1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
|
-----------------------------------------------------------------------------
--
-- Cmm optimisation
--
-- (c) The University of Glasgow 2006
--
-----------------------------------------------------------------------------
module CmmOpt (
cmmMachOpFold,
cmmMachOpFoldM,
cmmLoopifyForC,
) where
#include "HsVersions.h"
import CmmUtils
import OldCmm
import DynFlags
import CLabel
import FastTypes
import Outputable
import Platform
import Data.Bits
import Data.Maybe
-- -----------------------------------------------------------------------------
-- MachOp constant folder
-- Now, try to constant-fold the MachOps. The arguments have already
-- been optimized and folded.
cmmMachOpFold
:: DynFlags
-> MachOp -- The operation from an CmmMachOp
-> [CmmExpr] -- The optimized arguments
-> CmmExpr
cmmMachOpFold dflags op args = fromMaybe (CmmMachOp op args) (cmmMachOpFoldM dflags op args)
-- Returns Nothing if no changes, useful for Hoopl, also reduces
-- allocation!
cmmMachOpFoldM
:: DynFlags
-> MachOp
-> [CmmExpr]
-> Maybe CmmExpr
cmmMachOpFoldM _ op [CmmLit (CmmInt x rep)]
= Just $ case op of
MO_S_Neg _ -> CmmLit (CmmInt (-x) rep)
MO_Not _ -> CmmLit (CmmInt (complement x) rep)
-- these are interesting: we must first narrow to the
-- "from" type, in order to truncate to the correct size.
-- The final narrow/widen to the destination type
-- is implicit in the CmmLit.
MO_SF_Conv _from to -> CmmLit (CmmFloat (fromInteger x) to)
MO_SS_Conv from to -> CmmLit (CmmInt (narrowS from x) to)
MO_UU_Conv from to -> CmmLit (CmmInt (narrowU from x) to)
_ -> panic "cmmMachOpFoldM: unknown unary op"
-- Eliminate conversion NOPs
cmmMachOpFoldM _ (MO_SS_Conv rep1 rep2) [x] | rep1 == rep2 = Just x
cmmMachOpFoldM _ (MO_UU_Conv rep1 rep2) [x] | rep1 == rep2 = Just x
-- Eliminate nested conversions where possible
cmmMachOpFoldM dflags conv_outer [CmmMachOp conv_inner [x]]
| Just (rep1,rep2,signed1) <- isIntConversion conv_inner,
Just (_, rep3,signed2) <- isIntConversion conv_outer
= case () of
-- widen then narrow to the same size is a nop
_ | rep1 < rep2 && rep1 == rep3 -> Just x
-- Widen then narrow to different size: collapse to single conversion
-- but remember to use the signedness from the widening, just in case
-- the final conversion is a widen.
| rep1 < rep2 && rep2 > rep3 ->
Just $ cmmMachOpFold dflags (intconv signed1 rep1 rep3) [x]
-- Nested widenings: collapse if the signedness is the same
| rep1 < rep2 && rep2 < rep3 && signed1 == signed2 ->
Just $ cmmMachOpFold dflags (intconv signed1 rep1 rep3) [x]
-- Nested narrowings: collapse
| rep1 > rep2 && rep2 > rep3 ->
Just $ cmmMachOpFold dflags (MO_UU_Conv rep1 rep3) [x]
| otherwise ->
Nothing
where
isIntConversion (MO_UU_Conv rep1 rep2)
= Just (rep1,rep2,False)
isIntConversion (MO_SS_Conv rep1 rep2)
= Just (rep1,rep2,True)
isIntConversion _ = Nothing
intconv True = MO_SS_Conv
intconv False = MO_UU_Conv
-- ToDo: a narrow of a load can be collapsed into a narrow load, right?
-- but what if the architecture only supports word-sized loads, should
-- we do the transformation anyway?
cmmMachOpFoldM dflags mop [CmmLit (CmmInt x xrep), CmmLit (CmmInt y _)]
= case mop of
-- for comparisons: don't forget to narrow the arguments before
-- comparing, since they might be out of range.
