summaryrefslogtreecommitdiff
path: root/compiler/cmm/CmmParse.y
blob: 73618bc35bd8e3ba87360e1d9d216ed6ef01cbe7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
-----------------------------------------------------------------------------
--
-- (c) The University of Glasgow, 2004
--
-- Parser for concrete Cmm.
--
-----------------------------------------------------------------------------

{
module CmmParse ( parseCmmFile ) where

import CgMonad
import CgHeapery
import CgUtils
import CgProf
import CgTicky
import CgInfoTbls
import CgForeignCall
import CgTailCall	( pushUnboxedTuple )
import CgStackery	( emitPushUpdateFrame )
import ClosureInfo	( C_SRT(..) )
import CgCallConv	( smallLiveness )
import CgClosure	( emitBlackHoleCode )
import CostCentre	( dontCareCCS )

import Cmm
import PprCmm
import CmmUtils		( mkIntCLit )
import CmmLex
import CLabel
import MachOp
import SMRep		( fixedHdrSize, CgRep(..) )
import Lexer

import ForeignCall	( CCallConv(..), Safety(..) )
import Literal		( mkMachInt )
import Unique
import UniqFM
import SrcLoc
import DynFlags		( DynFlags, DynFlag(..) )
import Packages		( HomeModules )
import StaticFlags	( opt_SccProfilingOn )
import ErrUtils		( printError, dumpIfSet_dyn, showPass )
import StringBuffer	( hGetStringBuffer )
import FastString
import Panic		( panic )
import Constants	( wORD_SIZE )
import Outputable

import Monad		( when )
import Data.Char	( ord )

#include "HsVersions.h"
}

%token
	':'	{ L _ (CmmT_SpecChar ':') }
	';'	{ L _ (CmmT_SpecChar ';') }
	'{'	{ L _ (CmmT_SpecChar '{') }
	'}'	{ L _ (CmmT_SpecChar '}') }
	'['	{ L _ (CmmT_SpecChar '[') }
	']'	{ L _ (CmmT_SpecChar ']') }
	'('	{ L _ (CmmT_SpecChar '(') }
	')'	{ L _ (CmmT_SpecChar ')') }
	'='	{ L _ (CmmT_SpecChar '=') }
	'`'	{ L _ (CmmT_SpecChar '`') }
	'~'	{ L _ (CmmT_SpecChar '~') }
	'/'	{ L _ (CmmT_SpecChar '/') }
	'*'	{ L _ (CmmT_SpecChar '*') }
	'%'	{ L _ (CmmT_SpecChar '%') }
	'-'	{ L _ (CmmT_SpecChar '-') }
	'+'	{ L _ (CmmT_SpecChar '+') }
	'&'	{ L _ (CmmT_SpecChar '&') }
	'^'	{ L _ (CmmT_SpecChar '^') }
	'|'	{ L _ (CmmT_SpecChar '|') }
	'>'	{ L _ (CmmT_SpecChar '>') }
	'<'	{ L _ (CmmT_SpecChar '<') }
	','	{ L _ (CmmT_SpecChar ',') }
	'!'	{ L _ (CmmT_SpecChar '!') }

 	'..'	{ L _ (CmmT_DotDot) }
 	'::'	{ L _ (CmmT_DoubleColon) }
	'>>'	{ L _ (CmmT_Shr) }
	'<<'	{ L _ (CmmT_Shl) }
	'>='	{ L _ (CmmT_Ge) }
	'<='	{ L _ (CmmT_Le) }
	'=='	{ L _ (CmmT_Eq) }
	'!='	{ L _ (CmmT_Ne) }
        '&&'    { L _ (CmmT_BoolAnd) }
        '||'    { L _ (CmmT_BoolOr) }

	'CLOSURE'	{ L _ (CmmT_CLOSURE) }
	'INFO_TABLE'	{ L _ (CmmT_INFO_TABLE) }
	'INFO_TABLE_RET'{ L _ (CmmT_INFO_TABLE_RET) }
	'INFO_TABLE_FUN'{ L _ (CmmT_INFO_TABLE_FUN) }
	'INFO_TABLE_CONSTR'{ L _ (CmmT_INFO_TABLE_CONSTR) }
	'INFO_TABLE_SELECTOR'{ L _ (CmmT_INFO_TABLE_SELECTOR) }
	'else'		{ L _ (CmmT_else) }
	'export'	{ L _ (CmmT_export) }
	'section'	{ L _ (CmmT_section) }
	'align'		{ L _ (CmmT_align) }
	'goto'		{ L _ (CmmT_goto) }
	'if'		{ L _ (CmmT_if) }
	'jump'		{ L _ (CmmT_jump) }
	'foreign'	{ L _ (CmmT_foreign) }
	'import'	{ L _ (CmmT_import) }
	'switch'	{ L _ (CmmT_switch) }
	'case'		{ L _ (CmmT_case) }
	'default'	{ L _ (CmmT_default) }
	'bits8'		{ L _ (CmmT_bits8) }
	'bits16'	{ L _ (CmmT_bits16) }
	'bits32'	{ L _ (CmmT_bits32) }
	'bits64'	{ L _ (CmmT_bits64) }
	'float32'	{ L _ (CmmT_float32) }
	'float64'	{ L _ (CmmT_float64) }

