1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
|
{-# LANGUAGE CPP, RecordWildCards, GADTs #-}
module CmmLayoutStack (
cmmLayoutStack, setInfoTableStackMap
) where
import StgCmmUtils ( callerSaveVolatileRegs ) -- XXX layering violation
import StgCmmForeign ( saveThreadState, loadThreadState ) -- XXX layering violation
import BasicTypes
import Cmm
import CmmInfo
import BlockId
import CLabel
import CmmUtils
import MkGraph
import ForeignCall
import CmmLive
import CmmProcPoint
import SMRep
import Hoopl
import UniqSupply
import Maybes
import UniqFM
import Util
import DynFlags
import FastString
import Outputable hiding ( isEmpty )
import qualified Data.Set as Set
import Control.Monad.Fix
import Data.Array as Array
import Data.Bits
import Data.List (nub)
import Control.Monad (liftM)
#if __GLASGOW_HASKELL__ >= 709
import Prelude hiding ((<*>))
#endif
#include "HsVersions.h"
{- Note [Stack Layout]
The job of this pass is to
- replace references to abstract stack Areas with fixed offsets from Sp.
- replace the CmmHighStackMark constant used in the stack check with
the maximum stack usage of the proc.
- save any variables that are live across a call, and reload them as
necessary.
Before stack allocation, local variables remain live across native
calls (CmmCall{ cmm_cont = Just _ }), and after stack allocation local
variables are clobbered by native calls.
We want to do stack allocation so that as far as possible
- stack use is minimized, and
- unnecessary stack saves and loads are avoided.
The algorithm we use is a variant of linear-scan register allocation,
where the stack is our register file.
- First, we do a liveness analysis, which annotates every block with
the variables live on entry to the block.
- We traverse blocks in reverse postorder DFS; that is, we visit at
least one predecessor of a block before the block itself. The
stack layout flowing from the predecessor of the block will
determine the stack layout on entry to the block.
- We maintain a data structure
Map Label StackMap
which describes the contents of the stack and the stack pointer on
entry to each block that is a successor of a block that we have
visited.
- For each block we visit:
- Look up the StackMap for this block.
- If this block is a proc point (or a call continuation, if we
aren't splitting proc points), emit instructions to reload all
the live variables from the stack, according to the StackMap.
- Walk forwards through the instructions:
- At an assignment x = Sp[loc]
- Record the fact that Sp[loc] contains x, so that we won't
need to save x if it ever needs to be spilled.
- At an assignment x = E
- If x was previously on the stack, it isn't any more
- At the last node, if it is a call or a jump to a proc point
- Lay out the stack frame for the call (see setupStackFrame)
- emit instructions to save all the live variables
- Remember the StackMaps for all the successors
- emit an instruction to adjust Sp
- If the last node is a branch, then the current StackMap is the
StackMap for the successors.
- Manifest Sp: replace references to stack areas in this block
with real Sp offsets. We cannot do this until we have laid out
the stack area for the successors above.
In this phase we also eliminate redundant stores to the stack;
see elimStackStores.
- There is one important gotcha: sometimes we'll encounter a control
transfer to a block that we've already processed (a join point),
and in that case we might need to rearrange the stack to match
what the block is expecting. (exactly the same as in linear-scan
register allocation, except here we have the luxury of an infinite
supply of temporary variables).
- Finally, we update the magic CmmHighStackMark constant with the
stack usage of the function, and eliminate the whole stack check
if there was no stack use. (in fact this is done as part of the
main traversal, by feeding the high-water-mark output back in as
an input. I hate cyclic programming, but it's just too convenient
sometimes.)
There are plenty of tricky details: update frames, proc points, return
addresses, foreign calls, and some ad-hoc optimisations that are
convenient to do here and effective in common cases. Comments in the
code below explain these.
-}
-- All stack locations are expressed as positive byte offsets from the
-- "base", which is defined to be the address above the return address
-- on the stack on entry to this CmmProc.
--
-- Lower addresses have higher StackLocs.
--
type StackLoc = ByteOff
{-
A StackMap describes the stack at any given point. At a continuation
it has a particular layout, like this:
| | <- base
|-------------|
| ret0 | <- base + 8
|-------------|
. upd frame . <- base + sm_ret_off
|-------------|
| |
. vars .
. (live/dead) .
| | <- base + sm_sp - sm_args
|-------------|
| ret1 |
. ret vals . <- base + sm_sp (<--- Sp points here)
|-------------|
Why do we include the final return address (ret0) in our stack map? I
have absolutely no idea, but it seems to be done that way consistently
in the rest of the code generator, so I played along here. --SDM
Note that we will be constructing an info table for the continuation
(ret1), which needs to describe the stack down to, but not including,
the update frame (or ret0, if there is no update frame).
-}
data StackMap = StackMap
{ sm_sp :: StackLoc
-- ^ the offset of Sp relative to the base on entry
-- to this block.
, sm_args :: ByteOff
-- ^ the number of bytes of arguments in the area for this block
-- Defn: the offset of young(L) relative to the base is given by
-- (sm_sp - sm_args) of the StackMap for block L.