MO_Eq _ -> Just $ CmmLit (CmmInt (if x_u == y_u then 1 else 0) (wordWidth dflags))
MO_Ne _ -> Just $ CmmLit (CmmInt (if x_u /= y_u then 1 else 0) (wordWidth dflags))
MO_U_Gt _ -> Just $ CmmLit (CmmInt (if x_u > y_u then 1 else 0) (wordWidth dflags))
MO_U_Ge _ -> Just $ CmmLit (CmmInt (if x_u >= y_u then 1 else 0) (wordWidth dflags))
MO_U_Lt _ -> Just $ CmmLit (CmmInt (if x_u < y_u then 1 else 0) (wordWidth dflags))
MO_U_Le _ -> Just $ CmmLit (CmmInt (if x_u <= y_u then 1 else 0) (wordWidth dflags))
MO_S_Gt _ -> Just $ CmmLit (CmmInt (if x_s > y_s then 1 else 0) (wordWidth dflags))
MO_S_Ge _ -> Just $ CmmLit (CmmInt (if x_s >= y_s then 1 else 0) (wordWidth dflags))
MO_S_Lt _ -> Just $ CmmLit (CmmInt (if x_s < y_s then 1 else 0) (wordWidth dflags))
MO_S_Le _ -> Just $ CmmLit (CmmInt (if x_s <= y_s then 1 else 0) (wordWidth dflags))
MO_Add r -> Just $ CmmLit (CmmInt (x + y) r)
MO_Sub r -> Just $ CmmLit (CmmInt (x - y) r)
MO_Mul r -> Just $ CmmLit (CmmInt (x * y) r)
MO_U_Quot r | y /= 0 -> Just $ CmmLit (CmmInt (x_u `quot` y_u) r)
MO_U_Rem r | y /= 0 -> Just $ CmmLit (CmmInt (x_u `rem` y_u) r)
MO_S_Quot r | y /= 0 -> Just $ CmmLit (CmmInt (x `quot` y) r)
MO_S_Rem r | y /= 0 -> Just $ CmmLit (CmmInt (x `rem` y) r)
MO_And r -> Just $ CmmLit (CmmInt (x .&. y) r)
MO_Or r -> Just $ CmmLit (CmmInt (x .|. y) r)
MO_Xor r -> Just $ CmmLit (CmmInt (x `xor` y) r)
MO_Shl r -> Just $ CmmLit (CmmInt (x `shiftL` fromIntegral y) r)
MO_U_Shr r -> Just $ CmmLit (CmmInt (x_u `shiftR` fromIntegral y) r)
MO_S_Shr r -> Just $ CmmLit (CmmInt (x `shiftR` fromIntegral y) r)
_ -> Nothing
where
x_u = narrowU xrep x
y_u = narrowU xrep y
x_s = narrowS xrep x
y_s = narrowS xrep y
-- When possible, shift the constants to the right-hand side, so that we
-- can match for strength reductions. Note that the code generator will
-- also assume that constants have been shifted to the right when
-- possible.
cmmMachOpFoldM dflags op [x@(CmmLit _), y]
| not (isLit y) && isCommutableMachOp op
= Just (cmmMachOpFold dflags op [y, x])
-- Turn (a+b)+c into a+(b+c) where possible. Because literals are
-- moved to the right, it is more likely that we will find
-- opportunities for constant folding when the expression is
-- right-associated.
--
-- ToDo: this appears to introduce a quadratic behaviour due to the
-- nested cmmMachOpFold. Can we fix this?
--
-- Why do we check isLit arg1? If arg1 is a lit, it means that arg2
-- is also a lit (otherwise arg1 would be on the right). If we
-- put arg1 on the left of the rearranged expression, we'll get into a
-- loop: (x1+x2)+x3 => x1+(x2+x3) => (x2+x3)+x1 => x2+(x3+x1) ...
--
-- Also don't do it if arg1 is PicBaseReg, so that we don't separate the
-- PicBaseReg from the corresponding label (or label difference).