	GLOBALREG	{ L _ (CmmT_GlobalReg   $$) }
  	NAME		{ L _ (CmmT_Name	$$) }
	STRING		{ L _ (CmmT_String	$$) }
	INT		{ L _ (CmmT_Int		$$) }
	FLOAT		{ L _ (CmmT_Float	$$) }

%monad { P } { >>= } { return }
%lexer { cmmlex } { L _ CmmT_EOF }
%name cmmParse cmm
%tokentype { Located CmmToken }

-- C-- operator precedences, taken from the C-- spec
%right '||'	-- non-std extension, called %disjoin in C--
%right '&&'	-- non-std extension, called %conjoin in C--
%right '!'
%nonassoc '>=' '>' '<=' '<' '!=' '=='
%left '|'
%left '^'
%left '&'
%left '>>' '<<'
%left '-' '+'
%left '/' '*' '%'
%right '~'

%%

cmm	:: { ExtCode }
	: {- empty -}			{ return () }
	| cmmtop cmm			{ do $1; $2 }

cmmtop	:: { ExtCode }
	: cmmproc			{ $1 }
	| cmmdata			{ $1 }
	| decl				{ $1 } 
	| 'CLOSURE' '(' NAME ',' NAME lits ')' ';'  
		{ do lits <- sequence $6;
		     staticClosure $3 $5 (map getLit lits) }

-- The only static closures in the RTS are dummy closures like
-- stg_END_TSO_QUEUE_closure and stg_dummy_ret.  We don't need
-- to provide the full generality of static closures here.
-- In particular:
-- 	* CCS can always be CCS_DONT_CARE
-- 	* closure is always extern
-- 	* payload is always empty
--	* we can derive closure and info table labels from a single NAME

cmmdata :: { ExtCode }
	: 'section' STRING '{' statics '}' 
		{ do ss <- sequence $4;
		     code (emitData (section $2) (concat ss)) }

statics	:: { [ExtFCode [CmmStatic]] }
	: {- empty -}			{ [] }
	| static statics		{ $1 : $2 }

-- Strings aren't used much in the RTS HC code, so it doesn't seem
-- worth allowing inline strings.  C-- doesn't allow them anyway.
static 	:: { ExtFCode [CmmStatic] }
	: NAME ':'	{ return [CmmDataLabel (mkRtsDataLabelFS $1)] }
	| type expr ';'	{ do e <- $2;
			     return [CmmStaticLit (getLit e)] }
	| type ';'			{ return [CmmUninitialised
							(machRepByteWidth $1)] }
        | 'bits8' '[' ']' STRING ';'	{ return [mkString $4] }
        | 'bits8' '[' INT ']' ';'	{ return [CmmUninitialised 
							(fromIntegral $3)] }
        | typenot8 '[' INT ']' ';'	{ return [CmmUninitialised 
						(machRepByteWidth $1 * 
							fromIntegral $3)] }
	| 'align' INT ';'		{ return [CmmAlign (fromIntegral $2)] }
	| 'CLOSURE' '(' NAME lits ')'
		{ do lits <- sequence $4;
		     return $ map CmmStaticLit $
		       mkStaticClosure (mkRtsInfoLabelFS $3) 
			 dontCareCCS (map getLit lits) [] [] [] }
	-- arrays of closures required for the CHARLIKE & INTLIKE arrays

lits	:: { [ExtFCode CmmExpr] }
	: {- empty -}		{ [] }
	| ',' expr lits		{ $2 : $3 }

cmmproc :: { ExtCode }
	: info '{' body '}'
		{ do  (info_lbl, info1, info2) <- $1;
		      stmts <- getCgStmtsEC (loopDecls $3)
		      blks <- code (cgStmtsToBlocks stmts)
		      code (emitInfoTableAndCode info_lbl info1 info2 [] blks) }

	| info ';'
		{ do (info_lbl, info1, info2) <- $1;
		     code (emitInfoTableAndCode info_lbl info1 info2 [] []) }

	| NAME '{' body '}'
		{ do stmts <- getCgStmtsEC (loopDecls $3);
		     blks <- code (cgStmtsToBlocks stmts)
		     code (emitProc [] (mkRtsCodeLabelFS $1) [] blks) }

info	:: { ExtFCode (CLabel, [CmmLit],[CmmLit]) }
	: 'INFO_TABLE' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ')'
		-- ptrs, nptrs, closure type, description, type
		{ stdInfo $3 $5 $7 0 $9 $11 $13 }
	
	| 'INFO_TABLE_FUN' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ',' INT ')'
		-- ptrs, nptrs, closure type, description, type, fun type
		{ funInfo $3 $5 $7 $9 $11 $13 $15 }
	
	| 'INFO_TABLE_CONSTR' '(' NAME ',' INT ',' INT ',' INT ',' INT ',' STRING ',' STRING ')'
		-- ptrs, nptrs, tag, closure type, description, type
		{ stdInfo $3 $5 $7 $9 $11 $13 $15 }
	
	| 'INFO_TABLE_SELECTOR' '(' NAME ',' INT ',' INT ',' STRING ',' STRING ')'
		-- selector, closure type, description, type
		{ basicInfo $3 (mkIntCLit (fromIntegral $5)) 0 $7 $9 $11 }

