1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
{-# LANGUAGE BangPatterns, CPP, GADTs #-}
module CmmBuildInfoTables
( CAFSet, CAFEnv, cafAnal
, doSRTs, TopSRT, emptySRT, isEmptySRT, srtToData )
where
#include "HsVersions.h"
import Hoopl
import Digraph
import Bitmap
import CLabel
import PprCmmDecl ()
import Cmm
import CmmUtils
import CmmInfo
import Data.List
import DynFlags
import Maybes
import Outputable
import SMRep
import UniqSupply
import Util
import PprCmm()
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
import Control.Monad
import qualified Prelude as P
import Prelude hiding (succ)
foldSet :: (a -> b -> b) -> b -> Set a -> b
foldSet = Set.foldr
-----------------------------------------------------------------------
-- SRTs
{- EXAMPLE
f = \x. ... g ...
where
g = \y. ... h ... c1 ...
h = \z. ... c2 ...
c1 & c2 are CAFs
g and h are local functions, but they have no static closures. When
we generate code for f, we start with a CmmGroup of four CmmDecls:
[ f_closure, f_entry, g_entry, h_entry ]
we process each CmmDecl separately in cpsTop, giving us a list of
CmmDecls. e.g. for f_entry, we might end up with
[ f_entry, f1_ret, f2_proc ]
where f1_ret is a return point, and f2_proc is a proc-point. We have
a CAFSet for each of these CmmDecls, let's suppose they are
[ f_entry{g_closure}, f1_ret{g_closure}, f2_proc{} ]
[ g_entry{h_closure, c1_closure} ]
[ h_entry{c2_closure} ]
Now, note that we cannot use g_closure and h_closure in an SRT,
because there are no static closures corresponding to these functions.
So we have to flatten out the structure, replacing g_closure and
h_closure with their contents:
[ f_entry{c2_closure, c1_closure}, f1_ret{c2_closure,c1_closure}, f2_proc{} ]
[ g_entry{c2_closure, c1_closure} ]
[ h_entry{c2_closure} ]
This is what flattenCAFSets is doing.
-}
-----------------------------------------------------------------------
-- Finding the CAFs used by a procedure
type CAFSet = Set CLabel
type CAFEnv = LabelMap CAFSet
cafLattice :: DataflowLattice CAFSet
cafLattice = DataflowLattice Set.empty add
where
add (OldFact old) (NewFact new) =
let !new' = old `Set.union` new
in changedIf (Set.size new' > Set.size old) new'
cafTransfers :: TransferFun CAFSet
cafTransfers (BlockCC eNode middle xNode) fBase =
let joined = cafsInNode xNode $! joinOutFacts cafLattice xNode fBase
!result = foldNodesBwdOO cafsInNode middle joined
in mapSingleton (entryLabel eNode) result
cafsInNode :: CmmNode e x -> CAFSet -> CAFSet
cafsInNode node set = foldExpDeep addCaf node set
where
addCaf expr !set =
case expr of
CmmLit (CmmLabel c) -> add c set
CmmLit (CmmLabelOff c _) -> add c set
CmmLit (CmmLabelDiffOff c1 c2 _) -> add c1 $! add c2 set
_ -> set
add l s | hasCAF l = Set.insert (toClosureLbl l) s
| otherwise = s
-- | An analysis to find live CAFs.
cafAnal :: CmmGraph -> CAFEnv
cafAnal cmmGraph = analyzeCmmBwd cafLattice cafTransfers cmmGraph mapEmpty
-----------------------------------------------------------------------
-- Building the SRTs
-- Description of the SRT for a given module.