, sm_ret_off :: ByteOff
-- ^ Number of words of stack that we do not describe with an info
-- table, because it contains an update frame.
, sm_regs :: UniqFM (LocalReg,StackLoc)
-- ^ regs on the stack
}
instance Outputable StackMap where
ppr StackMap{..} =
text "Sp = " <> int sm_sp $$
text "sm_args = " <> int sm_args $$
text "sm_ret_off = " <> int sm_ret_off $$
text "sm_regs = " <> ppr (eltsUFM sm_regs)
cmmLayoutStack :: DynFlags -> ProcPointSet -> ByteOff -> CmmGraph
-> UniqSM (CmmGraph, BlockEnv StackMap)
cmmLayoutStack dflags procpoints entry_args
graph0@(CmmGraph { g_entry = entry })
= do
-- We need liveness info. Dead assignments are removed later
-- by the sinking pass.
let (graph, liveness) = (graph0, cmmLocalLiveness dflags graph0)
blocks = postorderDfs graph
(final_stackmaps, _final_high_sp, new_blocks) <-
mfix $ \ ~(rec_stackmaps, rec_high_sp, _new_blocks) ->
layout dflags procpoints liveness entry entry_args
rec_stackmaps rec_high_sp blocks
new_blocks' <- mapM (lowerSafeForeignCall dflags) new_blocks
return (ofBlockList entry new_blocks', final_stackmaps)
layout :: DynFlags
-> BlockSet -- proc points
-> BlockEnv CmmLocalLive -- liveness
-> BlockId -- entry
-> ByteOff -- stack args on entry
-> BlockEnv StackMap -- [final] stack maps
-> ByteOff -- [final] Sp high water mark
-> [CmmBlock] -- [in] blocks
-> UniqSM
( BlockEnv StackMap -- [out] stack maps
, ByteOff -- [out] Sp high water mark
, [CmmBlock] -- [out] new blocks
)
layout dflags procpoints liveness entry entry_args final_stackmaps final_sp_high blocks
= go blocks init_stackmap entry_args []
where
(updfr, cont_info) = collectContInfo blocks
init_stackmap = mapSingleton entry StackMap{ sm_sp = entry_args
, sm_args = entry_args
, sm_ret_off = updfr
, sm_regs = emptyUFM
}
go [] acc_stackmaps acc_hwm acc_blocks
= return (acc_stackmaps, acc_hwm, acc_blocks)
go (b0 : bs) acc_stackmaps acc_hwm acc_blocks
= do
let (entry0@(CmmEntry entry_lbl tscope), middle0, last0) = blockSplit b0
let stack0@StackMap { sm_sp = sp0 }
= mapFindWithDefault
(pprPanic "no stack map for" (ppr entry_lbl))
entry_lbl acc_stackmaps
-- (a) Update the stack map to include the effects of
-- assignments in this block
let stack1 = foldBlockNodesF (procMiddle acc_stackmaps) middle0 stack0
-- (b) Insert assignments to reload all the live variables if this
-- block is a proc point
let middle1 = if entry_lbl `setMember` procpoints
then foldr blockCons middle0 (insertReloads stack0)
else middle0
-- (c) Look at the last node and if we are making a call or
-- jumping to a proc point, we must save the live
-- variables, adjust Sp, and construct the StackMaps for
-- each of the successor blocks. See handleLastNode for
-- details.
(middle2, sp_off, last1, fixup_blocks, out)
<- handleLastNode dflags procpoints liveness cont_info
acc_stackmaps stack1 tscope middle0 last0
-- (d) Manifest Sp: run over the nodes in the block and replace
-- CmmStackSlot with CmmLoad from Sp with a concrete offset.
--
-- our block:
-- middle1 -- the original middle nodes
-- middle2 -- live variable saves from handleLastNode
-- Sp = Sp + sp_off -- Sp adjustment goes here
-- last1 -- the last node
--
let middle_pre = blockToList $ foldl blockSnoc middle1 middle2
final_blocks = manifestSp dflags final_stackmaps stack0 sp0 final_sp_high entry0
middle_pre sp_off last1 fixup_blocks
acc_stackmaps' = mapUnion acc_stackmaps out
-- If this block jumps to the GC, then we do not take its
-- stack usage into account for the high-water mark.
-- Otherwise, if the only stack usage is in the stack-check
-- failure block itself, we will do a redundant stack
-- check. The stack has a buffer designed to accommodate
-- the largest amount of stack needed for calling the GC.
--
this_sp_hwm | isGcJump last0 = 0
| otherwise = sp0 - sp_off
hwm' = maximum (acc_hwm : this_sp_hwm : map sm_sp (mapElems out))
go bs acc_stackmaps' hwm' (final_blocks ++ acc_blocks)
-- -----------------------------------------------------------------------------
-- Not foolproof, but GCFun is the culprit we most want to catch
isGcJump :: CmmNode O C -> Bool
isGcJump (CmmCall { cml_target = CmmReg (CmmGlobal l) })
= l == GCFun || l == GCEnter1
isGcJump _something_else = False
-- -----------------------------------------------------------------------------
-- This doesn't seem right somehow. We need to find out whether this
-- proc will push some update frame material at some point, so that we
-- can avoid using that area of the stack for spilling. The
-- updfr_space field of the CmmProc *should* tell us, but it doesn't
-- (I think maybe it gets filled in later when we do proc-point
-- splitting).