	| 'INFO_TABLE_RET' '(' NAME ',' INT ',' INT ',' INT maybe_vec ')'
		{ retInfo $3 $5 $7 $9 $10 }

maybe_vec :: { [CmmLit] }
	: {- empty -}			{ [] }
	| ',' NAME maybe_vec		{ CmmLabel (mkRtsCodeLabelFS $2) : $3 }

body	:: { ExtCode }
	: {- empty -}			{ return () }
	| decl body			{ do $1; $2 }
	| stmt body			{ do $1; $2 }

decl	:: { ExtCode }
	: type names ';'		{ mapM_ (newLocal $1) $2 }
	| 'import' names ';'		{ return () }  -- ignore imports
	| 'export' names ';'		{ return () }  -- ignore exports

names 	:: { [FastString] }
	: NAME			{ [$1] }
	| NAME ',' names	{ $1 : $3 }

stmt	:: { ExtCode }
	: ';'					{ nopEC }

	| block_id ':'				{ code (labelC $1) }

	| lreg '=' expr ';'			
		{ do reg <- $1; e <- $3; stmtEC (CmmAssign reg e) }
	| type '[' expr ']' '=' expr ';'
		{ doStore $1 $3 $6 }
	| 'foreign' STRING expr '(' hint_exprs0 ')' vols ';'
		{% foreignCall $2 [] $3 $5 $7 }
	| lreg '=' 'foreign' STRING expr '(' hint_exprs0 ')' vols ';'
		{% let result = do r <- $1; return (r,NoHint) in
		   foreignCall $4 [result] $5 $7 $9 }
	| STRING lreg '=' 'foreign' STRING expr '(' hint_exprs0 ')' vols ';'
		{% do h <- parseHint $1;
		      let result = do r <- $2; return (r,h) in
		      foreignCall $5 [result] $6 $8 $10 }
	-- stmt-level macros, stealing syntax from ordinary C-- function calls.
	-- Perhaps we ought to use the %%-form?
	| NAME '(' exprs0 ')' ';'
		{% stmtMacro $1 $3  }
	| 'switch' maybe_range expr '{' arms default '}'
		{ doSwitch $2 $3 $5 $6 }
	| 'goto' block_id ';'
		{ stmtEC (CmmBranch $2) }
	| 'jump' expr {-maybe_actuals-} ';'
		{ do e <- $2; stmtEC (CmmJump e []) }
	| 'if' bool_expr '{' body '}' else 	
		{ ifThenElse $2 $4 $6 }

bool_expr :: { ExtFCode BoolExpr }
	: bool_op			{ $1 }
	| expr				{ do e <- $1; return (BoolTest e) }

bool_op :: { ExtFCode BoolExpr }
	: bool_expr '&&' bool_expr 	{ do e1 <- $1; e2 <- $3; 
					  return (BoolAnd e1 e2) }
	| bool_expr '||' bool_expr	{ do e1 <- $1; e2 <- $3; 
					  return (BoolOr e1 e2)  }
	| '!' bool_expr			{ do e <- $2; return (BoolNot e) }
	| '(' bool_op ')'		{ $2 }

-- This is not C-- syntax.  What to do?
vols 	:: { Maybe [GlobalReg] }
	: {- empty -}			{ Nothing }
	| '[' ']'		        { Just [] }
	| '[' globals ']'		{ Just $2 }

globals :: { [GlobalReg] }
	: GLOBALREG			{ [$1] }
	| GLOBALREG ',' globals		{ $1 : $3 }

maybe_range :: { Maybe (Int,Int) }
	: '[' INT '..' INT ']'	{ Just (fromIntegral $2, fromIntegral $4) }
	| {- empty -}		{ Nothing }

arms	:: { [([Int],ExtCode)] }
	: {- empty -}			{ [] }
	| arm arms			{ $1 : $2 }

arm	:: { ([Int],ExtCode) }
	: 'case' ints ':' '{' body '}'	{ ($2, $5) }

ints	:: { [Int] }
	: INT				{ [ fromIntegral $1 ] }
	| INT ',' ints			{ fromIntegral $1 : $3 }

default :: { Maybe ExtCode }
	: 'default' ':' '{' body '}'	{ Just $4 }
	-- taking a few liberties with the C-- syntax here; C-- doesn't have
	-- 'default' branches
	| {- empty -}			{ Nothing }

