1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
|
-----------------------------------------------------------------------------
--
-- (c) The University of Glasgow, 2004-2012
--
-- Parser for concrete Cmm.
--
-----------------------------------------------------------------------------
{- -----------------------------------------------------------------------------
Note [Syntax of .cmm files]
NOTE: You are very much on your own in .cmm. There is very little
error checking at all:
* Type errors are detected by the (optional) -dcmm-lint pass, if you
don't turn this on then a type error will likely result in a panic
from the native code generator.
* Passing the wrong number of arguments or arguments of the wrong
type is not detected.
There are two ways to write .cmm code:
(1) High-level Cmm code delegates the stack handling to GHC, and
never explicitly mentions Sp or registers.
(2) Low-level Cmm manages the stack itself, and must know about
calling conventions.
Whether you want high-level or low-level Cmm is indicated by the
presence of an argument list on a procedure. For example:
foo ( gcptr a, bits32 b )
{
// this is high-level cmm code
if (b > 0) {
// we can make tail calls passing arguments:
jump stg_ap_0_fast(a);
}
push (stg_upd_frame_info, a) {
// stack frames can be explicitly pushed
(x,y) = call wibble(a,b,3,4);
// calls pass arguments and return results using the native
// Haskell calling convention. The code generator will automatically
// construct a stack frame and an info table for the continuation.
return (x,y);
// we can return multiple values from the current proc
}
}
bar
{
// this is low-level cmm code, indicated by the fact that we did not
// put an argument list on bar.
x = R1; // the calling convention is explicit: better be careful
// that this works on all platforms!
jump %ENTRY_CODE(Sp(0))
}
Here is a list of rules for high-level and low-level code. If you
break the rules, you get a panic (for using a high-level construct in
a low-level proc), or wrong code (when using low-level code in a
high-level proc). This stuff isn't checked! (TODO!)
High-level only:
- tail-calls with arguments, e.g.
jump stg_fun (arg1, arg2);
- function calls:
(ret1,ret2) = call stg_fun (arg1, arg2);
This makes a call with the NativeNodeCall convention, and the
values are returned to the following code using the NativeReturn
convention.
- returning:
return (ret1, ret2)
These use the NativeReturn convention to return zero or more
results to the caller.
- pushing stack frames:
push (info_ptr, field1, ..., fieldN) { ... statements ... }
Low-level only:
- References to Sp, R1-R8, F1-F4 etc.
NB. foreign calls may clobber the argument registers R1-R8, F1-F4
etc., so ensure they are saved into variables around foreign
calls.
- SAVE_THREAD_STATE() and LOAD_THREAD_STATE(), which modify Sp
directly.
Both high-level and low-level code can use a raw tail-call:
jump stg_fun [R1,R2]
NB. you *must* specify the list of GlobalRegs that are passed via a
jump, otherwise the register allocator will assume that all the
GlobalRegs are dead at the jump.
Calling Conventions
-------------------
High-level procedures use the NativeNode calling convention, or the
NativeReturn convention if the 'return' keyword is used (see Stack
Frames below).
Low-level procedures implement their own calling convention, so it can
be anything at all.
If a low-level procedure implements the NativeNode calling convention,
then it can be called by high-level code using an ordinary function
call. In general this is hard to arrange because the calling
convention depends on the number of physical register available for
parameter passing, but there are two cases where the calling
convention is platform-independnt:
- Zero arguments.
- One argument of pointer or non-pointer word type; this is always
passed in R1 according to the NativeNode convention.
- Returning a single value; these conventions are fixed and platform
independent.
Stack Frames
------------
A stack frame is written like this:
INFO_TABLE_RET ( label, FRAME_TYPE, info_ptr, field1, ..., fieldN )
return ( arg1, ..., argM )
{
... code ...
}
where field1 ... fieldN are the fields of the stack frame (with types)
arg1...argN are the values returned to the stack frame (with types).
The return values are assumed to be passed according to the
NativeReturn convention.
On entry to the code, the stack frame looks like:
|----------|
| fieldN |
| ... |
| field1 |
|----------|
| info_ptr |
|----------|
| argN |
| ... | <- Sp
and some of the args may be in registers.
We prepend the code by a copyIn of the args, and assign all the stack
frame fields to their formals. The initial "arg offset" for stack
layout purposes consists of the whole stack frame plus any args that
might be on the stack.
A tail-call may pass a stack frame to the callee using the following
syntax:
jump f (info_ptr, field1,..,fieldN) (arg1,..,argN)
where info_ptr and field1..fieldN describe the stack frame, and
arg1..argN are the arguments passed to f using the NativeNodeCall
convention.
----------------------------------------------------------------------------- -}
{
{-# LANGUAGE BangPatterns #-} -- required for versions of Happy before 1.18.6
{-# OPTIONS -Wwarn -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details
module CmmParse ( parseCmmFile ) where
import StgCmmExtCode
import CmmCallConv
import StgCmmProf
import StgCmmHeap
import StgCmmMonad hiding ( getCode, getCodeR, emitLabel, emit, emitStore
, emitAssign, emitOutOfLine, withUpdFrameOff
, getUpdFrameOff )
import qualified StgCmmMonad as F
import StgCmmUtils
import StgCmmForeign
import StgCmmExpr
import StgCmmClosure
import StgCmmLayout hiding (ArgRep(..))