--
-- So we'll just take the max of all the cml_ret_offs. This could be
-- unnecessarily pessimistic, but probably not in the code we
-- generate.
collectContInfo :: [CmmBlock] -> (ByteOff, BlockEnv ByteOff)
collectContInfo blocks
= (maximum ret_offs, mapFromList (catMaybes mb_argss))
where
(mb_argss, ret_offs) = mapAndUnzip get_cont blocks
get_cont :: Block CmmNode x C -> (Maybe (Label, ByteOff), ByteOff)
get_cont b =
case lastNode b of
CmmCall { cml_cont = Just l, .. }
-> (Just (l, cml_ret_args), cml_ret_off)
CmmForeignCall { .. }
-> (Just (succ, ret_args), ret_off)
_other -> (Nothing, 0)
-- -----------------------------------------------------------------------------
-- Updating the StackMap from middle nodes
-- Look for loads from stack slots, and update the StackMap. This is
-- purely for optimisation reasons, so that we can avoid saving a
-- variable back to a different stack slot if it is already on the
-- stack.
--
-- This happens a lot: for example when function arguments are passed
-- on the stack and need to be immediately saved across a call, we
-- want to just leave them where they are on the stack.
--
procMiddle :: BlockEnv StackMap -> CmmNode e x -> StackMap -> StackMap
procMiddle stackmaps node sm
= case node of
CmmAssign (CmmLocal r) (CmmLoad (CmmStackSlot area off) _)
-> sm { sm_regs = addToUFM (sm_regs sm) r (r,loc) }
where loc = getStackLoc area off stackmaps
CmmAssign (CmmLocal r) _other
-> sm { sm_regs = delFromUFM (sm_regs sm) r }
_other
-> sm
getStackLoc :: Area -> ByteOff -> BlockEnv StackMap -> StackLoc
getStackLoc Old n _ = n
getStackLoc (Young l) n stackmaps =
case mapLookup l stackmaps of
Nothing -> pprPanic "getStackLoc" (ppr l)
Just sm -> sm_sp sm - sm_args sm + n
-- -----------------------------------------------------------------------------
-- Handling stack allocation for a last node
-- We take a single last node and turn it into:
--
-- C1 (some statements)
-- Sp = Sp + N
-- C2 (some more statements)
-- call f() -- the actual last node
--
-- plus possibly some more blocks (we may have to add some fixup code
-- between the last node and the continuation).
--
-- C1: is the code for saving the variables across this last node onto
-- the stack, if the continuation is a call or jumps to a proc point.
--
-- C2: if the last node is a safe foreign call, we have to inject some
-- extra code that goes *after* the Sp adjustment.
handleLastNode
:: DynFlags -> ProcPointSet -> BlockEnv CmmLocalLive -> BlockEnv ByteOff
-> BlockEnv StackMap -> StackMap -> CmmTickScope
-> Block CmmNode O O
-> CmmNode O C
-> UniqSM
( [CmmNode O O] -- nodes to go *before* the Sp adjustment
, ByteOff -- amount to adjust Sp
, CmmNode O C -- new last node
, [CmmBlock] -- new blocks
, BlockEnv StackMap -- stackmaps for the continuations
)
handleLastNode dflags procpoints liveness cont_info stackmaps
stack0@StackMap { sm_sp = sp0 } tscp middle last
= case last of
-- At each return / tail call,
-- adjust Sp to point to the last argument pushed, which
-- is cml_args, after popping any other junk from the stack.
CmmCall{ cml_cont = Nothing, .. } -> do
let sp_off = sp0 - cml_args
return ([], sp_off, last, [], mapEmpty)
-- At each CmmCall with a continuation:
CmmCall{ cml_cont = Just cont_lbl, .. } ->
return $ lastCall cont_lbl cml_args cml_ret_args cml_ret_off
CmmForeignCall{ succ = cont_lbl, .. } -> do
return $ lastCall cont_lbl (wORD_SIZE dflags) ret_args ret_off
-- one word of args: the return address
CmmBranch {} -> handleBranches
CmmCondBranch {} -> handleBranches
CmmSwitch {} -> handleBranches
where
-- Calls and ForeignCalls are handled the same way:
lastCall :: BlockId -> ByteOff -> ByteOff -> ByteOff
-> ( [CmmNode O O]
, ByteOff
, CmmNode O C
, [CmmBlock]
, BlockEnv StackMap
)
lastCall lbl cml_args cml_ret_args cml_ret_off
= ( assignments
, spOffsetForCall sp0 cont_stack cml_args
, last
, [] -- no new blocks
, mapSingleton lbl cont_stack )
where
(assignments, cont_stack) = prepareStack lbl cml_ret_args cml_ret_off
prepareStack lbl cml_ret_args cml_ret_off
| Just cont_stack <- mapLookup lbl stackmaps
-- If we have already seen this continuation before, then
-- we just have to make the stack look the same:
= (fixupStack stack0 cont_stack, cont_stack)
-- Otherwise, we have to allocate the stack frame
| otherwise
= (save_assignments, new_cont_stack)
where
(new_cont_stack, save_assignments)
= setupStackFrame dflags lbl liveness cml_ret_off cml_ret_args stack0
-- For other last nodes (branches), if any of the targets is a
-- proc point, we have to set up the stack to match what the proc
-- point is expecting.