else 	:: { ExtCode }
	: {- empty -}			{ nopEC }
	| 'else' '{' body '}'		{ $3 }

-- we have to write this out longhand so that Happy's precedence rules
-- can kick in.
expr	:: { ExtFCode CmmExpr } 
	: expr '/' expr			{ mkMachOp MO_U_Quot [$1,$3] }
	| expr '*' expr			{ mkMachOp MO_Mul [$1,$3] }
	| expr '%' expr			{ mkMachOp MO_U_Rem [$1,$3] }
	| expr '-' expr			{ mkMachOp MO_Sub [$1,$3] }
	| expr '+' expr			{ mkMachOp MO_Add [$1,$3] }
	| expr '>>' expr		{ mkMachOp MO_U_Shr [$1,$3] }
	| expr '<<' expr		{ mkMachOp MO_Shl [$1,$3] }
	| expr '&' expr			{ mkMachOp MO_And [$1,$3] }
	| expr '^' expr			{ mkMachOp MO_Xor [$1,$3] }
	| expr '|' expr			{ mkMachOp MO_Or [$1,$3] }
	| expr '>=' expr		{ mkMachOp MO_U_Ge [$1,$3] }
	| expr '>' expr			{ mkMachOp MO_U_Gt [$1,$3] }
	| expr '<=' expr		{ mkMachOp MO_U_Le [$1,$3] }
	| expr '<' expr			{ mkMachOp MO_U_Lt [$1,$3] }
	| expr '!=' expr		{ mkMachOp MO_Ne [$1,$3] }
	| expr '==' expr		{ mkMachOp MO_Eq [$1,$3] }
	| '~' expr			{ mkMachOp MO_Not [$2] }
	| '-' expr			{ mkMachOp MO_S_Neg [$2] }
	| expr0 '`' NAME '`' expr0  	{% do { mo <- nameToMachOp $3 ;
					        return (mkMachOp mo [$1,$5]) } }
	| expr0				{ $1 }

expr0	:: { ExtFCode CmmExpr }
	: INT   maybe_ty	 { return (CmmLit (CmmInt $1 $2)) }
	| FLOAT maybe_ty	 { return (CmmLit (CmmFloat $1 $2)) }
	| STRING		 { do s <- code (mkStringCLit $1); 
				      return (CmmLit s) }
	| reg			 { $1 }
	| type '[' expr ']'	 { do e <- $3; return (CmmLoad e $1) }
	| '%' NAME '(' exprs0 ')' {% exprOp $2 $4 }
	| '(' expr ')'		 { $2 }


-- leaving out the type of a literal gives you the native word size in C--
maybe_ty :: { MachRep }
	: {- empty -}			{ wordRep }
	| '::' type			{ $2 }

hint_exprs0 :: { [ExtFCode (CmmExpr, MachHint)] }
	: {- empty -}			{ [] }
	| hint_exprs			{ $1 }

hint_exprs :: { [ExtFCode (CmmExpr, MachHint)] }
	: hint_expr			{ [$1] }
	| hint_expr ',' hint_exprs	{ $1 : $3 }

hint_expr :: { ExtFCode (CmmExpr, MachHint) }
	: expr				{ do e <- $1; return (e, inferHint e) }
	| expr STRING			{% do h <- parseHint $2;
					      return $ do
						e <- $1; return (e,h) }

exprs0  :: { [ExtFCode CmmExpr] }
	: {- empty -}			{ [] }
	| exprs				{ $1 }

exprs	:: { [ExtFCode CmmExpr] }
	: expr				{ [ $1 ] }
	| expr ',' exprs		{ $1 : $3 }

reg	:: { ExtFCode CmmExpr }
	: NAME			{ lookupName $1 }
	| GLOBALREG		{ return (CmmReg (CmmGlobal $1)) }

lreg	:: { ExtFCode CmmReg }
	: NAME			{ do e <- lookupName $1;
				     return $
				       case e of 
					CmmReg r -> r
					other -> pprPanic "CmmParse:" (ftext $1 <> text " not a register") }
	| GLOBALREG		{ return (CmmGlobal $1) }

block_id :: { BlockId }
	: NAME			{ BlockId (newTagUnique (getUnique $1) 'L') }
			-- TODO: ugh.  The unique of a FastString has a null
			-- tag, so we have to put our own tag on.  We should
			-- really make a new unique for every label, and keep
			-- them in an environment.

type	:: { MachRep }
	: 'bits8'		{ I8 }
	| typenot8		{ $1 }

typenot8 :: { MachRep }
	: 'bits16'		{ I16 }
	| 'bits32'		{ I32 }
	| 'bits64'		{ I64 }
	| 'float32'		{ F32 }
	| 'float64'		{ F64 }
{
section :: String -> Section
section "text"	 = Text
section "data" 	 = Data
section "rodata" = ReadOnlyData
section "bss"	 = UninitialisedData
section s	 = OtherSection s

mkString :: String -> CmmStatic
mkString s = CmmString (map (fromIntegral.ord) s)

-- mkMachOp infers the type of the MachOp from the type of its first
-- argument.  We assume that this is correct: for MachOps that don't have
-- symmetrical args (e.g. shift ops), the first arg determines the type of
-- the op.
mkMachOp :: (MachRep -> MachOp) -> [ExtFCode CmmExpr] -> ExtFCode CmmExpr
mkMachOp fn args = do
  arg_exprs <- sequence args
  return (CmmMachOp (fn (cmmExprRep (head arg_exprs))) arg_exprs)

getLit :: CmmExpr -> CmmLit
getLit (CmmLit l) = l
getLit (CmmMachOp (MO_S_Neg _) [CmmLit (CmmInt i r)])  = CmmInt (negate i) r
getLit _ = panic "invalid literal" -- TODO messy failure

nameToMachOp :: FastString -> P (MachRep -> MachOp)
nameToMachOp name = 
  case lookupUFM machOps name of
	Nothing -> fail ("unknown primitive " ++ unpackFS name)
	Just m  -> return m