import StgCmmTicky
import StgCmmBind ( emitBlackHoleCode, emitUpdateFrame )
import MkGraph
import Cmm
import CmmUtils
import CmmInfo
import BlockId
import CmmLex
import CLabel
import SMRep
import Lexer
import CostCentre
import ForeignCall
import Module
import Platform
import Literal
import Unique
import UniqFM
import SrcLoc
import DynFlags
import StaticFlags
import ErrUtils
import StringBuffer
import FastString
import Panic
import Constants
import Outputable
import BasicTypes
import Bag ( emptyBag, unitBag )
import Var
import Control.Monad
import Data.Array
import Data.Char ( ord )
import System.Exit
import Data.Maybe
#include "HsVersions.h"
}
%expect 0
%token
':' { L _ (CmmT_SpecChar ':') }
';' { L _ (CmmT_SpecChar ';') }
'{' { L _ (CmmT_SpecChar '{') }
'}' { L _ (CmmT_SpecChar '}') }
'[' { L _ (CmmT_SpecChar '[') }
']' { L _ (CmmT_SpecChar ']') }
'(' { L _ (CmmT_SpecChar '(') }
')' { L _ (CmmT_SpecChar ')') }
'=' { L _ (CmmT_SpecChar '=') }
'`' { L _ (CmmT_SpecChar '`') }
'~' { L _ (CmmT_SpecChar '~') }
'/' { L _ (CmmT_SpecChar '/') }
'*' { L _ (CmmT_SpecChar '*') }
'%' { L _ (CmmT_SpecChar '%') }
'-' { L _ (CmmT_SpecChar '-') }
'+' { L _ (CmmT_SpecChar '+') }
'&' { L _ (CmmT_SpecChar '&') }
'^' { L _ (CmmT_SpecChar '^') }
'|' { L _ (CmmT_SpecChar '|') }
'>' { L _ (CmmT_SpecChar '>') }
'<' { L _ (CmmT_SpecChar '<') }
',' { L _ (CmmT_SpecChar ',') }
'!' { L _ (CmmT_SpecChar '!') }
'..' { L _ (CmmT_DotDot) }
'::' { L _ (CmmT_DoubleColon) }
'>>' { L _ (CmmT_Shr) }
'<<' { L _ (CmmT_Shl) }
'>=' { L _ (CmmT_Ge) }
'<=' { L _ (CmmT_Le) }
'==' { L _ (CmmT_Eq) }
'!=' { L _ (CmmT_Ne) }
'&&' { L _ (CmmT_BoolAnd) }
'||' { L _ (CmmT_BoolOr) }
'CLOSURE' { L _ (CmmT_CLOSURE) }
'INFO_TABLE' { L _ (CmmT_INFO_TABLE) }
'INFO_TABLE_RET'{ L _ (CmmT_INFO_TABLE_RET) }
'INFO_TABLE_FUN'{ L _ (CmmT_INFO_TABLE_FUN) }
'INFO_TABLE_CONSTR'{ L _ (CmmT_INFO_TABLE_CONSTR) }
'INFO_TABLE_SELECTOR'{ L _ (CmmT_INFO_TABLE_SELECTOR) }
'else' { L _ (CmmT_else) }
'export' { L _ (CmmT_export) }
'section' { L _ (CmmT_section) }
'align' { L _ (CmmT_align) }
'goto' { L _ (CmmT_goto) }
'if' { L _ (CmmT_if) }
'call' { L _ (CmmT_call) }
'jump' { L _ (CmmT_jump) }
'foreign' { L _ (CmmT_foreign) }
'never' { L _ (CmmT_never) }
'prim' { L _ (CmmT_prim) }
'return' { L _ (CmmT_return) }
'returns' { L _ (CmmT_returns) }
'import' { L _ (CmmT_import) }
'switch' { L _ (CmmT_switch) }
'case' { L _ (CmmT_case) }
'default' { L _ (CmmT_default) }
'push' { L _ (CmmT_push) }
'bits8' { L _ (CmmT_bits8) }
'bits16' { L _ (CmmT_bits16) }
'bits32' { L _ (CmmT_bits32) }
'bits64' { L _ (CmmT_bits64) }
'bits128' { L _ (CmmT_bits128) }
'bits256' { L _ (CmmT_bits256) }
'bits512' { L _ (CmmT_bits512) }
'float32' { L _ (CmmT_float32) }
'float64' { L _ (CmmT_float64) }
'gcptr' { L _ (CmmT_gcptr) }
GLOBALREG { L _ (CmmT_GlobalReg $$) }
NAME { L _ (CmmT_Name $$) }
STRING { L _ (CmmT_String $$) }
INT { L _ (CmmT_Int $$) }
FLOAT { L _ (CmmT_Float $$) }
%monad { P } { >>= } { return }
%lexer { cmmlex } { L _ CmmT_EOF }
%name cmmParse cmm
%tokentype { Located CmmToken }
-- C-- operator precedences, taken from the C-- spec
%right '||' -- non-std extension, called %disjoin in C--
%right '&&' -- non-std extension, called %conjoin in C--
%right '!'
%nonassoc '>=' '>' '<=' '<' '!=' '=='
%left '|'
%left '^'
%left '&'
%left '>>' '<<'
%left '-' '+'
%left '/' '*' '%'
%right '~'
%%
cmm :: { CmmParse () }
: {- empty -} { return () }
| cmmtop cmm { do $1; $2 }
cmmtop :: { CmmParse () }
: cmmproc { $1 }
| cmmdata { $1 }
| decl { $1 }
| 'CLOSURE' '(' NAME ',' NAME lits ')' ';'
{% withThisPackage $ \pkg ->
do lits <- sequence $6;
staticClosure pkg $3 $5 (map getLit lits) }
-- The only static closures in the RTS are dummy closures like
-- stg_END_TSO_QUEUE_closure and stg_dummy_ret. We don't need
-- to provide the full generality of static closures here.
-- In particular:
-- * CCS can always be CCS_DONT_CARE
-- * closure is always extern
-- * payload is always empty
-- * we can derive closure and info table labels from a single NAME
cmmdata :: { CmmParse () }
: 'section' STRING '{' data_label statics '}'
{ do lbl <- $4;
ss <- sequence $5;
code (emitDecl (CmmData (section $2) (Statics lbl $ concat ss))) }
data_label :: { CmmParse CLabel }
: NAME ':'
{% withThisPackage $ \pkg ->
return (mkCmmDataLabel pkg $1) }
statics :: { [CmmParse [CmmStatic]] }
: {- empty -} { [] }
| static statics { $1 : $2 }
-- Strings aren't used much in the RTS HC code, so it doesn't seem
-- worth allowing inline strings. C-- doesn't allow them anyway.
static :: { CmmParse [CmmStatic] }
: type expr ';' { do e <- $2;
return [CmmStaticLit (getLit e)] }
| type ';' { return [CmmUninitialised
(widthInBytes (typeWidth $1))] }
| 'bits8' '[' ']' STRING ';' { return [mkString $4] }
| 'bits8' '[' INT ']' ';' { return [CmmUninitialised
(fromIntegral $3)] }
| typenot8 '[' INT ']' ';' { return [CmmUninitialised
(widthInBytes (typeWidth $1) *
fromIntegral $3)] }
| 'CLOSURE' '(' NAME lits ')'
{ do { lits <- sequence $4
; dflags <- getDynFlags
; return $ map CmmStaticLit $
mkStaticClosure dflags (mkForeignLabel $3 Nothing ForeignLabelInExternalPackage IsData)
-- mkForeignLabel because these are only used
-- for CHARLIKE and INTLIKE closures in the RTS.