-- Note that this SRT may grow as we greedily add new CAFs to it.
data TopSRT = TopSRT { lbl :: CLabel
, next_elt :: Int -- the next entry in the table
, rev_elts :: [CLabel]
, elt_map :: Map CLabel Int }
-- map: CLabel -> its last entry in the table
instance Outputable TopSRT where
ppr (TopSRT lbl next elts eltmap) =
text "TopSRT:" <+> ppr lbl
<+> ppr next
<+> ppr elts
<+> ppr eltmap
emptySRT :: MonadUnique m => m TopSRT
emptySRT =
do top_lbl <- getUniqueM >>= \ u -> return $ mkTopSRTLabel u
return TopSRT { lbl = top_lbl, next_elt = 0, rev_elts = [], elt_map = Map.empty }
isEmptySRT :: TopSRT -> Bool
isEmptySRT srt = null (rev_elts srt)
cafMember :: TopSRT -> CLabel -> Bool
cafMember srt lbl = Map.member lbl (elt_map srt)
cafOffset :: TopSRT -> CLabel -> Maybe Int
cafOffset srt lbl = Map.lookup lbl (elt_map srt)
addCAF :: CLabel -> TopSRT -> TopSRT
addCAF caf srt =
srt { next_elt = last + 1
, rev_elts = caf : rev_elts srt
, elt_map = Map.insert caf last (elt_map srt) }
where last = next_elt srt
srtToData :: TopSRT -> CmmGroup
srtToData srt = [CmmData sec (Statics (lbl srt) tbl)]
where tbl = map (CmmStaticLit . CmmLabel) (reverse (rev_elts srt))
sec = Section RelocatableReadOnlyData (lbl srt)
-- Once we have found the CAFs, we need to do two things:
-- 1. Build a table of all the CAFs used in the procedure.
-- 2. Compute the C_SRT describing the subset of CAFs live at each procpoint.
--
-- When building the local view of the SRT, we first make sure that all the CAFs are
-- in the SRT. Then, if the number of CAFs is small enough to fit in a bitmap,
-- we make sure they're all close enough to the bottom of the table that the
-- bitmap will be able to cover all of them.
buildSRT :: DynFlags -> TopSRT -> CAFSet -> UniqSM (TopSRT, Maybe CmmDecl, C_SRT)
buildSRT dflags topSRT cafs =
do let
-- For each label referring to a function f without a static closure,
-- replace it with the CAFs that are reachable from f.
sub_srt topSRT localCafs =
let cafs = Set.elems localCafs
mkSRT topSRT =
do localSRTs <- procpointSRT dflags (lbl topSRT) (elt_map topSRT) cafs
return (topSRT, localSRTs)
in if length cafs > maxBmpSize dflags then
mkSRT (foldl add_if_missing topSRT cafs)
else -- make sure all the cafs are near the bottom of the srt
mkSRT (add_if_too_far topSRT cafs)
add_if_missing srt caf =
if cafMember srt caf then srt else addCAF caf srt
-- If a CAF is more than maxBmpSize entries from the young end of the
-- SRT, then we add it to the SRT again.
-- (Note: Not in the SRT => infinitely far.)
add_if_too_far srt@(TopSRT {elt_map = m}) cafs =
add srt (sortBy farthestFst cafs)
where
farthestFst x y = case (Map.lookup x m, Map.lookup y m) of
(Nothing, Nothing) -> EQ
(Nothing, Just _) -> LT
(Just _, Nothing) -> GT
(Just d, Just d') -> compare d' d
add srt [] = srt
add srt@(TopSRT {next_elt = next}) (caf : rst) =
case cafOffset srt caf of
Just ix -> if next - ix > maxBmpSize dflags then
add (addCAF caf srt) rst
else srt
Nothing -> add (addCAF caf srt) rst
(topSRT, subSRTs) <- sub_srt topSRT cafs
let (sub_tbls, blockSRTs) = subSRTs
return (topSRT, sub_tbls, blockSRTs)
-- Construct an SRT bitmap.