exprOp :: FastString -> [ExtFCode CmmExpr] -> P (ExtFCode CmmExpr)
exprOp name args_code =
  case lookupUFM exprMacros name of
     Just f  -> return $ do
        args <- sequence args_code
	return (f args)
     Nothing -> do
	mo <- nameToMachOp name
	return $ mkMachOp mo args_code

exprMacros :: UniqFM ([CmmExpr] -> CmmExpr)
exprMacros = listToUFM [
  ( FSLIT("ENTRY_CODE"),   \ [x] -> entryCode x ),
  ( FSLIT("INFO_PTR"),     \ [x] -> closureInfoPtr x ),
  ( FSLIT("STD_INFO"),     \ [x] -> infoTable x ),
  ( FSLIT("FUN_INFO"),     \ [x] -> funInfoTable x ),
  ( FSLIT("GET_ENTRY"),    \ [x] -> entryCode (closureInfoPtr x) ),
  ( FSLIT("GET_STD_INFO"), \ [x] -> infoTable (closureInfoPtr x) ),
  ( FSLIT("GET_FUN_INFO"), \ [x] -> funInfoTable (closureInfoPtr x) ),
  ( FSLIT("INFO_TYPE"),    \ [x] -> infoTableClosureType x ),
  ( FSLIT("INFO_PTRS"),    \ [x] -> infoTablePtrs x ),
  ( FSLIT("INFO_NPTRS"),   \ [x] -> infoTableNonPtrs x ),
  ( FSLIT("RET_VEC"),      \ [info, conZ] -> retVec info conZ )
  ]

-- we understand a subset of C-- primitives:
machOps = listToUFM $
	map (\(x, y) -> (mkFastString x, y)) [
	( "add",	MO_Add ),
	( "sub",	MO_Sub ),
	( "eq",		MO_Eq ),
	( "ne",		MO_Ne ),
	( "mul",	MO_Mul ),
	( "neg",	MO_S_Neg ),
	( "quot",	MO_S_Quot ),
	( "rem",	MO_S_Rem ),
	( "divu",	MO_U_Quot ),
	( "modu",	MO_U_Rem ),

	( "ge",		MO_S_Ge ),
	( "le",		MO_S_Le ),
	( "gt",		MO_S_Gt ),
	( "lt",		MO_S_Lt ),

	( "geu",	MO_U_Ge ),
	( "leu",	MO_U_Le ),
	( "gtu",	MO_U_Gt ),
	( "ltu",	MO_U_Lt ),

	( "flt",	MO_S_Lt ),
	( "fle",	MO_S_Le ),
	( "feq",	MO_Eq ),
	( "fne",	MO_Ne ),
	( "fgt",	MO_S_Gt ),
	( "fge",	MO_S_Ge ),
	( "fneg",	MO_S_Neg ),

	( "and",	MO_And ),
	( "or",		MO_Or ),
	( "xor",	MO_Xor ),
	( "com",	MO_Not ),
	( "shl",	MO_Shl ),
	( "shrl",	MO_U_Shr ),
	( "shra",	MO_S_Shr ),

	( "lobits8",  flip MO_U_Conv I8  ),
	( "lobits16", flip MO_U_Conv I16 ),
	( "lobits32", flip MO_U_Conv I32 ),
	( "lobits64", flip MO_U_Conv I64 ),
	( "sx16",     flip MO_S_Conv I16 ),
	( "sx32",     flip MO_S_Conv I32 ),
	( "sx64",     flip MO_S_Conv I64 ),
	( "zx16",     flip MO_U_Conv I16 ),
	( "zx32",     flip MO_U_Conv I32 ),
	( "zx64",     flip MO_U_Conv I64 ),
	( "f2f32",    flip MO_S_Conv F32 ),  -- TODO; rounding mode
	( "f2f64",    flip MO_S_Conv F64 ),  -- TODO; rounding mode
	( "f2i8",     flip MO_S_Conv I8 ),
	( "f2i16",    flip MO_S_Conv I8 ),
	( "f2i32",    flip MO_S_Conv I8 ),
	( "f2i64",    flip MO_S_Conv I8 ),
	( "i2f32",    flip MO_S_Conv F32 ),
	( "i2f64",    flip MO_S_Conv F64 )
	]

parseHint :: String -> P MachHint
parseHint "ptr"    = return PtrHint
parseHint "signed" = return SignedHint
parseHint "float"  = return FloatHint
parseHint str      = fail ("unrecognised hint: " ++ str)