dontCareCCS (map getLit lits) [] [] [] } }
-- arrays of closures required for the CHARLIKE & INTLIKE arrays
lits :: { [CmmParse CmmExpr] }
: {- empty -} { [] }
| ',' expr lits { $2 : $3 }
cmmproc :: { CmmParse () }
: info maybe_conv maybe_formals maybe_body
{ do ((entry_ret_label, info, stk_formals, formals), agraph) <-
getCodeR $ loopDecls $ do {
(entry_ret_label, info, stk_formals) <- $1;
formals <- sequence (fromMaybe [] $3);
$4;
return (entry_ret_label, info, stk_formals, formals) }
let do_layout = isJust $3
code (emitProcWithStackFrame $2 info
entry_ret_label stk_formals formals agraph
do_layout ) }
maybe_conv :: { Convention }
: {- empty -} { NativeNodeCall }
| 'return' { NativeReturn }
maybe_body :: { CmmParse () }
: ';' { return () }
| '{' body '}' { $2 }
info :: { CmmParse (CLabel, Maybe CmmInfoTable, [LocalReg]) }
: NAME
{% withThisPackage $ \pkg ->
do newFunctionName $1 pkg
return (mkCmmCodeLabel pkg $1, Nothing, []) }
| 'INFO_TABLE' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ')'
-- ptrs, nptrs, closure type, description, type
{% withThisPackage $ \pkg ->
do dflags <- getDynFlags
let prof = profilingInfo dflags $11 $13
rep = mkRTSRep (fromIntegral $9) $
mkHeapRep dflags False (fromIntegral $5)
(fromIntegral $7) Thunk
-- not really Thunk, but that makes the info table
-- we want.
return (mkCmmEntryLabel pkg $3,
Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3
, cit_rep = rep
, cit_prof = prof, cit_srt = NoC_SRT },
[]) }
| 'INFO_TABLE_FUN' '(' NAME ',' INT ',' INT ',' INT ',' STRING ',' STRING ',' INT ')'
-- ptrs, nptrs, closure type, description, type, fun type
{% withThisPackage $ \pkg ->
do dflags <- getDynFlags
let prof = profilingInfo dflags $11 $13
ty = Fun 0 (ArgSpec (fromIntegral $15))
-- Arity zero, arg_type $15
rep = mkRTSRep (fromIntegral $9) $
mkHeapRep dflags False (fromIntegral $5)
(fromIntegral $7) ty
return (mkCmmEntryLabel pkg $3,
Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3
, cit_rep = rep
, cit_prof = prof, cit_srt = NoC_SRT },
[]) }
-- we leave most of the fields zero here. This is only used
-- to generate the BCO info table in the RTS at the moment.
| 'INFO_TABLE_CONSTR' '(' NAME ',' INT ',' INT ',' INT ',' INT ',' STRING ',' STRING ')'
-- ptrs, nptrs, tag, closure type, description, type
{% withThisPackage $ \pkg ->
do dflags <- getDynFlags
let prof = profilingInfo dflags $13 $15
ty = Constr (fromIntegral $9) -- Tag
(stringToWord8s $13)
rep = mkRTSRep (fromIntegral $11) $
mkHeapRep dflags False (fromIntegral $5)
(fromIntegral $7) ty
return (mkCmmEntryLabel pkg $3,
Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3
, cit_rep = rep
, cit_prof = prof, cit_srt = NoC_SRT },
[]) }
-- If profiling is on, this string gets duplicated,
-- but that's the way the old code did it we can fix it some other time.
| 'INFO_TABLE_SELECTOR' '(' NAME ',' INT ',' INT ',' STRING ',' STRING ')'
-- selector, closure type, description, type
{% withThisPackage $ \pkg ->
do dflags <- getDynFlags
let prof = profilingInfo dflags $9 $11
ty = ThunkSelector (fromIntegral $5)
rep = mkRTSRep (fromIntegral $7) $
mkHeapRep dflags False 0 0 ty
return (mkCmmEntryLabel pkg $3,
Just $ CmmInfoTable { cit_lbl = mkCmmInfoLabel pkg $3
, cit_rep = rep
, cit_prof = prof, cit_srt = NoC_SRT },
[]) }
| 'INFO_TABLE_RET' '(' NAME ',' INT ')'
-- closure type (no live regs)
{% withThisPackage $ \pkg ->
do let prof = NoProfilingInfo
rep = mkRTSRep (fromIntegral $5) $ mkStackRep []
return (mkCmmRetLabel pkg $3,
Just $ CmmInfoTable { cit_lbl = mkCmmRetInfoLabel pkg $3
, cit_rep = rep
, cit_prof = prof, cit_srt = NoC_SRT },
[]) }
| 'INFO_TABLE_RET' '(' NAME ',' INT ',' formals0 ')'
-- closure type, live regs
{% withThisPackage $ \pkg ->
do dflags <- getDynFlags
live <- sequence $7
let prof = NoProfilingInfo
-- drop one for the info pointer
bitmap = mkLiveness dflags (map Just (drop 1 live))
rep = mkRTSRep (fromIntegral $5) $ mkStackRep bitmap
return (mkCmmRetLabel pkg $3,
Just $ CmmInfoTable { cit_lbl = mkCmmRetInfoLabel pkg $3
, cit_rep = rep
, cit_prof = prof, cit_srt = NoC_SRT },
live) }
body :: { CmmParse () }
: {- empty -} { return () }
| decl body { do $1; $2 }
| stmt body { do $1; $2 }
decl :: { CmmParse () }
: type names ';' { mapM_ (newLocal $1) $2 }
| 'import' importNames ';' { mapM_ newImport $2 }
| 'export' names ';' { return () } -- ignore exports
-- an imported function name, with optional packageId
importNames
:: { [(FastString, CLabel)] }
: importName { [$1] }
| importName ',' importNames { $1 : $3 }
importName
:: { (FastString, CLabel) }
-- A label imported without an explicit packageId.
-- These are taken to come frome some foreign, unnamed package.