--
cmmMachOpFoldM dflags mop1 [CmmMachOp mop2 [arg1,arg2], arg3]
| mop2 `associates_with` mop1
&& not (isLit arg1) && not (isPicReg arg1)
= Just (cmmMachOpFold dflags mop2 [arg1, cmmMachOpFold dflags mop1 [arg2,arg3]])
where
MO_Add{} `associates_with` MO_Sub{} = True
mop1 `associates_with` mop2 =
mop1 == mop2 && isAssociativeMachOp mop1
-- special case: (a - b) + c ==> a + (c - b)
cmmMachOpFoldM dflags mop1@(MO_Add{}) [CmmMachOp mop2@(MO_Sub{}) [arg1,arg2], arg3]
| not (isLit arg1) && not (isPicReg arg1)
= Just (cmmMachOpFold dflags mop1 [arg1, cmmMachOpFold dflags mop2 [arg3,arg2]])
-- special case: (PicBaseReg + lit) + N ==> PicBaseReg + (lit+N)
--
-- this is better because lit+N is a single link-time constant (e.g. a
-- CmmLabelOff), so the right-hand expression needs only one
-- instruction, whereas the left needs two. This happens when pointer
-- tagging gives us label+offset, and PIC turns the label into
-- PicBaseReg + label.
--
cmmMachOpFoldM _ MO_Add{} [ CmmMachOp op@MO_Add{} [pic, CmmLit lit]
, CmmLit (CmmInt n rep) ]
| isPicReg pic
= Just $ CmmMachOp op [pic, CmmLit $ cmmOffsetLit lit off ]
where off = fromIntegral (narrowS rep n)
-- Make a RegOff if we can
cmmMachOpFoldM _ (MO_Add _) [CmmReg reg, CmmLit (CmmInt n rep)]
= Just $ cmmRegOff reg (fromIntegral (narrowS rep n))
cmmMachOpFoldM _ (MO_Add _) [CmmRegOff reg off, CmmLit (CmmInt n rep)]
= Just $ cmmRegOff reg (off + fromIntegral (narrowS rep n))
cmmMachOpFoldM _ (MO_Sub _) [CmmReg reg, CmmLit (CmmInt n rep)]
= Just $ cmmRegOff reg (- fromIntegral (narrowS rep n))
cmmMachOpFoldM _ (MO_Sub _) [CmmRegOff reg off, CmmLit (CmmInt n rep)]
= Just $ cmmRegOff reg (off - fromIntegral (narrowS rep n))
-- Fold label(+/-)offset into a CmmLit where possible
cmmMachOpFoldM _ (MO_Add _) [CmmLit lit, CmmLit (CmmInt i rep)]
= Just $ CmmLit (cmmOffsetLit lit (fromIntegral (narrowU rep i)))
cmmMachOpFoldM _ (MO_Add _) [CmmLit (CmmInt i rep), CmmLit lit]
= Just $ CmmLit (cmmOffsetLit lit (fromIntegral (narrowU rep i)))
cmmMachOpFoldM _ (MO_Sub _) [CmmLit lit, CmmLit (CmmInt i rep)]
= Just $ CmmLit (cmmOffsetLit lit (fromIntegral (negate (narrowU rep i))))
-- Comparison of literal with widened operand: perform the comparison
-- at the smaller width, as long as the literal is within range.
-- We can't do the reverse trick, when the operand is narrowed:
-- narrowing throws away bits from the operand, there's no way to do
-- the same comparison at the larger size.
cmmMachOpFoldM dflags cmp [CmmMachOp conv [x], CmmLit (CmmInt i _)]
| -- powerPC NCG has a TODO for I8/I16 comparisons, so don't try
platformArch (targetPlatform dflags) `elem` [ArchX86, ArchX86_64],
-- if the operand is widened:
Just (rep, signed, narrow_fn) <- maybe_conversion conv,
-- and this is a comparison operation:
Just narrow_cmp <- maybe_comparison cmp rep signed,
-- and the literal fits in the smaller size:
i == narrow_fn rep i
-- then we can do the comparison at the smaller size
= Just (cmmMachOpFold dflags narrow_cmp [x, CmmLit (CmmInt i rep)])
where
maybe_conversion (MO_UU_Conv from to)
| to > from
= Just (from, False, narrowU)
maybe_conversion (MO_SS_Conv from to)
| to > from
= Just (from, True, narrowS)
-- don't attempt to apply this optimisation when the source
-- is a float; see #1916
maybe_conversion _ = Nothing
-- careful (#2080): if the original comparison was signed, but
-- we were doing an unsigned widen, then we must do an
-- unsigned comparison at the smaller size.