-- labels are always pointers, so we might as well infer the hint
inferHint :: CmmExpr -> MachHint
inferHint (CmmLit (CmmLabel _)) = PtrHint
inferHint (CmmReg (CmmGlobal g)) | isPtrGlobalReg g = PtrHint
inferHint _ = NoHint

isPtrGlobalReg Sp		= True
isPtrGlobalReg SpLim		= True
isPtrGlobalReg Hp		= True
isPtrGlobalReg HpLim		= True
isPtrGlobalReg CurrentTSO	= True
isPtrGlobalReg CurrentNursery	= True
isPtrGlobalReg _		= False

happyError :: P a
happyError = srcParseFail

-- -----------------------------------------------------------------------------
-- Statement-level macros

stmtMacro :: FastString -> [ExtFCode CmmExpr] -> P ExtCode
stmtMacro fun args_code = do
  case lookupUFM stmtMacros fun of
    Nothing -> fail ("unknown macro: " ++ unpackFS fun)
    Just fcode -> return $ do
	args <- sequence args_code
	code (fcode args)

stmtMacros :: UniqFM ([CmmExpr] -> Code)
stmtMacros = listToUFM [
  ( FSLIT("CCS_ALLOC"),		   \[words,ccs]  -> profAlloc words ccs ),
  ( FSLIT("CLOSE_NURSERY"),	   \[]  -> emitCloseNursery ),
  ( FSLIT("ENTER_CCS_PAP_CL"),     \[e] -> enterCostCentrePAP e ),
  ( FSLIT("ENTER_CCS_THUNK"),      \[e] -> enterCostCentreThunk e ),
  ( FSLIT("HP_CHK_GEN"),           \[words,liveness,reentry] -> 
                                      hpChkGen words liveness reentry ),
  ( FSLIT("HP_CHK_NP_ASSIGN_SP0"), \[e,f] -> hpChkNodePointsAssignSp0 e f ),
  ( FSLIT("LOAD_THREAD_STATE"),    \[] -> emitLoadThreadState ),
  ( FSLIT("LDV_ENTER"),            \[e] -> ldvEnter e ),
  ( FSLIT("LDV_RECORD_CREATE"),    \[e] -> ldvRecordCreate e ),
  ( FSLIT("OPEN_NURSERY"),	   \[]  -> emitOpenNursery ),
  ( FSLIT("PUSH_UPD_FRAME"),	   \[sp,e] -> emitPushUpdateFrame sp e ),
  ( FSLIT("SAVE_THREAD_STATE"),    \[] -> emitSaveThreadState ),
  ( FSLIT("SET_HDR"),		   \[ptr,info,ccs] -> 
					emitSetDynHdr ptr info ccs ),
  ( FSLIT("STK_CHK_GEN"),          \[words,liveness,reentry] -> 
                                      stkChkGen words liveness reentry ),
  ( FSLIT("STK_CHK_NP"),	   \[e] -> stkChkNodePoints e ),
  ( FSLIT("TICK_ALLOC_PRIM"), 	   \[hdr,goods,slop] -> 
					tickyAllocPrim hdr goods slop ),
  ( FSLIT("TICK_ALLOC_PAP"),       \[goods,slop] -> 
					tickyAllocPAP goods slop ),
  ( FSLIT("TICK_ALLOC_UP_THK"),    \[goods,slop] -> 
					tickyAllocThunk goods slop ),
  ( FSLIT("UPD_BH_UPDATABLE"),       \[] -> emitBlackHoleCode False ),
  ( FSLIT("UPD_BH_SINGLE_ENTRY"),    \[] -> emitBlackHoleCode True ),

  ( FSLIT("RET_P"),	\[a] ->       emitRetUT [(PtrArg,a)]),
  ( FSLIT("RET_N"),	\[a] ->       emitRetUT [(NonPtrArg,a)]),
  ( FSLIT("RET_PP"),	\[a,b] ->     emitRetUT [(PtrArg,a),(PtrArg,b)]),
  ( FSLIT("RET_NN"),	\[a,b] ->     emitRetUT [(NonPtrArg,a),(NonPtrArg,b)]),
  ( FSLIT("RET_NP"),	\[a,b] ->     emitRetUT [(NonPtrArg,a),(PtrArg,b)]),
  ( FSLIT("RET_PPP"),	\[a,b,c] ->   emitRetUT [(PtrArg,a),(PtrArg,b),(PtrArg,c)]),
  ( FSLIT("RET_NNP"),	\[a,b,c] ->   emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(PtrArg,c)]),
  ( FSLIT("RET_NNNP"),	\[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(NonPtrArg,b),(NonPtrArg,c),(PtrArg,d)]),
  ( FSLIT("RET_NPNP"),	\[a,b,c,d] -> emitRetUT [(NonPtrArg,a),(PtrArg,b),(NonPtrArg,c),(PtrArg,d)])

 ]

-- -----------------------------------------------------------------------------
-- Our extended FCode monad.

-- We add a mapping from names to CmmExpr, to support local variable names in
-- the concrete C-- code.  The unique supply of the underlying FCode monad
-- is used to grab a new unique for each local variable.

-- In C--, a local variable can be declared anywhere within a proc,
-- and it scopes from the beginning of the proc to the end.  Hence, we have
-- to collect declarations as we parse the proc, and feed the environment
-- back in circularly (to avoid a two-pass algorithm).