-- Adapted from simpleStg/SRT.hs, which expects Id's.
procpointSRT :: DynFlags -> CLabel -> Map CLabel Int -> [CLabel] ->
UniqSM (Maybe CmmDecl, C_SRT)
procpointSRT _ _ _ [] =
return (Nothing, NoC_SRT)
procpointSRT dflags top_srt top_table entries =
do (top, srt) <- bitmap `seq` to_SRT dflags top_srt offset len bitmap
return (top, srt)
where
ints = map (expectJust "constructSRT" . flip Map.lookup top_table) entries
sorted_ints = sort ints
offset = head sorted_ints
bitmap_entries = map (subtract offset) sorted_ints
len = P.last bitmap_entries + 1
bitmap = intsToBitmap dflags len bitmap_entries
maxBmpSize :: DynFlags -> Int
maxBmpSize dflags = widthInBits (wordWidth dflags) `div` 2
-- Adapted from codeGen/StgCmmUtils, which converts from SRT to C_SRT.
to_SRT :: DynFlags -> CLabel -> Int -> Int -> Bitmap -> UniqSM (Maybe CmmDecl, C_SRT)
to_SRT dflags top_srt off len bmp
| len > maxBmpSize dflags || bmp == [toStgWord dflags (fromStgHalfWord (srtEscape dflags))]
= do id <- getUniqueM
let srt_desc_lbl = mkLargeSRTLabel id
section = Section RelocatableReadOnlyData srt_desc_lbl
tbl = CmmData section $
Statics srt_desc_lbl $ map CmmStaticLit
( cmmLabelOffW dflags top_srt off
: mkWordCLit dflags (fromIntegral len)
: map (mkStgWordCLit dflags) bmp)
return (Just tbl, C_SRT srt_desc_lbl 0 (srtEscape dflags))
| otherwise
= return (Nothing, C_SRT top_srt off (toStgHalfWord dflags (fromStgWord (head bmp))))
-- The fromIntegral converts to StgHalfWord
-- Gather CAF info for a procedure, but only if the procedure
-- doesn't have a static closure.
-- (If it has a static closure, it will already have an SRT to
-- keep its CAFs live.)
-- Any procedure referring to a non-static CAF c must keep live
-- any CAF that is reachable from c.
localCAFInfo :: CAFEnv -> CmmDecl -> (CAFSet, Maybe CLabel)
localCAFInfo _ (CmmData _ _) = (Set.empty, Nothing)
localCAFInfo cafEnv proc@(CmmProc _ top_l _ (CmmGraph {g_entry=entry})) =
case topInfoTable proc of
Just (CmmInfoTable { cit_rep = rep })
| not (isStaticRep rep) && not (isStackRep rep)
-> (cafs, Just (toClosureLbl top_l))
_other -> (cafs, Nothing)
where
cafs = expectJust "maybeBindCAFs" $ mapLookup entry cafEnv
-- Once we have the local CAF sets for some (possibly) mutually
-- recursive functions, we can create an environment mapping
-- each function to its set of CAFs. Note that a CAF may
-- be a reference to a function. If that function f does not have
-- a static closure, then we need to refer specifically
-- to the set of CAFs used by f. Of course, the set of CAFs
-- used by f must be included in the local CAF sets that are input to
-- this function. To minimize lookup time later, we return
-- the environment with every reference to f replaced by its set of CAFs.
-- To do this replacement efficiently, we gather strongly connected
-- components, then we sort the components in topological order.