--
handleBranches :: UniqSM ( [CmmNode O O]
, ByteOff
, CmmNode O C
, [CmmBlock]
, BlockEnv StackMap )
handleBranches
-- Note [diamond proc point]
| Just l <- futureContinuation middle
, (nub $ filter (`setMember` procpoints) $ successors last) == [l]
= do
let cont_args = mapFindWithDefault 0 l cont_info
(assigs, cont_stack) = prepareStack l cont_args (sm_ret_off stack0)
out = mapFromList [ (l', cont_stack)
| l' <- successors last ]
return ( assigs
, spOffsetForCall sp0 cont_stack (wORD_SIZE dflags)
, last
, []
, out)
| otherwise = do
pps <- mapM handleBranch (successors last)
let lbl_map :: LabelMap Label
lbl_map = mapFromList [ (l,tmp) | (l,tmp,_,_) <- pps ]
fix_lbl l = mapFindWithDefault l l lbl_map
return ( []
, 0
, mapSuccessors fix_lbl last
, concat [ blk | (_,_,_,blk) <- pps ]
, mapFromList [ (l, sm) | (l,_,sm,_) <- pps ] )
-- For each successor of this block
handleBranch :: BlockId -> UniqSM (BlockId, BlockId, StackMap, [CmmBlock])
handleBranch l
-- (a) if the successor already has a stackmap, we need to
-- shuffle the current stack to make it look the same.
-- We have to insert a new block to make this happen.
| Just stack2 <- mapLookup l stackmaps
= do
let assigs = fixupStack stack0 stack2
(tmp_lbl, block) <- makeFixupBlock dflags sp0 l stack2 tscp assigs
return (l, tmp_lbl, stack2, block)
-- (b) if the successor is a proc point, save everything
-- on the stack.
| l `setMember` procpoints
= do
let cont_args = mapFindWithDefault 0 l cont_info
(stack2, assigs) =
setupStackFrame dflags l liveness (sm_ret_off stack0)
cont_args stack0
(tmp_lbl, block) <- makeFixupBlock dflags sp0 l stack2 tscp assigs
return (l, tmp_lbl, stack2, block)
-- (c) otherwise, the current StackMap is the StackMap for
-- the continuation. But we must remember to remove any
-- variables from the StackMap that are *not* live at
-- the destination, because this StackMap might be used
-- by fixupStack if this is a join point.
| otherwise = return (l, l, stack1, [])
where live = mapFindWithDefault (panic "handleBranch") l liveness
stack1 = stack0 { sm_regs = filterUFM is_live (sm_regs stack0) }
is_live (r,_) = r `elemRegSet` live
makeFixupBlock :: DynFlags -> ByteOff -> Label -> StackMap
-> CmmTickScope -> [CmmNode O O]
-> UniqSM (Label, [CmmBlock])
makeFixupBlock dflags sp0 l stack tscope assigs
| null assigs && sp0 == sm_sp stack = return (l, [])
| otherwise = do
tmp_lbl <- liftM mkBlockId $ getUniqueM
let sp_off = sp0 - sm_sp stack
block = blockJoin (CmmEntry tmp_lbl tscope)
(maybeAddSpAdj dflags sp_off (blockFromList assigs))
(CmmBranch l)
return (tmp_lbl, [block])
-- Sp is currently pointing to current_sp,
-- we want it to point to
-- (sm_sp cont_stack - sm_args cont_stack + args)
-- so the difference is
-- sp0 - (sm_sp cont_stack - sm_args cont_stack + args)
spOffsetForCall :: ByteOff -> StackMap -> ByteOff -> ByteOff
spOffsetForCall current_sp cont_stack args
= current_sp - (sm_sp cont_stack - sm_args cont_stack + args)
-- | create a sequence of assignments to establish the new StackMap,
-- given the old StackMap.
fixupStack :: StackMap -> StackMap -> [CmmNode O O]
fixupStack old_stack new_stack = concatMap move new_locs
where
old_map = sm_regs old_stack
new_locs = stackSlotRegs new_stack
move (r,n)
| Just (_,m) <- lookupUFM old_map r, n == m = []
| otherwise = [CmmStore (CmmStackSlot Old n)
(CmmReg (CmmLocal r))]
setupStackFrame
:: DynFlags
-> BlockId -- label of continuation
-> BlockEnv CmmLocalLive -- liveness
-> ByteOff -- updfr
-> ByteOff -- bytes of return values on stack
-> StackMap -- current StackMap
-> (StackMap, [CmmNode O O])
setupStackFrame dflags lbl liveness updfr_off ret_args stack0
= (cont_stack, assignments)
where
-- get the set of LocalRegs live in the continuation
live = mapFindWithDefault Set.empty lbl liveness
-- the stack from the base to updfr_off is off-limits.