maybe_comparison (MO_U_Gt _) rep _ = Just (MO_U_Gt rep)
maybe_comparison (MO_U_Ge _) rep _ = Just (MO_U_Ge rep)
maybe_comparison (MO_U_Lt _) rep _ = Just (MO_U_Lt rep)
maybe_comparison (MO_U_Le _) rep _ = Just (MO_U_Le rep)
maybe_comparison (MO_Eq _) rep _ = Just (MO_Eq rep)
maybe_comparison (MO_S_Gt _) rep True = Just (MO_S_Gt rep)
maybe_comparison (MO_S_Ge _) rep True = Just (MO_S_Ge rep)
maybe_comparison (MO_S_Lt _) rep True = Just (MO_S_Lt rep)
maybe_comparison (MO_S_Le _) rep True = Just (MO_S_Le rep)
maybe_comparison (MO_S_Gt _) rep False = Just (MO_U_Gt rep)
maybe_comparison (MO_S_Ge _) rep False = Just (MO_U_Ge rep)
maybe_comparison (MO_S_Lt _) rep False = Just (MO_U_Lt rep)
maybe_comparison (MO_S_Le _) rep False = Just (MO_U_Le rep)
maybe_comparison _ _ _ = Nothing
-- We can often do something with constants of 0 and 1 ...
cmmMachOpFoldM dflags mop [x, y@(CmmLit (CmmInt 0 _))]
= case mop of
MO_Add _ -> Just x
MO_Sub _ -> Just x
MO_Mul _ -> Just y
MO_And _ -> Just y
MO_Or _ -> Just x
MO_Xor _ -> Just x
MO_Shl _ -> Just x
MO_S_Shr _ -> Just x
MO_U_Shr _ -> Just x
MO_Ne _ | isComparisonExpr x -> Just x
MO_Eq _ | Just x' <- maybeInvertCmmExpr x -> Just x'
MO_U_Gt _ | isComparisonExpr x -> Just x
MO_S_Gt _ | isComparisonExpr x -> Just x
MO_U_Lt _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 (wordWidth dflags))
MO_S_Lt _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 (wordWidth dflags))
MO_U_Ge _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 (wordWidth dflags))
MO_S_Ge _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 (wordWidth dflags))
MO_U_Le _ | Just x' <- maybeInvertCmmExpr x -> Just x'
MO_S_Le _ | Just x' <- maybeInvertCmmExpr x -> Just x'
_ -> Nothing
cmmMachOpFoldM dflags mop [x, (CmmLit (CmmInt 1 rep))]
= case mop of
MO_Mul _ -> Just x
MO_S_Quot _ -> Just x
MO_U_Quot _ -> Just x
MO_S_Rem _ -> Just $ CmmLit (CmmInt 0 rep)
MO_U_Rem _ -> Just $ CmmLit (CmmInt 0 rep)
MO_Ne _ | Just x' <- maybeInvertCmmExpr x -> Just x'
MO_Eq _ | isComparisonExpr x -> Just x
MO_U_Lt _ | Just x' <- maybeInvertCmmExpr x -> Just x'
MO_S_Lt _ | Just x' <- maybeInvertCmmExpr x -> Just x'
MO_U_Gt _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 (wordWidth dflags))
MO_S_Gt _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 0 (wordWidth dflags))
MO_U_Le _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 (wordWidth dflags))
MO_S_Le _ | isComparisonExpr x -> Just $ CmmLit (CmmInt 1 (wordWidth dflags))
MO_U_Ge _ | isComparisonExpr x -> Just x
MO_S_Ge _ | isComparisonExpr x -> Just x
_ -> Nothing
-- Now look for multiplication/division by powers of 2 (integers).
cmmMachOpFoldM dflags mop [x, (CmmLit (CmmInt n _))]
= case mop of
MO_Mul rep
| Just p <- exactLog2 n ->
Just (cmmMachOpFold dflags (MO_Shl rep) [x, CmmLit (CmmInt p rep)])
MO_U_Quot rep
| Just p <- exactLog2 n ->
Just (cmmMachOpFold dflags (MO_U_Shr rep) [x, CmmLit (CmmInt p rep)])
MO_S_Quot rep
| Just p <- exactLog2 n,
CmmReg _ <- x -> -- We duplicate x below, hence require
-- it is a reg. FIXME: remove this restriction.
-- shift right is not the same as quot, because it rounds
-- to minus infinity, whereasq quot rounds toward zero.
-- To fix this up, we add one less than the divisor to the
-- dividend if it is a negative number.