type Decls = [(FastString,CmmExpr)]
type Env   = UniqFM CmmExpr

newtype ExtFCode a = EC { unEC :: Env -> Decls -> FCode (Decls, a) }

type ExtCode = ExtFCode ()

returnExtFC a = EC $ \e s -> return (s, a)
thenExtFC (EC m) k = EC $ \e s -> do (s',r) <- m e s; unEC (k r) e s'

instance Monad ExtFCode where
  (>>=) = thenExtFC
  return = returnExtFC

-- This function takes the variable decarations and imports and makes 
-- an environment, which is looped back into the computation.  In this
-- way, we can have embedded declarations that scope over the whole
-- procedure, and imports that scope over the entire module.
loopDecls :: ExtFCode a -> ExtFCode a
loopDecls (EC fcode) = 
   EC $ \e s -> fixC (\ ~(decls,a) -> fcode (addListToUFM e decls) [])

getEnv :: ExtFCode Env
getEnv = EC $ \e s -> return (s, e)

addVarDecl :: FastString -> CmmExpr -> ExtCode
addVarDecl var expr = EC $ \e s -> return ((var,expr):s, ())

newLocal :: MachRep -> FastString -> ExtCode
newLocal ty name  = do
   u <- code newUnique
   addVarDecl name (CmmReg (CmmLocal (LocalReg u ty)))

-- Unknown names are treated as if they had been 'import'ed.
-- This saves us a lot of bother in the RTS sources, at the expense of
-- deferring some errors to link time.
lookupName :: FastString -> ExtFCode CmmExpr
lookupName name = do
  env <- getEnv
  return $ 
     case lookupUFM env name of
	Nothing -> CmmLit (CmmLabel (mkRtsCodeLabelFS name))
	Just e  -> e

-- Lifting FCode computations into the ExtFCode monad:
code :: FCode a -> ExtFCode a
code fc = EC $ \e s -> do r <- fc; return (s, r)

code2 :: (FCode (Decls,b) -> FCode ((Decls,b),c))
	 -> ExtFCode b -> ExtFCode c
code2 f (EC ec) = EC $ \e s -> do ((s',b),c) <- f (ec e s); return (s',c)

nopEC = code nopC
stmtEC stmt = code (stmtC stmt)
stmtsEC stmts = code (stmtsC stmts)
getCgStmtsEC = code2 getCgStmts'

forkLabelledCodeEC ec = do
  stmts <- getCgStmtsEC ec
  code (forkCgStmts stmts)

retInfo name size live_bits cl_type vector = do
  let liveness = smallLiveness (fromIntegral size) (fromIntegral live_bits)
      info_lbl = mkRtsRetInfoLabelFS name
      (info1,info2) = mkRetInfoTable info_lbl liveness NoC_SRT 
				(fromIntegral cl_type) vector
  return (info_lbl, info1, info2)

stdInfo name ptrs nptrs srt_bitmap cl_type desc_str ty_str =
  basicInfo name (packHalfWordsCLit ptrs nptrs) 
	srt_bitmap cl_type desc_str ty_str

basicInfo name layout srt_bitmap cl_type desc_str ty_str = do
  lit1 <- if opt_SccProfilingOn 
		   then code $ mkStringCLit desc_str
		   else return (mkIntCLit 0)
  lit2 <- if opt_SccProfilingOn 
		   then code $ mkStringCLit ty_str
		   else return (mkIntCLit 0)
  let info1 = mkStdInfoTable lit1 lit2 (fromIntegral cl_type) 
			(fromIntegral srt_bitmap)
			layout
  return (mkRtsInfoLabelFS name, info1, [])

funInfo name ptrs nptrs cl_type desc_str ty_str fun_type = do
  (label,info1,_) <- stdInfo name ptrs nptrs 0{-srt_bitmap-}
			 cl_type desc_str ty_str 
  let info2 = mkFunGenInfoExtraBits (fromIntegral fun_type) 0 zero zero zero
		-- we leave most of the fields zero here.  This is only used
		-- to generate the BCO info table in the RTS at the moment.
  return (label,info1,info2)
 where
   zero = mkIntCLit 0


staticClosure :: FastString -> FastString -> [CmmLit] -> ExtCode
staticClosure cl_label info payload
  = code $ emitDataLits (mkRtsDataLabelFS cl_label) lits
  where  lits = mkStaticClosure (mkRtsInfoLabelFS info) dontCareCCS payload [] [] []

foreignCall
	:: String
	-> [ExtFCode (CmmReg,MachHint)]
	-> ExtFCode CmmExpr
	-> [ExtFCode (CmmExpr,MachHint)]
	-> Maybe [GlobalReg] -> P ExtCode
foreignCall "C" results_code expr_code args_code vols
  = return $ do
	results <- sequence results_code
	expr <- expr_code
	args <- sequence args_code
        code (emitForeignCall' PlayRisky results 
                 (CmmForeignCall expr CCallConv) args vols)
foreignCall conv _ _ _ _
  = fail ("unknown calling convention: " ++ conv)

doStore :: MachRep -> ExtFCode CmmExpr  -> ExtFCode CmmExpr -> ExtCode
doStore rep addr_code val_code
  = do addr <- addr_code
       val <- val_code
	-- if the specified store type does not match the type of the expr
	-- on the rhs, then we insert a coercion that will cause the type
	-- mismatch to be flagged by cmm-lint.  If we don't do this, then
	-- the store will happen at the wrong type, and the error will not
	-- be noticed.
       let coerce_val 
		| cmmExprRep val /= rep = CmmMachOp (MO_U_Conv rep rep) [val]
		| otherwise             = val
       stmtEC (CmmStore addr coerce_val)