: NAME
{ ($1, mkForeignLabel $1 Nothing ForeignLabelInExternalPackage IsFunction) }
-- A label imported with an explicit packageId.
| STRING NAME
{ ($2, mkCmmCodeLabel (fsToPackageId (mkFastString $1)) $2) }
names :: { [FastString] }
: NAME { [$1] }
| NAME ',' names { $1 : $3 }
stmt :: { CmmParse () }
: ';' { return () }
| NAME ':'
{ do l <- newLabel $1; emitLabel l }
| lreg '=' expr ';'
{ do reg <- $1; e <- $3; emitAssign reg e }
| type '[' expr ']' '=' expr ';'
{ doStore $1 $3 $6 }
-- Gah! We really want to say "foreign_results" but that causes
-- a shift/reduce conflict with assignment. We either
-- we expand out the no-result and single result cases or
-- we tweak the syntax to avoid the conflict. The later
-- option is taken here because the other way would require
-- multiple levels of expanding and get unwieldy.
| foreign_results 'foreign' STRING foreignLabel '(' cmm_hint_exprs0 ')' safety opt_never_returns ';'
{% foreignCall $3 $1 $4 $6 $8 $9 }
| foreign_results 'prim' '%' NAME '(' exprs0 ')' ';'
{% primCall $1 $4 $6 }
-- stmt-level macros, stealing syntax from ordinary C-- function calls.
-- Perhaps we ought to use the %%-form?
| NAME '(' exprs0 ')' ';'
{% stmtMacro $1 $3 }
| 'switch' maybe_range expr '{' arms default '}'
{ do as <- sequence $5; doSwitch $2 $3 as $6 }
| 'goto' NAME ';'
{ do l <- lookupLabel $2; emit (mkBranch l) }
| 'return' '(' exprs0 ')' ';'
{ doReturn $3 }
| 'jump' expr vols ';'
{ doRawJump $2 $3 }
| 'jump' expr '(' exprs0 ')' ';'
{ doJumpWithStack $2 [] $4 }
| 'jump' expr '(' exprs0 ')' '(' exprs0 ')' ';'
{ doJumpWithStack $2 $4 $7 }
| 'call' expr '(' exprs0 ')' ';'
{ doCall $2 [] $4 }
| '(' formals ')' '=' 'call' expr '(' exprs0 ')' ';'
{ doCall $6 $2 $8 }
| 'if' bool_expr 'goto' NAME
{ do l <- lookupLabel $4; cmmRawIf $2 l }
| 'if' bool_expr '{' body '}' else
{ cmmIfThenElse $2 $4 $6 }
| 'push' '(' exprs0 ')' maybe_body
{ pushStackFrame $3 $5 }
foreignLabel :: { CmmParse CmmExpr }
: NAME { return (CmmLit (CmmLabel (mkForeignLabel $1 Nothing ForeignLabelInThisPackage IsFunction))) }
opt_never_returns :: { CmmReturnInfo }
: { CmmMayReturn }
| 'never' 'returns' { CmmNeverReturns }
bool_expr :: { CmmParse BoolExpr }
: bool_op { $1 }
| expr { do e <- $1; return (BoolTest e) }
bool_op :: { CmmParse BoolExpr }
: bool_expr '&&' bool_expr { do e1 <- $1; e2 <- $3;
return (BoolAnd e1 e2) }
| bool_expr '||' bool_expr { do e1 <- $1; e2 <- $3;
return (BoolOr e1 e2) }
| '!' bool_expr { do e <- $2; return (BoolNot e) }
| '(' bool_op ')' { $2 }
safety :: { Safety }
: {- empty -} { PlayRisky }
| STRING {% parseSafety $1 }
vols :: { [GlobalReg] }
: '[' ']' { [] }
| '[' '*' ']' {% do df <- getDynFlags
; return (realArgRegsCover df) }
-- All of them. See comment attached
-- to realArgRegsCover
| '[' globals ']' { $2 }
globals :: { [GlobalReg] }
: GLOBALREG { [$1] }
| GLOBALREG ',' globals { $1 : $3 }
maybe_range :: { Maybe (Int,Int) }
: '[' INT '..' INT ']' { Just (fromIntegral $2, fromIntegral $4) }
| {- empty -} { Nothing }
arms :: { [CmmParse ([Int],Either BlockId (CmmParse ()))] }
: {- empty -} { [] }
| arm arms { $1 : $2 }
arm :: { CmmParse ([Int],Either BlockId (CmmParse ())) }
: 'case' ints ':' arm_body { do b <- $4; return ($2, b) }
arm_body :: { CmmParse (Either BlockId (CmmParse ())) }
: '{' body '}' { return (Right $2) }
| 'goto' NAME ';' { do l <- lookupLabel $2; return (Left l) }
ints :: { [Int] }
: INT { [ fromIntegral $1 ] }
| INT ',' ints { fromIntegral $1 : $3 }
default :: { Maybe (CmmParse ()) }
: 'default' ':' '{' body '}' { Just $4 }
-- taking a few liberties with the C-- syntax here; C-- doesn't have
-- 'default' branches
| {- empty -} { Nothing }
-- Note: OldCmm doesn't support a first class 'else' statement, though
-- CmmNode does.
else :: { CmmParse () }
: {- empty -} { return () }
| 'else' '{' body '}' { $3 }
-- we have to write this out longhand so that Happy's precedence rules
-- can kick in.