-- our new stack frame contains:
-- * saved live variables
-- * the return address [young(C) + 8]
-- * the args for the call,
-- which are replaced by the return values at the return
-- point.
-- everything up to updfr_off is off-limits
-- stack1 contains updfr_off, plus everything we need to save
(stack1, assignments) = allocate dflags updfr_off live stack0
-- And the Sp at the continuation is:
-- sm_sp stack1 + ret_args
cont_stack = stack1{ sm_sp = sm_sp stack1 + ret_args
, sm_args = ret_args
, sm_ret_off = updfr_off
}
-- -----------------------------------------------------------------------------
-- Note [diamond proc point]
--
-- This special case looks for the pattern we get from a typical
-- tagged case expression:
--
-- Sp[young(L1)] = L1
-- if (R1 & 7) != 0 goto L1 else goto L2
-- L2:
-- call [R1] returns to L1
-- L1: live: {y}
-- x = R1
--
-- If we let the generic case handle this, we get
--
-- Sp[-16] = L1
-- if (R1 & 7) != 0 goto L1a else goto L2
-- L2:
-- Sp[-8] = y
-- Sp = Sp - 16
-- call [R1] returns to L1
-- L1a:
-- Sp[-8] = y
-- Sp = Sp - 16
-- goto L1
-- L1:
-- x = R1
--
-- The code for saving the live vars is duplicated in each branch, and
-- furthermore there is an extra jump in the fast path (assuming L1 is
-- a proc point, which it probably is if there is a heap check).
--
-- So to fix this we want to set up the stack frame before the
-- conditional jump. How do we know when to do this, and when it is
-- safe? The basic idea is, when we see the assignment
--
-- Sp[young(L)] = L
--
-- we know that
-- * we are definitely heading for L
-- * there can be no more reads from another stack area, because young(L)
-- overlaps with it.
--
-- We don't necessarily know that everything live at L is live now
-- (some might be assigned between here and the jump to L). So we
-- simplify and only do the optimisation when we see
--
-- (1) a block containing an assignment of a return address L
-- (2) ending in a branch where one (and only) continuation goes to L,
-- and no other continuations go to proc points.
--
-- then we allocate the stack frame for L at the end of the block,
-- before the branch.
--
-- We could generalise (2), but that would make it a bit more
-- complicated to handle, and this currently catches the common case.
futureContinuation :: Block CmmNode O O -> Maybe BlockId
futureContinuation middle = foldBlockNodesB f middle Nothing
where f :: CmmNode a b -> Maybe BlockId -> Maybe BlockId
f (CmmStore (CmmStackSlot (Young l) _) (CmmLit (CmmBlock _))) _
= Just l
f _ r = r
-- -----------------------------------------------------------------------------
-- Saving live registers
-- | Given a set of live registers and a StackMap, save all the registers
-- on the stack and return the new StackMap and the assignments to do
-- the saving.
--
allocate :: DynFlags -> ByteOff -> LocalRegSet -> StackMap
-> (StackMap, [CmmNode O O])
allocate dflags ret_off live stackmap@StackMap{ sm_sp = sp0
, sm_regs = regs0 }
=
-- we only have to save regs that are not already in a slot
let to_save = filter (not . (`elemUFM` regs0)) (Set.elems live)
regs1 = filterUFM (\(r,_) -> elemRegSet r live) regs0
in
-- make a map of the stack
let stack = reverse $ Array.elems $
accumArray (\_ x -> x) Empty (1, toWords dflags (max sp0 ret_off)) $
ret_words ++ live_words
where ret_words =
[ (x, Occupied)
| x <- [ 1 .. toWords dflags ret_off] ]
live_words =
[ (toWords dflags x, Occupied)
| (r,off) <- eltsUFM regs1,
let w = localRegBytes dflags r,
x <- [ off, off - wORD_SIZE dflags .. off - w + 1] ]
in
-- Pass over the stack: find slots to save all the new live variables,
-- choosing the oldest slots first (hence a foldr).
let
save slot ([], stack, n, assigs, regs) -- no more regs to save
= ([], slot:stack, plusW dflags n 1, assigs, regs)
save slot (to_save, stack, n, assigs, regs)
= case slot of
Occupied -> (to_save, Occupied:stack, plusW dflags n 1, assigs, regs)
Empty
| Just (stack', r, to_save') <-
select_save to_save (slot:stack)
-> let assig = CmmStore (CmmStackSlot Old n')
(CmmReg (CmmLocal r))
n' = plusW dflags n 1
in
(to_save', stack', n', assig : assigs, (r,(r,n')):regs)
| otherwise
-> (to_save, slot:stack, plusW dflags n 1, assigs, regs)
-- we should do better here: right now we'll fit the smallest first,
-- but it would make more sense to fit the biggest first.
