1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
{-# LANGUAGE GADTs, BangPatterns #-}
module CmmCommonBlockElim
( elimCommonBlocks
)
where
import GhcPrelude hiding (iterate, succ, unzip, zip)
import BlockId
import Cmm
import CmmUtils
import CmmSwitch (eqSwitchTargetWith)
import CmmContFlowOpt
-- import PprCmm ()
import Hoopl.Block
import Hoopl.Graph
import Hoopl.Label
import Hoopl.Collections
import Data.Bits
import Data.Maybe (mapMaybe)
import qualified Data.List as List
import Data.Word
import qualified Data.Map as M
import Outputable
import UniqFM
import UniqDFM
import qualified TrieMap as TM
import Unique
import Control.Arrow (first, second)
-- -----------------------------------------------------------------------------
-- Eliminate common blocks
-- If two blocks are identical except for the label on the first node,
-- then we can eliminate one of the blocks. To ensure that the semantics
-- of the program are preserved, we have to rewrite each predecessor of the
-- eliminated block to proceed with the block we keep.
-- The algorithm iterates over the blocks in the graph,
-- checking whether it has seen another block that is equal modulo labels.
-- If so, then it adds an entry in a map indicating that the new block
-- is made redundant by the old block.
-- Otherwise, it is added to the useful blocks.
-- To avoid comparing every block with every other block repeatedly, we group
-- them by
-- * a hash of the block, ignoring labels (explained below)
-- * the list of outgoing labels
-- The hash is invariant under relabeling, so we only ever compare within
-- the same group of blocks.
--
-- The list of outgoing labels is updated as we merge blocks (that is why they
-- are not included in the hash, which we want to calculate only once).
--
-- All in all, two blocks should never be compared if they have different
-- hashes, and at most once otherwise. Previously, we were slower, and people
-- rightfully complained: #10397
-- TODO: Use optimization fuel
elimCommonBlocks :: CmmGraph -> CmmGraph
elimCommonBlocks g = replaceLabels env $ copyTicks env g
where
env = iterate mapEmpty blocks_with_key
groups = groupByInt hash_block (postorderDfs g)
blocks_with_key = [ [ (successors b, [b]) | b <- bs] | bs <- groups]
-- Invariant: The blocks in the list are pairwise distinct
-- (so avoid comparing them again)
type DistinctBlocks = [CmmBlock]
type Key = [Label]
type Subst = LabelMap BlockId
-- The outer list groups by hash. We retain this grouping throughout.
iterate :: Subst -> [[(Key, DistinctBlocks)]] -> Subst
iterate subst blocks
| mapNull new_substs = subst
| otherwise = iterate subst' updated_blocks
where
grouped_blocks :: [[(Key, [DistinctBlocks])]]
grouped_blocks = map groupByLabel blocks
merged_blocks :: [[(Key, DistinctBlocks)]]
(new_substs, merged_blocks) = List.mapAccumL (List.mapAccumL go) mapEmpty grouped_blocks
where
go !new_subst1 (k,dbs) = (new_subst1 `mapUnion` new_subst2, (k,db))
where
(new_subst2, db) = mergeBlockList subst dbs
subst' = subst `mapUnion` new_substs
updated_blocks = map (map (first (map (lookupBid subst')))) merged_blocks
mergeBlocks :: Subst -> DistinctBlocks -> DistinctBlocks -> (Subst, DistinctBlocks)
mergeBlocks subst existing new = go new
where
go [] = (mapEmpty, existing)
go (b:bs) = case List.find (eqBlockBodyWith (eqBid subst) b) existing of
-- This block is a duplicate. Drop it, and add it to the substitution
Just b' -> first (mapInsert (entryLabel b) (entryLabel b')) $ go bs
-- This block is not a duplicate, keep it.
Nothing -> second (b:) $ go bs
mergeBlockList :: Subst -> [DistinctBlocks] -> (Subst, DistinctBlocks)
mergeBlockList _ [] = pprPanic "mergeBlockList" empty
mergeBlockList subst (b:bs) = go mapEmpty b bs
where
go !new_subst1 b [] = (new_subst1, b)
go !new_subst1 b1 (b2:bs) = go new_subst b bs
where
(new_subst2, b) = mergeBlocks subst b1 b2
new_subst = new_subst1 `mapUnion` new_subst2
-- -----------------------------------------------------------------------------
-- Hashing and equality on blocks
-- Below here is mostly boilerplate: hashing blocks ignoring labels,
-- and comparing blocks modulo a label mapping.