expr :: { CmmParse CmmExpr }
: expr '/' expr { mkMachOp MO_U_Quot [$1,$3] }
| expr '*' expr { mkMachOp MO_Mul [$1,$3] }
| expr '%' expr { mkMachOp MO_U_Rem [$1,$3] }
| expr '-' expr { mkMachOp MO_Sub [$1,$3] }
| expr '+' expr { mkMachOp MO_Add [$1,$3] }
| expr '>>' expr { mkMachOp MO_U_Shr [$1,$3] }
| expr '<<' expr { mkMachOp MO_Shl [$1,$3] }
| expr '&' expr { mkMachOp MO_And [$1,$3] }
| expr '^' expr { mkMachOp MO_Xor [$1,$3] }
| expr '|' expr { mkMachOp MO_Or [$1,$3] }
| expr '>=' expr { mkMachOp MO_U_Ge [$1,$3] }
| expr '>' expr { mkMachOp MO_U_Gt [$1,$3] }
| expr '<=' expr { mkMachOp MO_U_Le [$1,$3] }
| expr '<' expr { mkMachOp MO_U_Lt [$1,$3] }
| expr '!=' expr { mkMachOp MO_Ne [$1,$3] }
| expr '==' expr { mkMachOp MO_Eq [$1,$3] }
| '~' expr { mkMachOp MO_Not [$2] }
| '-' expr { mkMachOp MO_S_Neg [$2] }
| expr0 '`' NAME '`' expr0 {% do { mo <- nameToMachOp $3 ;
return (mkMachOp mo [$1,$5]) } }
| expr0 { $1 }
expr0 :: { CmmParse CmmExpr }
: INT maybe_ty { return (CmmLit (CmmInt $1 (typeWidth $2))) }
| FLOAT maybe_ty { return (CmmLit (CmmFloat $1 (typeWidth $2))) }
| STRING { do s <- code (newStringCLit $1);
return (CmmLit s) }
| reg { $1 }
| type '[' expr ']' { do e <- $3; return (CmmLoad e $1) }
| '%' NAME '(' exprs0 ')' {% exprOp $2 $4 }
| '(' expr ')' { $2 }
-- leaving out the type of a literal gives you the native word size in C--
maybe_ty :: { CmmType }
: {- empty -} {% do dflags <- getDynFlags; return $ bWord dflags }
| '::' type { $2 }
cmm_hint_exprs0 :: { [CmmParse (CmmExpr, ForeignHint)] }
: {- empty -} { [] }
| cmm_hint_exprs { $1 }
cmm_hint_exprs :: { [CmmParse (CmmExpr, ForeignHint)] }
: cmm_hint_expr { [$1] }
| cmm_hint_expr ',' cmm_hint_exprs { $1 : $3 }
cmm_hint_expr :: { CmmParse (CmmExpr, ForeignHint) }
: expr { do e <- $1;
return (e, inferCmmHint e) }
| expr STRING {% do h <- parseCmmHint $2;
return $ do
e <- $1; return (e, h) }
exprs0 :: { [CmmParse CmmExpr] }
: {- empty -} { [] }
| exprs { $1 }
exprs :: { [CmmParse CmmExpr] }
: expr { [ $1 ] }
| expr ',' exprs { $1 : $3 }
reg :: { CmmParse CmmExpr }
: NAME { lookupName $1 }
| GLOBALREG { return (CmmReg (CmmGlobal $1)) }
foreign_results :: { [CmmParse (LocalReg, ForeignHint)] }
: {- empty -} { [] }
| '(' foreign_formals ')' '=' { $2 }
foreign_formals :: { [CmmParse (LocalReg, ForeignHint)] }
: foreign_formal { [$1] }
| foreign_formal ',' { [$1] }
| foreign_formal ',' foreign_formals { $1 : $3 }
foreign_formal :: { CmmParse (LocalReg, ForeignHint) }
: local_lreg { do e <- $1; return (e, (inferCmmHint (CmmReg (CmmLocal e)))) }
| STRING local_lreg {% do h <- parseCmmHint $1;
return $ do
e <- $2; return (e,h) }
local_lreg :: { CmmParse LocalReg }
: NAME { do e <- lookupName $1;
return $
case e of
CmmReg (CmmLocal r) -> r
other -> pprPanic "CmmParse:" (ftext $1 <> text " not a local register") }
lreg :: { CmmParse CmmReg }
: NAME { do e <- lookupName $1;
return $
case e of
CmmReg r -> r
other -> pprPanic "CmmParse:" (ftext $1 <> text " not a register") }
| GLOBALREG { return (CmmGlobal $1) }
maybe_formals :: { Maybe [CmmParse LocalReg] }
: {- empty -} { Nothing }
| '(' formals0 ')' { Just $2 }
formals0 :: { [CmmParse LocalReg] }
: {- empty -} { [] }
| formals { $1 }
formals :: { [CmmParse LocalReg] }
: formal ',' { [$1] }
| formal { [$1] }
| formal ',' formals { $1 : $3 }
formal :: { CmmParse LocalReg }
: type NAME { newLocal $1 $2 }
type :: { CmmType }
: 'bits8' { b8 }
| typenot8 { $1 }
typenot8 :: { CmmType }
: 'bits16' { b16 }
| 'bits32' { b32 }
| 'bits64' { b64 }
| 'bits128' { b128 }
| 'bits256' { b256 }
| 'bits512' { b512 }
| 'float32' { f32 }
| 'float64' { f64 }
| 'gcptr' {% do dflags <- getDynFlags; return $ gcWord dflags }
{
section :: String -> Section
section "text" = Text
section "data" = Data
section "rodata" = ReadOnlyData
section "relrodata" = RelocatableReadOnlyData
section "bss" = UninitialisedData
section s = OtherSection s
mkString :: String -> CmmStatic
mkString s = CmmString (map (fromIntegral.ord) s)
-- |
-- Given an info table, decide what the entry convention for the proc
-- is. That is, for an INFO_TABLE_RET we want the return convention,
-- otherwise it is a NativeNodeCall.
--
infoConv :: Maybe CmmInfoTable -> Convention
infoConv Nothing = NativeNodeCall
infoConv (Just info)
| isStackRep (cit_rep info) = NativeReturn
| otherwise = NativeNodeCall
-- mkMachOp infers the type of the MachOp from the type of its first
-- argument. We assume that this is correct: for MachOps that don't have
-- symmetrical args (e.g. shift ops), the first arg determines the type of
-- the op.