select_save :: [LocalReg] -> [StackSlot]
-> Maybe ([StackSlot], LocalReg, [LocalReg])
select_save regs stack = go regs []
where go [] _no_fit = Nothing
go (r:rs) no_fit
| Just rest <- dropEmpty words stack
= Just (replicate words Occupied ++ rest, r, rs++no_fit)
| otherwise
= go rs (r:no_fit)
where words = localRegWords dflags r
-- fill in empty slots as much as possible
(still_to_save, save_stack, n, save_assigs, save_regs)
= foldr save (to_save, [], 0, [], []) stack
-- push any remaining live vars on the stack
(push_sp, push_assigs, push_regs)
= foldr push (n, [], []) still_to_save
where
push r (n, assigs, regs)
= (n', assig : assigs, (r,(r,n')) : regs)
where
n' = n + localRegBytes dflags r
assig = CmmStore (CmmStackSlot Old n')
(CmmReg (CmmLocal r))
trim_sp
| not (null push_regs) = push_sp
| otherwise
= plusW dflags n (- length (takeWhile isEmpty save_stack))
final_regs = regs1 `addListToUFM` push_regs
`addListToUFM` save_regs
in
-- XXX should be an assert
if ( n /= max sp0 ret_off ) then pprPanic "allocate" (ppr n <+> ppr sp0 <+> ppr ret_off) else
if (trim_sp .&. (wORD_SIZE dflags - 1)) /= 0 then pprPanic "allocate2" (ppr trim_sp <+> ppr final_regs <+> ppr push_sp) else
( stackmap { sm_regs = final_regs , sm_sp = trim_sp }
, push_assigs ++ save_assigs )
-- -----------------------------------------------------------------------------
-- Manifesting Sp
-- | Manifest Sp: turn all the CmmStackSlots into CmmLoads from Sp. The
-- block looks like this:
--
-- middle_pre -- the middle nodes
-- Sp = Sp + sp_off -- Sp adjustment goes here
-- last -- the last node
--
-- And we have some extra blocks too (that don't contain Sp adjustments)
--
-- The adjustment for middle_pre will be different from that for
-- middle_post, because the Sp adjustment intervenes.
--
manifestSp
:: DynFlags
-> BlockEnv StackMap -- StackMaps for other blocks
-> StackMap -- StackMap for this block
-> ByteOff -- Sp on entry to the block
-> ByteOff -- SpHigh
-> CmmNode C O -- first node
-> [CmmNode O O] -- middle
-> ByteOff -- sp_off
-> CmmNode O C -- last node
-> [CmmBlock] -- new blocks
-> [CmmBlock] -- final blocks with Sp manifest
manifestSp dflags stackmaps stack0 sp0 sp_high
first middle_pre sp_off last fixup_blocks
= final_block : fixup_blocks'
where
area_off = getAreaOff stackmaps
adj_pre_sp, adj_post_sp :: CmmNode e x -> CmmNode e x
adj_pre_sp = mapExpDeep (areaToSp dflags sp0 sp_high area_off)
adj_post_sp = mapExpDeep (areaToSp dflags (sp0 - sp_off) sp_high area_off)
-- Add unwind pseudo-instructions to document Sp level for debugging
add_unwind_info block
| debugLevel dflags > 0 = CmmUnwind Sp sp_unwind : block
| otherwise = block
sp_unwind = CmmRegOff (CmmGlobal Sp) (sp0 - wORD_SIZE dflags)
final_middle = maybeAddSpAdj dflags sp_off $
blockFromList $
add_unwind_info $
map adj_pre_sp $
elimStackStores stack0 stackmaps area_off $
middle_pre
final_last = optStackCheck (adj_post_sp last)
final_block = blockJoin first final_middle final_last
fixup_blocks' = map (mapBlock3' (id, adj_post_sp, id)) fixup_blocks
getAreaOff :: BlockEnv StackMap -> (Area -> StackLoc)
getAreaOff _ Old = 0
getAreaOff stackmaps (Young l) =
case mapLookup l stackmaps of
Just sm -> sm_sp sm - sm_args sm
Nothing -> pprPanic "getAreaOff" (ppr l)
maybeAddSpAdj :: DynFlags -> ByteOff -> Block CmmNode O O -> Block CmmNode O O
maybeAddSpAdj _ 0 block = block
maybeAddSpAdj dflags sp_off block
= block `blockSnoc` CmmAssign spReg (cmmOffset dflags (CmmReg spReg) sp_off)
{-
Sp(L) is the Sp offset on entry to block L relative to the base of the
OLD area.
SpArgs(L) is the size of the young area for L, i.e. the number of
arguments.