-- To speed up comparisons, we hash each basic block modulo jump labels.
-- The hashing is a bit arbitrary (the numbers are completely arbitrary),
-- but it should be fast and good enough.
-- We want to get as many small buckets as possible, as comparing blocks is
-- expensive. So include as much as possible in the hash. Ideally everything
-- that is compared with (==) in eqBlockBodyWith.
{-
Note [Equivalence up to local registers in CBE]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CBE treats two blocks which are equivalent up to alpha-renaming of locally-bound
local registers as equivalent. This was not always the case (see #14226) but is
quite important for effective CBE. For instance, consider the blocks,
c2VZ: // global
_c2Yd::I64 = _s2Se::I64 + 1;
_s2Sx::I64 = _c2Yd::I64;
_s2Se::I64 = _s2Sx::I64;
goto c2TE;
c2VY: // global
_c2Yb::I64 = _s2Se::I64 + 1;
_s2Sw::I64 = _c2Yb::I64;
_s2Se::I64 = _s2Sw::I64;
goto c2TE;
These clearly implement precisely the same logic, differing only register
naming. This happens quite often in the code produced by GHC.
This alpha-equivalence relation must be accounted for in two places:
1. the block hash function (hash_block), which we use for approximate "binning"
2. the exact block comparison function, which computes pair-wise equivalence
In (1) we maintain a de Bruijn numbering of each block's locally-bound local
registers and compute the hash relative to this numbering.
For (2) we maintain a substitution which maps the local registers of one block
onto those of the other. We then compare local registers modulo this
substitution.
-}
type HashCode = Int
type LocalRegEnv a = UniqFM a
type DeBruijn = Int
-- | Maintains a de Bruijn numbering of local registers bound within a block.
--
-- See Note [Equivalence up to local registers in CBE]
data HashEnv = HashEnv { localRegHashEnv :: !(LocalRegEnv DeBruijn)
, nextIndex :: !DeBruijn
}
hash_block :: CmmBlock -> HashCode
hash_block block =
--pprTrace "hash_block" (ppr (entryLabel block) $$ ppr hash)
hash
where hash_fst _ (env, h) = (env, h)
hash_mid m (env, h) = let (env', h') = hash_node env m
in (env', h' + h `shiftL` 1)
hash_lst m (env, h) = let (env', h') = hash_node env m
in (env', h' + h `shiftL` 1)
hash =
let (_, raw_hash) =
foldBlockNodesF3 (hash_fst, hash_mid, hash_lst)
block
(emptyEnv, 0 :: Word32)
emptyEnv = HashEnv mempty 0
in fromIntegral (raw_hash .&. (0x7fffffff :: Word32))
-- UniqFM doesn't like negative Ints
hash_node :: HashEnv -> CmmNode O x -> (HashEnv, Word32)
hash_node env n =
case n of
n | dont_care n -> pure_ 0 -- don't care
CmmAssign (CmmLocal r) e -> (bind_local_reg r env, hash_e env e)
CmmAssign r e -> pure_ $ hash_reg env r + hash_e env e
CmmStore e e' -> pure_ $ hash_e env e + hash_e env e'
CmmUnsafeForeignCall t _ as
-> pure_ $ hash_tgt env t + hash_list (hash_e env) as
CmmBranch _ -> pure_ 23 -- NB. ignore the label
CmmCondBranch p _ _ _ -> pure_ $ hash_e env p
CmmCall e _ _ _ _ _ -> pure_ $ hash_e env e
CmmForeignCall t _ _ _ _ _ _ -> pure_ $ hash_tgt env t
CmmSwitch e _ -> pure_ $ hash_e env e
_ -> error "hash_node: unknown Cmm node!"