mkMachOp :: (Width -> MachOp) -> [CmmParse CmmExpr] -> CmmParse CmmExpr
mkMachOp fn args = do
dflags <- getDynFlags
arg_exprs <- sequence args
return (CmmMachOp (fn (typeWidth (cmmExprType dflags (head arg_exprs)))) arg_exprs)
getLit :: CmmExpr -> CmmLit
getLit (CmmLit l) = l
getLit (CmmMachOp (MO_S_Neg _) [CmmLit (CmmInt i r)]) = CmmInt (negate i) r
getLit _ = panic "invalid literal" -- TODO messy failure
nameToMachOp :: FastString -> P (Width -> MachOp)
nameToMachOp name =
case lookupUFM machOps name of
Nothing -> fail ("unknown primitive " ++ unpackFS name)
Just m -> return m
exprOp :: FastString -> [CmmParse CmmExpr] -> P (CmmParse CmmExpr)
exprOp name args_code = do
dflags <- getDynFlags
case lookupUFM (exprMacros dflags) name of
Just f -> return $ do
args <- sequence args_code
return (f args)
Nothing -> do
mo <- nameToMachOp name
return $ mkMachOp mo args_code
exprMacros :: DynFlags -> UniqFM ([CmmExpr] -> CmmExpr)
exprMacros dflags = listToUFM [
( fsLit "ENTRY_CODE", \ [x] -> entryCode dflags x ),
( fsLit "INFO_PTR", \ [x] -> closureInfoPtr dflags x ),
( fsLit "STD_INFO", \ [x] -> infoTable dflags x ),
( fsLit "FUN_INFO", \ [x] -> funInfoTable dflags x ),
( fsLit "GET_ENTRY", \ [x] -> entryCode dflags (closureInfoPtr dflags x) ),
( fsLit "GET_STD_INFO", \ [x] -> infoTable dflags (closureInfoPtr dflags x) ),
( fsLit "GET_FUN_INFO", \ [x] -> funInfoTable dflags (closureInfoPtr dflags x) ),
( fsLit "INFO_TYPE", \ [x] -> infoTableClosureType dflags x ),
( fsLit "INFO_PTRS", \ [x] -> infoTablePtrs dflags x ),
( fsLit "INFO_NPTRS", \ [x] -> infoTableNonPtrs dflags x )
]
-- we understand a subset of C-- primitives:
machOps = listToUFM $
map (\(x, y) -> (mkFastString x, y)) [
( "add", MO_Add ),
( "sub", MO_Sub ),
( "eq", MO_Eq ),
( "ne", MO_Ne ),
( "mul", MO_Mul ),
( "neg", MO_S_Neg ),
( "quot", MO_S_Quot ),
( "rem", MO_S_Rem ),
( "divu", MO_U_Quot ),
( "modu", MO_U_Rem ),
( "ge", MO_S_Ge ),
( "le", MO_S_Le ),
( "gt", MO_S_Gt ),
( "lt", MO_S_Lt ),
( "geu", MO_U_Ge ),
( "leu", MO_U_Le ),
( "gtu", MO_U_Gt ),
( "ltu", MO_U_Lt ),
( "and", MO_And ),
( "or", MO_Or ),
( "xor", MO_Xor ),
( "com", MO_Not ),
( "shl", MO_Shl ),
( "shrl", MO_U_Shr ),
( "shra", MO_S_Shr ),
( "fadd", MO_F_Add ),
( "fsub", MO_F_Sub ),
( "fneg", MO_F_Neg ),
( "fmul", MO_F_Mul ),
( "fquot", MO_F_Quot ),
( "feq", MO_F_Eq ),
( "fne", MO_F_Ne ),
( "fge", MO_F_Ge ),
( "fle", MO_F_Le ),
( "fgt", MO_F_Gt ),
( "flt", MO_F_Lt ),
( "lobits8", flip MO_UU_Conv W8 ),
( "lobits16", flip MO_UU_Conv W16 ),
( "lobits32", flip MO_UU_Conv W32 ),
( "lobits64", flip MO_UU_Conv W64 ),
( "zx16", flip MO_UU_Conv W16 ),
( "zx32", flip MO_UU_Conv W32 ),
( "zx64", flip MO_UU_Conv W64 ),
( "sx16", flip MO_SS_Conv W16 ),
( "sx32", flip MO_SS_Conv W32 ),
( "sx64", flip MO_SS_Conv W64 ),
( "f2f32", flip MO_FF_Conv W32 ), -- TODO; rounding mode
( "f2f64", flip MO_FF_Conv W64 ), -- TODO; rounding mode
( "f2i8", flip MO_FS_Conv W8 ),
( "f2i16", flip MO_FS_Conv W16 ),
( "f2i32", flip MO_FS_Conv W32 ),
( "f2i64", flip MO_FS_Conv W64 ),
( "i2f32", flip MO_SF_Conv W32 ),
( "i2f64", flip MO_SF_Conv W64 )
]
callishMachOps = listToUFM $
map (\(x, y) -> (mkFastString x, y)) [
( "write_barrier", MO_WriteBarrier ),
( "memcpy", MO_Memcpy ),
( "memset", MO_Memset ),
( "memmove", MO_Memmove )
-- ToDo: the rest, maybe
]
parseSafety :: String -> P Safety
parseSafety "safe" = return PlaySafe
parseSafety "unsafe" = return PlayRisky
parseSafety "interruptible" = return PlayInterruptible
parseSafety str = fail ("unrecognised safety: " ++ str)
parseCmmHint :: String -> P ForeignHint
parseCmmHint "ptr" = return AddrHint
parseCmmHint "signed" = return SignedHint
parseCmmHint str = fail ("unrecognised hint: " ++ str)
-- labels are always pointers, so we might as well infer the hint
inferCmmHint :: CmmExpr -> ForeignHint
inferCmmHint (CmmLit (CmmLabel _)) = AddrHint
inferCmmHint (CmmReg (CmmGlobal g)) | isPtrGlobalReg g = AddrHint
inferCmmHint _ = NoHint
isPtrGlobalReg Sp = True
isPtrGlobalReg SpLim = True
isPtrGlobalReg Hp = True
isPtrGlobalReg HpLim = True
isPtrGlobalReg CCCS = True
isPtrGlobalReg CurrentTSO = True
isPtrGlobalReg CurrentNursery = True
isPtrGlobalReg (VanillaReg _ VGcPtr) = True
isPtrGlobalReg _ = False
happyError :: P a
happyError = srcParseFail
-- -----------------------------------------------------------------------------
-- Statement-level macros
stmtMacro :: FastString -> [CmmParse CmmExpr] -> P (CmmParse ())
stmtMacro fun args_code = do
case lookupUFM stmtMacros fun of
Nothing -> fail ("unknown macro: " ++ unpackFS fun)
Just fcode -> return $ do
args <- sequence args_code
code (fcode args)
stmtMacros :: UniqFM ([CmmExpr] -> FCode ())
stmtMacros = listToUFM [
( fsLit "CCS_ALLOC", \[words,ccs] -> profAlloc words ccs ),
( fsLit "ENTER_CCS_THUNK", \[e] -> enterCostCentreThunk e ),
( fsLit "CLOSE_NURSERY", \[] -> emitCloseNursery ),
( fsLit "OPEN_NURSERY", \[] -> emitOpenNursery ),
-- completely generic heap and stack checks, for use in high-level cmm.