- in block L, each reference to [old + N] turns into
[Sp + Sp(L) - N]
- in block L, each reference to [young(L') + N] turns into
[Sp + Sp(L) - Sp(L') + SpArgs(L') - N]
- be careful with the last node of each block: Sp has already been adjusted
to be Sp + Sp(L) - Sp(L')
-}
areaToSp :: DynFlags -> ByteOff -> ByteOff -> (Area -> StackLoc) -> CmmExpr -> CmmExpr
areaToSp dflags sp_old _sp_hwm area_off (CmmStackSlot area n)
= cmmOffset dflags (CmmReg spReg) (sp_old - area_off area - n)
-- Replace (CmmStackSlot area n) with an offset from Sp
areaToSp dflags _ sp_hwm _ (CmmLit CmmHighStackMark)
= mkIntExpr dflags sp_hwm
-- Replace CmmHighStackMark with the number of bytes of stack used,
-- the sp_hwm. See Note [Stack usage] in StgCmmHeap
areaToSp dflags _ _ _ (CmmMachOp (MO_U_Lt _)
[CmmMachOp (MO_Sub _)
[ CmmRegOff (CmmGlobal Sp) x_off
, CmmLit (CmmInt y_lit _)],
CmmReg (CmmGlobal SpLim)])
| fromIntegral x_off >= y_lit
= zeroExpr dflags
-- Replace a stack-overflow test that cannot fail with a no-op
-- See Note [Always false stack check]
areaToSp _ _ _ _ other = other
-- Note [Always false stack check]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- We can optimise stack checks of the form
--
-- if ((Sp + x) - y < SpLim) then .. else ..
--
-- where are non-negative integer byte offsets. Since we know that
-- SpLim <= Sp (remember the stack grows downwards), this test must
-- yield False if (x >= y), so we can rewrite the comparison to False.
-- A subsequent sinking pass will later drop the dead code.
-- Optimising this away depends on knowing that SpLim <= Sp, so it is
-- really the job of the stack layout algorithm, hence we do it now.
optStackCheck :: CmmNode O C -> CmmNode O C
optStackCheck n = -- Note [Always false stack check]
case n of
CmmCondBranch (CmmLit (CmmInt 0 _)) _true false _ -> CmmBranch false
other -> other
-- -----------------------------------------------------------------------------
-- | Eliminate stores of the form
--
-- Sp[area+n] = r
--
-- when we know that r is already in the same slot as Sp[area+n]. We
-- could do this in a later optimisation pass, but that would involve
-- a separate analysis and we already have the information to hand
-- here. It helps clean up some extra stack stores in common cases.
--
-- Note that we may have to modify the StackMap as we walk through the
-- code using procMiddle, since an assignment to a variable in the
-- StackMap will invalidate its mapping there.
--
elimStackStores :: StackMap
-> BlockEnv StackMap
-> (Area -> ByteOff)
-> [CmmNode O O]
-> [CmmNode O O]
elimStackStores stackmap stackmaps area_off nodes
= go stackmap nodes
where
go _stackmap [] = []
go stackmap (n:ns)
= case n of
CmmStore (CmmStackSlot area m) (CmmReg (CmmLocal r))
| Just (_,off) <- lookupUFM (sm_regs stackmap) r
, area_off area + m == off
-> go stackmap ns
_otherwise
-> n : go (procMiddle stackmaps n stackmap) ns
-- -----------------------------------------------------------------------------
-- Update info tables to include stack liveness
setInfoTableStackMap :: DynFlags -> BlockEnv StackMap -> CmmDecl -> CmmDecl
setInfoTableStackMap dflags stackmaps (CmmProc top_info@TopInfo{..} l v g)
= CmmProc top_info{ info_tbls = mapMapWithKey fix_info info_tbls } l v g
where
fix_info lbl info_tbl@CmmInfoTable{ cit_rep = StackRep _ } =
info_tbl { cit_rep = StackRep (get_liveness lbl) }
fix_info _ other = other
get_liveness :: BlockId -> Liveness
get_liveness lbl
= case mapLookup lbl stackmaps of
Nothing -> pprPanic "setInfoTableStackMap" (ppr lbl <+> ppr info_tbls)
Just sm -> stackMapToLiveness dflags sm
setInfoTableStackMap _ _ d = d
stackMapToLiveness :: DynFlags -> StackMap -> Liveness
stackMapToLiveness dflags StackMap{..} =
reverse $ Array.elems $
accumArray (\_ x -> x) True (toWords dflags sm_ret_off + 1,
toWords dflags (sm_sp - sm_args)) live_words
where
live_words = [ (toWords dflags off, False)
| (r,off) <- eltsUFM sm_regs, isGcPtrType (localRegType r) ]
-- -----------------------------------------------------------------------------
-- Lowering safe foreign calls
{-
Note [Lower safe foreign calls]
We start with
Sp[young(L1)] = L1
,-----------------------
| r1 = foo(x,y,z) returns to L1
'-----------------------
L1:
R1 = r1 -- copyIn, inserted by mkSafeCall
...
the stack layout algorithm will arrange to save and reload everything
live across the call. Our job now is to expand the call so we get
Sp[young(L1)] = L1
,-----------------------
| SAVE_THREAD_STATE()
| token = suspendThread(BaseReg, interruptible)
| r = foo(x,y,z)
| BaseReg = resumeThread(token)
| LOAD_THREAD_STATE()
| R1 = r -- copyOut
| jump Sp[0]
'-----------------------
L1:
r = R1 -- copyIn, inserted by mkSafeCall
...
Note the copyOut, which saves the results in the places that L1 is
expecting them (see Note {safe foreign call convention]). Note also
that safe foreign call is replace by an unsafe one in the Cmm graph.