-- Return an unboxed tuple.
emitRetUT :: [(CgRep,CmmExpr)] -> Code
emitRetUT args = do
  tickyUnboxedTupleReturn (length args)  -- TICK
  (sp, stmts) <- pushUnboxedTuple 0 args
  emitStmts stmts
  when (sp /= 0) $ stmtC (CmmAssign spReg (cmmRegOffW spReg (-sp)))
  stmtC (CmmJump (entryCode (CmmLoad (cmmRegOffW spReg sp) wordRep)) [])

-- -----------------------------------------------------------------------------
-- If-then-else and boolean expressions

data BoolExpr
  = BoolExpr `BoolAnd` BoolExpr
  | BoolExpr `BoolOr`  BoolExpr
  | BoolNot BoolExpr
  | BoolTest CmmExpr

-- ToDo: smart constructors which simplify the boolean expression.

ifThenElse cond then_part else_part = do
     then_id <- code newLabelC
     join_id <- code newLabelC
     c <- cond
     emitCond c then_id
     else_part
     stmtEC (CmmBranch join_id)
     code (labelC then_id)
     then_part
     -- fall through to join
     code (labelC join_id)

-- 'emitCond cond true_id'  emits code to test whether the cond is true,
-- branching to true_id if so, and falling through otherwise.
emitCond (BoolTest e) then_id = do
  stmtEC (CmmCondBranch e then_id)
emitCond (BoolNot (BoolTest (CmmMachOp op args))) then_id
  | Just op' <- maybeInvertComparison op
  = emitCond (BoolTest (CmmMachOp op' args)) then_id
emitCond (BoolNot e) then_id = do
  else_id <- code newLabelC
  emitCond e else_id
  stmtEC (CmmBranch then_id)
  code (labelC else_id)
emitCond (e1 `BoolOr` e2) then_id = do
  emitCond e1 then_id
  emitCond e2 then_id
emitCond (e1 `BoolAnd` e2) then_id = do
	-- we'd like to invert one of the conditionals here to avoid an
	-- extra branch instruction, but we can't use maybeInvertComparison
	-- here because we can't look too closely at the expression since
	-- we're in a loop.
  and_id <- code newLabelC
  else_id <- code newLabelC
  emitCond e1 and_id
  stmtEC (CmmBranch else_id)
  code (labelC and_id)
  emitCond e2 then_id
  code (labelC else_id)


-- -----------------------------------------------------------------------------
-- Table jumps

-- We use a simplified form of C-- switch statements for now.  A
-- switch statement always compiles to a table jump.  Each arm can
-- specify a list of values (not ranges), and there can be a single
-- default branch.  The range of the table is given either by the
-- optional range on the switch (eg. switch [0..7] {...}), or by
-- the minimum/maximum values from the branches.

doSwitch :: Maybe (Int,Int) -> ExtFCode CmmExpr -> [([Int],ExtCode)]
         -> Maybe ExtCode -> ExtCode
doSwitch mb_range scrut arms deflt
   = do 
	-- Compile code for the default branch
	dflt_entry <- 
		case deflt of
		  Nothing -> return Nothing
		  Just e  -> do b <- forkLabelledCodeEC e; return (Just b)

	-- Compile each case branch
	table_entries <- mapM emitArm arms

	-- Construct the table
	let
	    all_entries = concat table_entries
	    ixs = map fst all_entries
	    (min,max) 
		| Just (l,u) <- mb_range = (l,u)
		| otherwise              = (minimum ixs, maximum ixs)

	    entries = elems (accumArray (\_ a -> Just a) dflt_entry (min,max)
				all_entries)
	expr <- scrut
	-- ToDo: check for out of range and jump to default if necessary
        stmtEC (CmmSwitch expr entries)
   where
	emitArm :: ([Int],ExtCode) -> ExtFCode [(Int,BlockId)]
	emitArm (ints,code) = do
	   blockid <- forkLabelledCodeEC code
	   return [ (i,blockid) | i <- ints ]


-- -----------------------------------------------------------------------------
-- Putting it all together

-- The initial environment: we define some constants that the compiler
-- knows about here.
initEnv :: Env
initEnv = listToUFM [
  ( FSLIT("SIZEOF_StgHeader"), 
	CmmLit (CmmInt (fromIntegral (fixedHdrSize * wORD_SIZE)) wordRep) ),
  ( FSLIT("SIZEOF_StgInfoTable"),
        CmmLit (CmmInt (fromIntegral stdInfoTableSizeB) wordRep) )
  ]

parseCmmFile :: DynFlags -> HomeModules -> FilePath -> IO (Maybe Cmm)
parseCmmFile dflags hmods filename = do
  showPass dflags "ParseCmm"
  buf <- hGetStringBuffer filename
  let
	init_loc = mkSrcLoc (mkFastString filename) 1 0
	init_state = (mkPState buf init_loc dflags) { lex_state = [0] }
		-- reset the lex_state: the Lexer monad leaves some stuff
		-- in there we don't want.
  case unP cmmParse init_state of
    PFailed span err -> do printError span err; return Nothing
    POk _ code -> do
	cmm <- initC dflags hmods no_module (getCmm (unEC code initEnv [] >> return ()))
	dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (pprCmms [cmm])
	return (Just cmm)
  where
	no_module = panic "parseCmmFile: no module"
}