( fsLit "HP_CHK_GEN", \[bytes] ->
heapStackCheckGen Nothing (Just bytes) ),
( fsLit "STK_CHK_GEN", \[] ->
heapStackCheckGen (Just (CmmLit CmmHighStackMark)) Nothing ),
-- A stack check for a fixed amount of stack. Sounds a bit strange, but
-- we use the stack for a bit of temporary storage in a couple of primops
( fsLit "STK_CHK_GEN_N", \[bytes] ->
heapStackCheckGen (Just bytes) Nothing ),
-- A stack check on entry to a thunk, where the argument is the thunk pointer.
( fsLit "STK_CHK_NP" , \[node] -> entryHeapCheck' False node 0 [] (return ())),
( fsLit "LOAD_THREAD_STATE", \[] -> emitLoadThreadState ),
( fsLit "SAVE_THREAD_STATE", \[] -> emitSaveThreadState ),
( fsLit "LDV_ENTER", \[e] -> ldvEnter e ),
( fsLit "LDV_RECORD_CREATE", \[e] -> ldvRecordCreate e ),
( fsLit "PUSH_UPD_FRAME", \[sp,e] -> emitPushUpdateFrame sp e ),
( fsLit "SET_HDR", \[ptr,info,ccs] ->
emitSetDynHdr ptr info ccs ),
( fsLit "TICK_ALLOC_PRIM", \[hdr,goods,slop] ->
tickyAllocPrim hdr goods slop ),
( fsLit "TICK_ALLOC_PAP", \[goods,slop] ->
tickyAllocPAP goods slop ),
( fsLit "TICK_ALLOC_UP_THK", \[goods,slop] ->
tickyAllocThunk goods slop ),
( fsLit "UPD_BH_UPDATABLE", \[reg] -> emitBlackHoleCode reg )
]
emitPushUpdateFrame :: CmmExpr -> CmmExpr -> FCode ()
emitPushUpdateFrame sp e = do
dflags <- getDynFlags
emitUpdateFrame dflags sp mkUpdInfoLabel e
pushStackFrame :: [CmmParse CmmExpr] -> CmmParse () -> CmmParse ()
pushStackFrame fields body = do
dflags <- getDynFlags
exprs <- sequence fields
updfr_off <- getUpdFrameOff
let (new_updfr_off, _, g) = copyOutOflow dflags NativeReturn Ret Old
[] updfr_off exprs
emit g
withUpdFrameOff new_updfr_off body
profilingInfo dflags desc_str ty_str
= if not (gopt Opt_SccProfilingOn dflags)
then NoProfilingInfo
else ProfilingInfo (stringToWord8s desc_str)
(stringToWord8s ty_str)
staticClosure :: PackageId -> FastString -> FastString -> [CmmLit] -> CmmParse ()
staticClosure pkg cl_label info payload
= do dflags <- getDynFlags
let lits = mkStaticClosure dflags (mkCmmInfoLabel pkg info) dontCareCCS payload [] [] []
code $ emitDataLits (mkCmmDataLabel pkg cl_label) lits
foreignCall
:: String
-> [CmmParse (LocalReg, ForeignHint)]
-> CmmParse CmmExpr
-> [CmmParse (CmmExpr, ForeignHint)]
-> Safety
-> CmmReturnInfo
-> P (CmmParse ())
foreignCall conv_string results_code expr_code args_code safety ret
= do conv <- case conv_string of
"C" -> return CCallConv
"stdcall" -> return StdCallConv
_ -> fail ("unknown calling convention: " ++ conv_string)
return $ do
dflags <- getDynFlags
results <- sequence results_code
expr <- expr_code
args <- sequence args_code
let
expr' = adjCallTarget dflags conv expr args
(arg_exprs, arg_hints) = unzip args
(res_regs, res_hints) = unzip results
fc = ForeignConvention conv arg_hints res_hints ret
target = ForeignTarget expr' fc
_ <- code $ emitForeignCall safety res_regs target arg_exprs
return ()
doReturn :: [CmmParse CmmExpr] -> CmmParse ()
doReturn exprs_code = do
dflags <- getDynFlags
exprs <- sequence exprs_code
updfr_off <- getUpdFrameOff
emit (mkReturnSimple dflags exprs updfr_off)
mkReturnSimple :: DynFlags -> [CmmActual] -> UpdFrameOffset -> CmmAGraph
mkReturnSimple dflags actuals updfr_off =
mkReturn dflags e actuals updfr_off
where e = entryCode dflags (CmmLoad (CmmStackSlot Old updfr_off)
(gcWord dflags))
doRawJump :: CmmParse CmmExpr -> [GlobalReg] -> CmmParse ()
doRawJump expr_code vols = do
dflags <- getDynFlags
expr <- expr_code
updfr_off <- getUpdFrameOff
emit (mkRawJump dflags expr updfr_off vols)
doJumpWithStack :: CmmParse CmmExpr -> [CmmParse CmmExpr]
-> [CmmParse CmmExpr] -> CmmParse ()
doJumpWithStack expr_code stk_code args_code = do
dflags <- getDynFlags
expr <- expr_code
stk_args <- sequence stk_code
args <- sequence args_code
updfr_off <- getUpdFrameOff
emit (mkJumpExtra dflags NativeNodeCall expr args updfr_off stk_args)
doCall :: CmmParse CmmExpr -> [CmmParse LocalReg] -> [CmmParse CmmExpr]
-> CmmParse ()
doCall expr_code res_code args_code = do
dflags <- getDynFlags
expr <- expr_code
args <- sequence args_code
ress <- sequence res_code
updfr_off <- getUpdFrameOff
c <- code $ mkCall expr (NativeNodeCall,NativeReturn) ress args updfr_off []
emit c
adjCallTarget :: DynFlags -> CCallConv -> CmmExpr -> [(CmmExpr, ForeignHint) ]
-> CmmExpr
-- On Windows, we have to add the '@N' suffix to the label when making
-- a call with the stdcall calling convention.