-}
lowerSafeForeignCall :: DynFlags -> CmmBlock -> UniqSM CmmBlock
lowerSafeForeignCall dflags block
| (entry@(CmmEntry _ tscp), middle, CmmForeignCall { .. }) <- blockSplit block
= do
-- Both 'id' and 'new_base' are KindNonPtr because they're
-- RTS-only objects and are not subject to garbage collection
id <- newTemp (bWord dflags)
new_base <- newTemp (cmmRegType dflags (CmmGlobal BaseReg))
let (caller_save, caller_load) = callerSaveVolatileRegs dflags
load_stack <- newTemp (gcWord dflags)
tso <- newTemp (gcWord dflags)
cn <- newTemp (bWord dflags)
bdfree <- newTemp (bWord dflags)
bdstart <- newTemp (bWord dflags)
let suspend = saveThreadState dflags tso cn <*>
caller_save <*>
mkMiddle (callSuspendThread dflags id intrbl)
midCall = mkUnsafeCall tgt res args
resume = mkMiddle (callResumeThread new_base id) <*>
-- Assign the result to BaseReg: we
-- might now have a different Capability!
mkAssign (CmmGlobal BaseReg) (CmmReg (CmmLocal new_base)) <*>
caller_load <*>
loadThreadState dflags tso load_stack cn bdfree bdstart
(_, regs, copyout) =
copyOutOflow dflags NativeReturn Jump (Young succ)
(map (CmmReg . CmmLocal) res)
ret_off []
-- NB. after resumeThread returns, the top-of-stack probably contains
-- the stack frame for succ, but it might not: if the current thread
-- received an exception during the call, then the stack might be
-- different. Hence we continue by jumping to the top stack frame,
-- not by jumping to succ.
jump = CmmCall { cml_target = entryCode dflags $
CmmLoad (CmmReg spReg) (bWord dflags)
, cml_cont = Just succ
, cml_args_regs = regs
, cml_args = widthInBytes (wordWidth dflags)
, cml_ret_args = ret_args
, cml_ret_off = ret_off }
graph' <- lgraphOfAGraph ( suspend <*>
midCall <*>
resume <*>
copyout <*>
mkLast jump, tscp)
case toBlockList graph' of
[one] -> let (_, middle', last) = blockSplit one
in return (blockJoin entry (middle `blockAppend` middle') last)
_ -> panic "lowerSafeForeignCall0"
-- Block doesn't end in a safe foreign call:
| otherwise = return block
foreignLbl :: FastString -> CmmExpr
foreignLbl name = CmmLit (CmmLabel (mkForeignLabel name Nothing ForeignLabelInExternalPackage IsFunction))
newTemp :: CmmType -> UniqSM LocalReg
newTemp rep = getUniqueM >>= \u -> return (LocalReg u rep)
callSuspendThread :: DynFlags -> LocalReg -> Bool -> CmmNode O O
callSuspendThread dflags id intrbl =
CmmUnsafeForeignCall
(ForeignTarget (foreignLbl (fsLit "suspendThread"))
(ForeignConvention CCallConv [AddrHint, NoHint] [AddrHint] CmmMayReturn))
[id] [CmmReg (CmmGlobal BaseReg), mkIntExpr dflags (fromEnum intrbl)]
callResumeThread :: LocalReg -> LocalReg -> CmmNode O O
callResumeThread new_base id =
CmmUnsafeForeignCall
(ForeignTarget (foreignLbl (fsLit "resumeThread"))
(ForeignConvention CCallConv [AddrHint] [AddrHint] CmmMayReturn))
[new_base] [CmmReg (CmmLocal id)]
-- -----------------------------------------------------------------------------
plusW :: DynFlags -> ByteOff -> WordOff -> ByteOff
plusW dflags b w = b + w * wORD_SIZE dflags
data StackSlot = Occupied | Empty
-- Occupied: a return address or part of an update frame
instance Outputable StackSlot where
ppr Occupied = ptext (sLit "XXX")
ppr Empty = ptext (sLit "---")
dropEmpty :: WordOff -> [StackSlot] -> Maybe [StackSlot]
dropEmpty 0 ss = Just ss
dropEmpty n (Empty : ss) = dropEmpty (n-1) ss
dropEmpty _ _ = Nothing
isEmpty :: StackSlot -> Bool
isEmpty Empty = True
isEmpty _ = False
localRegBytes :: DynFlags -> LocalReg -> ByteOff
localRegBytes dflags r
= roundUpToWords dflags (widthInBytes (typeWidth (localRegType r)))
localRegWords :: DynFlags -> LocalReg -> WordOff
localRegWords dflags = toWords dflags . localRegBytes dflags
toWords :: DynFlags -> ByteOff -> WordOff
toWords dflags x = x `quot` wORD_SIZE dflags
insertReloads :: StackMap -> [CmmNode O O]
insertReloads stackmap =
[ CmmAssign (CmmLocal r) (CmmLoad (CmmStackSlot Old sp)
(localRegType r))
| (r,sp) <- stackSlotRegs stackmap
]
stackSlotRegs :: StackMap -> [(LocalReg, StackLoc)]
stackSlotRegs sm = eltsUFM (sm_regs sm)
|