--
-- to avoid a test/jump, we use the following sequence:
-- x1 = x >> word_size-1 (all 1s if -ve, all 0s if +ve)
-- x2 = y & (divisor-1)
-- result = (x+x2) >>= log2(divisor)
-- this could be done a bit more simply using conditional moves,
-- but we're processor independent here.
--
-- we optimise the divide by 2 case slightly, generating
-- x1 = x >> word_size-1 (unsigned)
-- return = (x + x1) >>= log2(divisor)
let
bits = fromIntegral (widthInBits rep) - 1
shr = if p == 1 then MO_U_Shr rep else MO_S_Shr rep
x1 = CmmMachOp shr [x, CmmLit (CmmInt bits rep)]
x2 = if p == 1 then x1 else
CmmMachOp (MO_And rep) [x1, CmmLit (CmmInt (n-1) rep)]
x3 = CmmMachOp (MO_Add rep) [x, x2]
in
Just (cmmMachOpFold dflags (MO_S_Shr rep) [x3, CmmLit (CmmInt p rep)])
_ -> Nothing
-- ToDo (#7116): optimise floating-point multiplication, e.g. x*2.0 -> x+x
-- Unfortunately this needs a unique supply because x might not be a
-- register. See #2253 (program 6) for an example.
-- Anything else is just too hard.
cmmMachOpFoldM _ _ _ = Nothing
-- -----------------------------------------------------------------------------
-- exactLog2
-- This algorithm for determining the $\log_2$ of exact powers of 2 comes
-- from GCC. It requires bit manipulation primitives, and we use GHC
-- extensions. Tough.
--
-- Used to be in MachInstrs --SDM.
-- ToDo: remove use of unboxery --SDM.
-- Unboxery removed in favor of FastInt; but is the function supposed to fail
-- on inputs >= 2147483648, or was that just an implementation artifact?
-- And is this speed-critical, or can we just use Integer operations
-- (including Data.Bits)?
-- --Isaac Dupree
exactLog2 :: Integer -> Maybe Integer
exactLog2 x_
= if (x_ <= 0 || x_ >= 2147483648) then
Nothing
else
case iUnbox (fromInteger x_) of { x ->
if (x `bitAndFastInt` negateFastInt x) /=# x then
Nothing
else
Just (toInteger (iBox (pow2 x)))
}
where
pow2 x | x ==# _ILIT(1) = _ILIT(0)
| otherwise = _ILIT(1) +# pow2 (x `shiftR_FastInt` _ILIT(1))
-- -----------------------------------------------------------------------------
-- Loopify for C
{-
This is a simple pass that replaces tail-recursive functions like this:
fac() {
...
jump fac();
}
with this:
fac() {
L:
...
goto L;
}
the latter generates better C code, because the C compiler treats it
like a loop, and brings full loop optimisation to bear.
In my measurements this makes little or no difference to anything
except factorial, but what the hell.
-}
cmmLoopifyForC :: DynFlags -> RawCmmDecl -> RawCmmDecl
-- XXX: revisit if we actually want to do this
-- cmmLoopifyForC p@(CmmProc Nothing _ _) = p -- only if there's an info table, ignore case alts
cmmLoopifyForC dflags (CmmProc infos entry_lbl live
(ListGraph blocks@(BasicBlock top_id _ : _))) =
-- pprTrace "jump_lbl" (ppr jump_lbl <+> ppr entry_lbl) $
CmmProc infos entry_lbl live (ListGraph blocks')
where blocks' = [ BasicBlock id (map do_stmt stmts)
| BasicBlock id stmts <- blocks ]
do_stmt (CmmJump (CmmLit (CmmLabel lbl)) _) | lbl == jump_lbl
= CmmBranch top_id
do_stmt stmt = stmt
jump_lbl | tablesNextToCode dflags = toInfoLbl entry_lbl
| otherwise = entry_lbl
cmmLoopifyForC _ top = top
-- -----------------------------------------------------------------------------
-- Utils
isLit :: CmmExpr -> Bool
isLit (CmmLit _) = True
isLit _ = False
isComparisonExpr :: CmmExpr -> Bool
isComparisonExpr (CmmMachOp op _) = isComparisonMachOp op
isComparisonExpr _ = False
isPicReg :: CmmExpr -> Bool
isPicReg (CmmReg (CmmGlobal PicBaseReg)) = True
isPicReg _ = False
|