adjCallTarget dflags StdCallConv (CmmLit (CmmLabel lbl)) args
| platformOS (targetPlatform dflags) == OSMinGW32
= CmmLit (CmmLabel (addLabelSize lbl (sum (map size args))))
where size (e, _) = max (wORD_SIZE dflags) (widthInBytes (typeWidth (cmmExprType dflags e)))
-- c.f. CgForeignCall.emitForeignCall
adjCallTarget _ _ expr _
= expr
primCall
:: [CmmParse (CmmFormal, ForeignHint)]
-> FastString
-> [CmmParse CmmExpr]
-> P (CmmParse ())
primCall results_code name args_code
= case lookupUFM callishMachOps name of
Nothing -> fail ("unknown primitive " ++ unpackFS name)
Just p -> return $ do
results <- sequence results_code
args <- sequence args_code
code (emitPrimCall (map fst results) p args)
doStore :: CmmType -> CmmParse CmmExpr -> CmmParse CmmExpr -> CmmParse ()
doStore rep addr_code val_code
= do dflags <- getDynFlags
addr <- addr_code
val <- val_code
-- if the specified store type does not match the type of the expr
-- on the rhs, then we insert a coercion that will cause the type
-- mismatch to be flagged by cmm-lint. If we don't do this, then
-- the store will happen at the wrong type, and the error will not
-- be noticed.
let val_width = typeWidth (cmmExprType dflags val)
rep_width = typeWidth rep
let coerce_val
| val_width /= rep_width = CmmMachOp (MO_UU_Conv val_width rep_width) [val]
| otherwise = val
emitStore addr coerce_val
-- -----------------------------------------------------------------------------
-- If-then-else and boolean expressions
data BoolExpr
= BoolExpr `BoolAnd` BoolExpr
| BoolExpr `BoolOr` BoolExpr
| BoolNot BoolExpr
| BoolTest CmmExpr
-- ToDo: smart constructors which simplify the boolean expression.
cmmIfThenElse cond then_part else_part = do
then_id <- newBlockId
join_id <- newBlockId
c <- cond
emitCond c then_id
else_part
emit (mkBranch join_id)
emitLabel then_id
then_part
-- fall through to join
emitLabel join_id
cmmRawIf cond then_id = do
c <- cond
emitCond c then_id
-- 'emitCond cond true_id' emits code to test whether the cond is true,
-- branching to true_id if so, and falling through otherwise.
emitCond (BoolTest e) then_id = do
else_id <- newBlockId
emit (mkCbranch e then_id else_id)
emitLabel else_id
emitCond (BoolNot (BoolTest (CmmMachOp op args))) then_id
| Just op' <- maybeInvertComparison op
= emitCond (BoolTest (CmmMachOp op' args)) then_id
emitCond (BoolNot e) then_id = do
else_id <- newBlockId
emitCond e else_id
emit (mkBranch then_id)
emitLabel else_id
emitCond (e1 `BoolOr` e2) then_id = do
emitCond e1 then_id
emitCond e2 then_id
emitCond (e1 `BoolAnd` e2) then_id = do
-- we'd like to invert one of the conditionals here to avoid an
-- extra branch instruction, but we can't use maybeInvertComparison
-- here because we can't look too closely at the expression since
-- we're in a loop.
and_id <- newBlockId
else_id <- newBlockId
emitCond e1 and_id
emit (mkBranch else_id)
emitLabel and_id
emitCond e2 then_id
emitLabel else_id
-- -----------------------------------------------------------------------------
-- Table jumps
-- We use a simplified form of C-- switch statements for now. A
-- switch statement always compiles to a table jump. Each arm can
-- specify a list of values (not ranges), and there can be a single
-- default branch. The range of the table is given either by the
-- optional range on the switch (eg. switch [0..7] {...}), or by
-- the minimum/maximum values from the branches.
doSwitch :: Maybe (Int,Int) -> CmmParse CmmExpr -> [([Int],Either BlockId (CmmParse ()))]
-> Maybe (CmmParse ()) -> CmmParse ()
doSwitch mb_range scrut arms deflt
= do
-- Compile code for the default branch
dflt_entry <-
case deflt of
Nothing -> return Nothing
Just e -> do b <- forkLabelledCode e; return (Just b)
-- Compile each case branch
table_entries <- mapM emitArm arms
-- Construct the table
let
all_entries = concat table_entries
ixs = map fst all_entries
(min,max)
| Just (l,u) <- mb_range = (l,u)
| otherwise = (minimum ixs, maximum ixs)
entries = elems (accumArray (\_ a -> Just a) dflt_entry (min,max)
all_entries)
expr <- scrut
-- ToDo: check for out of range and jump to default if necessary
emit (mkSwitch expr entries)
where
emitArm :: ([Int],Either BlockId (CmmParse ())) -> CmmParse [(Int,BlockId)]
emitArm (ints,Left blockid) = return [ (i,blockid) | i <- ints ]
emitArm (ints,Right code) = do
blockid <- forkLabelledCode code
return [ (i,blockid) | i <- ints ]
forkLabelledCode :: CmmParse () -> CmmParse BlockId
forkLabelledCode p = do
ag <- getCode p
l <- newBlockId
emitOutOfLine l ag
return l
-- -----------------------------------------------------------------------------
-- Putting it all together
-- The initial environment: we define some constants that the compiler
-- knows about here.
initEnv :: DynFlags -> Env
initEnv dflags = listToUFM [
( fsLit "SIZEOF_StgHeader",
VarN (CmmLit (CmmInt (fromIntegral (fixedHdrSize dflags * wORD_SIZE dflags)) (wordWidth dflags)) )),
( fsLit "SIZEOF_StgInfoTable",
VarN (CmmLit (CmmInt (fromIntegral (stdInfoTableSizeB dflags)) (wordWidth dflags)) ))
]
parseCmmFile :: DynFlags -> FilePath -> IO (Messages, Maybe CmmGroup)
parseCmmFile dflags filename = do
showPass dflags "ParseCmm"
buf <- hGetStringBuffer filename
let
init_loc = mkRealSrcLoc (mkFastString filename) 1 1
init_state = (mkPState dflags buf init_loc) { lex_state = [0] }
-- reset the lex_state: the Lexer monad leaves some stuff
-- in there we don't want.
case unP cmmParse init_state of
PFailed span err -> do
let msg = mkPlainErrMsg dflags span err
return ((emptyBag, unitBag msg), Nothing)
POk pst code -> do
st <- initC
let (cmm,_) = runC dflags no_module st (getCmm (unEC code (initEnv dflags) [] >> return ()))
let ms = getMessages pst
if (errorsFound dflags ms)
then return (ms, Nothing)
else do
dumpIfSet_dyn dflags Opt_D_dump_cmm "Cmm" (ppr cmm)
return (ms, Just cmm)
where
no_module = panic "parseCmmFile: no module"
}
|