mkTopCAFInfo :: [(CAFSet, Maybe CLabel)] -> Map CLabel CAFSet
mkTopCAFInfo localCAFs = foldl addToTop Map.empty g
where
addToTop env (AcyclicSCC (l, cafset)) =
Map.insert l (flatten env cafset) env
addToTop env (CyclicSCC nodes) =
let (lbls, cafsets) = unzip nodes
cafset = foldr Set.delete (foldl Set.union Set.empty cafsets) lbls
in foldl (\env l -> Map.insert l (flatten env cafset) env) env lbls
g = stronglyConnCompFromEdgedVerticesOrd
[ ((l,cafs), l, Set.elems cafs) | (cafs, Just l) <- localCAFs ]
flatten :: Map CLabel CAFSet -> CAFSet -> CAFSet
flatten env cafset = foldSet (lookup env) Set.empty cafset
where
lookup env caf cafset' =
case Map.lookup caf env of
Just cafs -> foldSet Set.insert cafset' cafs
Nothing -> Set.insert caf cafset'
bundle :: Map CLabel CAFSet
-> (CAFEnv, CmmDecl)
-> (CAFSet, Maybe CLabel)
-> (LabelMap CAFSet, CmmDecl)
bundle flatmap (env, decl@(CmmProc infos _lbl _ g)) (closure_cafs, mb_lbl)
= ( mapMapWithKey get_cafs (info_tbls infos), decl )
where
entry = g_entry g
entry_cafs
| Just l <- mb_lbl = expectJust "bundle" $ Map.lookup l flatmap
| otherwise = flatten flatmap closure_cafs
get_cafs l _
| l == entry = entry_cafs
| Just info <- mapLookup l env = flatten flatmap info
| otherwise = Set.empty
-- the label might not be in the env if the code corresponding to
-- this info table was optimised away (perhaps because it was
-- unreachable). In this case it doesn't matter what SRT we
-- infer, since the info table will not appear in the generated
-- code. See #9329.
bundle _flatmap (_, decl) _
= ( mapEmpty, decl )
flattenCAFSets :: [(CAFEnv, [CmmDecl])] -> [(LabelMap CAFSet, CmmDecl)]
flattenCAFSets cpsdecls = zipWith (bundle flatmap) zipped localCAFs
where
zipped = [ (env,decl) | (env,decls) <- cpsdecls, decl <- decls ]
localCAFs = unzipWith localCAFInfo zipped
flatmap = mkTopCAFInfo localCAFs -- transitive closure of localCAFs
doSRTs :: DynFlags
-> TopSRT
-> [(CAFEnv, [CmmDecl])]
-> IO (TopSRT, [CmmDecl])
doSRTs dflags topSRT tops
= do
let caf_decls = flattenCAFSets tops
us <- mkSplitUniqSupply 'u'
let (topSRT', gs') = initUs_ us $ foldM setSRT (topSRT, []) caf_decls
return (topSRT', reverse gs' {- Note [reverse gs] -})
where
setSRT (topSRT, rst) (caf_map, decl@(CmmProc{})) = do
(topSRT, srt_tables, srt_env) <- buildSRTs dflags topSRT caf_map
let decl' = updInfoSRTs srt_env decl
return (topSRT, decl': srt_tables ++ rst)
setSRT (topSRT, rst) (_, decl) =
return (topSRT, decl : rst)
buildSRTs :: DynFlags -> TopSRT -> LabelMap CAFSet
-> UniqSM (TopSRT, [CmmDecl], LabelMap C_SRT)
buildSRTs dflags top_srt caf_map
= foldM doOne (top_srt, [], mapEmpty) (mapToList caf_map)
where
doOne (top_srt, decls, srt_env) (l, cafs)
= do (top_srt, mb_decl, srt) <- buildSRT dflags top_srt cafs
return ( top_srt, maybeToList mb_decl ++ decls
, mapInsert l srt srt_env )
{-
- In each CmmDecl there is a mapping from BlockId -> CmmInfoTable
- The one corresponding to g_entry is the closure info table, the
rest are continuations.
- Each one needs an SRT.
- We get the CAFSet for each one from the CAFEnv
- flatten gives us
[(LabelMap CAFSet, CmmDecl)]
-
-}
{- Note [reverse gs]
It is important to keep the code blocks in the same order,
otherwise binary sizes get slightly bigger. I'm not completely
sure why this is, perhaps the assembler generates bigger jump
instructions for forward refs. --SDM
-}
updInfoSRTs :: LabelMap C_SRT -> CmmDecl -> CmmDecl
updInfoSRTs srt_env (CmmProc top_info top_l live g) =
CmmProc (top_info {info_tbls = mapMapWithKey updInfoTbl (info_tbls top_info)}) top_l live g
where updInfoTbl l info_tbl
= info_tbl { cit_srt = expectJust "updInfo" $ mapLookup l srt_env }
updInfoSRTs _ t = t
|