitUniqSupply :: UniqSupply -> (UniqSupply, UniqSupply)
uniqFromSupply  :: UniqSupply -> Unique
uniqsFromSupply :: UniqSupply -> [Unique]	-- Infinite
\end{code}

\begin{code}
mkSplitUniqSupply (C# c#)
  = let
#if __GLASGOW_HASKELL__ >= 503
	mask# = (i2w (ord# c#)) `uncheckedShiftL#` (i2w_s 24#)
#else
	mask# = (i2w (ord# c#)) `shiftL#` (i2w_s 24#)
#endif
	-- here comes THE MAGIC:

	-- This is one of the most hammered bits in the whole compiler
	mk_supply#
	  = unsafeInterleaveIO (
		mk_unique   >>= \ uniq ->
		mk_supply#  >>= \ s1 ->
		mk_supply#  >>= \ s2 ->
		return (MkSplitUniqSupply uniq s1 s2)
	    )

	mk_unique = genSymZh		>>= \ (W# u#) ->
		    return (I# (w2i (mask# `or#` u#)))
    in
    mk_supply#

foreign import ccall unsafe "genSymZh" genSymZh :: IO Word

splitUniqSupply (MkSplitUniqSupply _ s1 s2) = (s1, s2)
\end{code}

\begin{code}
uniqFromSupply  (MkSplitUniqSupply n _ _)  = mkUniqueGrimily n
uniqsFromSupply (MkSplitUniqSupply n _ s2) = mkUniqueGrimily n : uniqsFromSupply s2
\end{code}

%************************************************************************
%*									*
\subsubsection[UniqSupply-monad]{@UniqSupply@ monad: @UniqSM@}
%*									*
%************************************************************************

\begin{code}
type UniqSM result = UniqSupply -> (result, UniqSupply)

-- the initUs function also returns the final UniqSupply; initUs_ drops it
initUs :: UniqSupply -> UniqSM a -> (a,UniqSupply)
initUs init_us m = case m init_us of { (r,us) -> (r,us) }

initUs_ :: UniqSupply -> UniqSM a -> a
initUs_ init_us m = case m init_us of { (r,us) -> r }

{-# INLINE thenUs #-}
{-# INLINE lazyThenUs #-}
{-# INLINE returnUs #-}
{-# INLINE splitUniqSupply #-}
\end{code}

@thenUs@ is where we split the @UniqSupply@.
\begin{code}
fixUs :: (a -> UniqSM a) -> UniqSM a
fixUs m us
  = (r,us')  where  (r,us') = m r us

thenUs :: UniqSM a -> (a -> UniqSM b) -> UniqSM b
thenUs expr cont us
  = case (expr us) of { (result, us') -> cont result us' }

lazyThenUs :: UniqSM a -> (a -> UniqSM b) -> UniqSM b
lazyThenUs expr cont us
  = let (result, us') = expr us in cont result us'

thenUs_ :: UniqSM a -> UniqSM b -> UniqSM b
thenUs_ expr cont us
  = case (expr us) of { (_, us') -> cont us' }


returnUs :: a -> UniqSM a
returnUs result us = (result, us)

withUs :: (UniqSupply -> (a, UniqSupply)) -> UniqSM a
withUs f us = f us	-- Ha ha!
		
getUs :: UniqSM UniqSupply
getUs us = splitUniqSupply us

getUniqueUs :: UniqSM Unique
getUniqueUs us = case splitUniqSupply us of
		   (us1,us2) -> (uniqFromSupply us1, us2)

getUniquesUs :: UniqSM [Unique]
getUniquesUs us = case splitUniqSupply us of
		      (us1,us2) -> (uniqsFromSupply us1, us2)
\end{code}

\begin{code}
mapUs :: (a -> UniqSM b) -> [a] -> UniqSM [b]
mapUs f []     = returnUs []
mapUs f (x:xs)
  = f x         `thenUs` \ r  ->
    mapUs f xs  `thenUs` \ rs ->
    returnUs (r:rs)

lazyMapUs :: (a -> UniqSM b) -> [a] -> UniqSM [b]
lazyMapUs f []     = returnUs []
lazyMapUs f (x:xs)
  = f x             `lazyThenUs` \ r  ->
    lazyMapUs f xs  `lazyThenUs` \ rs ->
    returnUs (r:rs)

mapAndUnzipUs  :: (a -> UniqSM (b,c))   -> [a] -> UniqSM ([b],[c])
mapAndUnzip3Us :: (a -> UniqSM (b,c,d)) -> [a] -> UniqSM ([b],[c],[d])

mapAndUnzipUs f [] = returnUs ([],[])
mapAndUnzipUs f (x:xs)
  = f x		    	`thenUs` \ (r1,  r2)  ->
    mapAndUnzipUs f xs	`thenUs` \ (rs1, rs2) ->
    returnUs (r1:rs1, r2:rs2)

mapAndUnzip3Us f [] = returnUs ([],[],[])
mapAndUnzip3Us f (x:xs)
  = f x		    	`thenUs` \ (r1,  r2,  r3)  ->
    mapAndUnzip3Us f xs	`thenUs` \ (rs1, rs2, rs3) ->
    returnUs (r1:rs1, r2:rs2, r3:rs3)

thenMaybeUs :: UniqSM (Maybe a) -> (a -> UniqSM (Maybe b)) -> UniqSM (Maybe b)
thenMaybeUs m k
  = m	`thenUs` \ result ->
    case result of
      Nothing -> returnUs Nothing
      Just x  -> k x

mapAccumLUs :: (acc -> x -> UniqSM (acc, y))
	    -> acc
	    -> [x]
	    -> UniqSM (acc, [y])

mapAccumLUs f b []     = returnUs (b, [])
mapAccumLUs f b (x:xs)
  = f b x   	        	    `thenUs` \ (b__2, x__2) ->
    mapAccumLUs f b__2 xs   	    `thenUs` \ (b__3, xs__2) ->
    returnUs (b__3, x__2:xs__2)
\end{code}