where pure_ x = (env, x)
hash_reg :: HashEnv -> CmmReg -> Word32
hash_reg env (CmmLocal localReg)
| Just idx <- lookupUFM (localRegHashEnv env) localReg
= fromIntegral idx
| otherwise
= hash_unique localReg -- important for performance, see #10397
hash_reg _ (CmmGlobal _) = 19
hash_e :: HashEnv -> CmmExpr -> Word32
hash_e _ (CmmLit l) = hash_lit l
hash_e env (CmmLoad e _) = 67 + hash_e env e
hash_e env (CmmReg r) = hash_reg env r
hash_e env (CmmMachOp _ es) = hash_list (hash_e env) es -- pessimal - no operator check
hash_e env (CmmRegOff r i) = hash_reg env r + cvt i
hash_e _ (CmmStackSlot _ _) = 13
hash_lit :: CmmLit -> Word32
hash_lit (CmmInt i _) = fromInteger i
hash_lit (CmmFloat r _) = truncate r
hash_lit (CmmVec ls) = hash_list hash_lit ls
hash_lit (CmmLabel _) = 119 -- ugh
hash_lit (CmmLabelOff _ i) = cvt $ 199 + i
hash_lit (CmmLabelDiffOff _ _ i) = cvt $ 299 + i
hash_lit (CmmBlock _) = 191 -- ugh
hash_lit (CmmHighStackMark) = cvt 313
hash_tgt :: HashEnv -> ForeignTarget -> Word32
hash_tgt env (ForeignTarget e _) = hash_e env e
hash_tgt _ (PrimTarget _) = 31 -- lots of these
hash_list f = List.foldl' (\z x -> f x + z) (0::Word32)
cvt = fromInteger . toInteger
bind_local_reg :: LocalReg -> HashEnv -> HashEnv
bind_local_reg reg env =
env { localRegHashEnv =
addToUFM (localRegHashEnv env) reg (nextIndex env)
, nextIndex = nextIndex env + 1
}
hash_unique :: Uniquable a => a -> Word32
hash_unique = cvt . getKey . getUnique
-- | Ignore these node types for equality
dont_care :: CmmNode O x -> Bool
dont_care CmmComment {} = True
dont_care CmmTick {} = True
dont_care CmmUnwind {} = True
dont_care _other = False
-- Utilities: equality and substitution on the graph.
-- Given a map ``subst'' from BlockID -> BlockID, we define equality.
eqBid :: LabelMap BlockId -> BlockId -> BlockId -> Bool
eqBid subst bid bid' = lookupBid subst bid == lookupBid subst bid'
lookupBid :: LabelMap BlockId -> BlockId -> BlockId
lookupBid subst bid = case mapLookup bid subst of
Just bid -> lookupBid subst bid
Nothing -> bid
-- | Maps the local registers of one block to those of another
--
-- See Note [Equivalence up to local registers in CBE]
type LocalRegMapping = LocalRegEnv LocalReg
-- Middle nodes and expressions can contain BlockIds, in particular in
-- CmmStackSlot and CmmBlock, so we have to use a special equality for
-- these.
--
eqMiddleWith :: (BlockId -> BlockId -> Bool)
-> LocalRegMapping
-> CmmNode O O -> CmmNode O O
-> (LocalRegMapping, Bool)
eqMiddleWith eqBid env a b =
case (a, b) of
(CmmAssign (CmmLocal r1) e1, CmmAssign (CmmLocal r2) e2) ->
let eq = eqExprWith eqBid env e1 e2
env' = addToUFM env r1 r2
in (env', eq)
(CmmAssign r1 e1, CmmAssign r2 e2) ->
let eq = r1 == r2
&& eqExprWith eqBid env e1 e2
in (env, eq)
(CmmStore l1 r1, CmmStore l2 r2) ->
let eq = eqExprWith eqBid env l1 l2
&& eqExprWith eqBid env r1 r2
in (env, eq)
(CmmUnsafeForeignCall t1 r1 a1, CmmUnsafeForeignCall t2 r2 a2) ->
let eq = t1 == t2
&& r1 == r2
&& and (zipWith (eqExprWith eqBid env) a1 a2)
in (env, eq)
_ -> (env, False)
eqExprWith :: (BlockId -> BlockId -> Bool)
-> LocalRegMapping
-> CmmExpr -> CmmExpr -> Bool
eqExprWith eqBid env = eq
where
CmmLit l1 `eq` CmmLit l2 = eqLit l1 l2
CmmLoad e1 _ `eq` CmmLoad e2 _ = e1 `eq` e2
CmmReg r1 `eq` CmmReg r2 = r1 `eqReg` r2
CmmRegOff r1 i1 `eq` CmmRegOff r2 i2 = r1 `eqReg` r2 && i1==i2
CmmMachOp op1 es1 `eq` CmmMachOp op2 es2 = op1==op2 && es1 `eqs` es2
CmmStackSlot a1 i1 `eq` CmmStackSlot a2 i2 = eqArea a1 a2 && i1==i2
_e1 `eq` _e2 = False
xs `eqs` ys = and (zipWith eq xs ys)
-- See Note [Equivalence up to local registers in CBE]
CmmLocal a `eqReg` CmmLocal b
| Just a' <- lookupUFM env a
= a' == b
a `eqReg` b = a == b
eqLit (CmmBlock id1) (CmmBlock id2) = eqBid id1 id2
eqLit l1 l2 = l1 == l2
eqArea Old Old = True
eqArea (Young id1) (Young id2) = eqBid id1 id2
eqArea _ _ = False
-- Equality on the body of a block, modulo a function mapping block
-- IDs to block IDs.
eqBlockBodyWith :: (BlockId -> BlockId -> Bool) -> CmmBlock -> CmmBlock -> Bool
eqBlockBodyWith eqBid block block'
{-
| equal = pprTrace "equal" (vcat [ppr block, ppr block']) True
| otherwise = pprTrace "not equal" (vcat [ppr block, ppr block']) False
-}
= equal_go emptyUFM nodes nodes'
where (_,m,l) = blockSplit block
nodes = filter (not . dont_care) (blockToList m)
(_,m',l') = blockSplit block'
nodes' = filter (not . dont_care) (blockToList m')
-- Compare middle nodes, accumulating a local register mapping as we go.
-- We also must ensure that the lists are of equal length. Finally,
-- compare the last nodes.
equal_go :: LocalRegMapping -> [CmmNode O O] -> [CmmNode O O] -> Bool
equal_go acc (a:as) (b:bs)
| let (acc', eq) = eqMiddleWith eqBid acc a b
, eq
= equal_go acc' as bs
equal_go acc [] [] = eqLastWith eqBid acc l l'
equal_go _ _ _ = False
eqLastWith :: (BlockId -> BlockId -> Bool) -> LocalRegMapping
-> CmmNode O C -> CmmNode O C -> Bool
eqLastWith eqBid env a b =
case (a, b) of
(CmmBranch bid1, CmmBranch bid2) ->
eqBid bid1 bid2
(CmmCondBranch c1 t1 f1 l1, CmmCondBranch c2 t2 f2 l2) ->
eqExprWith eqBid env c1 c2
&& l1 == l2 && eqBid t1 t2 && eqBid f1 f2
(CmmCall t1 c1 g1 a1 r1 u1, CmmCall t2 c2 g2 a2 r2 u2) ->
eqExprWith eqBid env t1 t2
&& eqMaybeWith eqBid c1 c2
&& a1 == a2 && r1 == r2 && u1 == u2 && g1 == g2
(CmmSwitch e1 ids1, CmmSwitch e2 ids2) ->
eqExprWith eqBid env e1 e2
&& eqSwitchTargetWith eqBid ids1 ids2
_ -> False
eqMaybeWith :: (a -> b -> Bool) -> Maybe a -> Maybe b -> Bool
eqMaybeWith eltEq (Just e) (Just e') = eltEq e e'
eqMaybeWith _ Nothing Nothing = True
eqMaybeWith _ _ _ = False
-- | Given a block map, ensure that all "target" blocks are covered by
-- the same ticks as the respective "source" blocks. This not only
-- means copying ticks, but also adjusting tick scopes where
-- necessary.
copyTicks :: LabelMap BlockId -> CmmGraph -> CmmGraph
copyTicks env g
| mapNull env = g
| otherwise = ofBlockMap (g_entry g) $ mapMap copyTo blockMap
where -- Reverse block merge map
blockMap = toBlockMap g
revEnv = mapFoldWithKey insertRev M.empty env
insertRev k x = M.insertWith (const (k:)) x [k]
-- Copy ticks and scopes into the given block
copyTo block = case M.lookup (entryLabel block) revEnv of
Nothing -> block
Just ls -> foldr copy block $ mapMaybe (flip mapLookup blockMap) ls
copy from to =
let ticks = blockTicks from
CmmEntry _ scp0 = firstNode from
(CmmEntry lbl scp1, code) = blockSplitHead to
in CmmEntry lbl (combineTickScopes scp0 scp1) `blockJoinHead`
foldr blockCons code (map CmmTick ticks)
-- Group by [Label]
groupByLabel :: [(Key, a)] -> [(Key, [a])]
groupByLabel = go (TM.emptyTM :: TM.ListMap UniqDFM a)
where
go !m [] = TM.foldTM (:) m []
go !m ((k,v) : entries) = go (TM.alterTM k' adjust m) entries
where k' = map getUnique k
adjust Nothing = Just (k,[v])
adjust (Just (_,vs)) = Just (k,v:vs)
groupByInt :: (a -> Int) -> [a] -> [[a]]
groupByInt f xs = nonDetEltsUFM $ List.foldl' go emptyUFM xs
-- See Note [Unique Determinism and code generation]
where go m x = alterUFM (Just . maybe [x] (x:)) m (f x)
|