1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
module CmmSpillReload
( ExtendWithSpills(..)
, DualLive(..)
, dualLiveLattice, dualLiveness
, insertSpillsAndReloads --- XXX todo check live-in at entry against formals
, dualLivenessWithInsertion
, spillAndReloadComments
, availRegsLattice
, cmmAvailableReloads
, insertLateReloads
, removeDeadAssignmentsAndReloads
)
where
import CmmExpr
import CmmTx
import CmmLiveZ
import DFMonad
import MkZipCfg
import PprCmm()
import ZipCfg
import ZipCfgCmmRep
import ZipDataflow
import FastString
import Maybes
import Outputable hiding (empty)
import qualified Outputable as PP
import Panic
import UniqSet
import Maybe
import Prelude hiding (zip)
-- The point of this module is to insert spills and reloads to
-- establish the invariant that at a call (or at any proc point with
-- an established protocol) all live variables not expected in
-- registers are sitting on the stack. We use a backward analysis to
-- insert spills and reloads. It should some day be followed by a
-- forward transformation to sink reloads as deeply as possible, so as
-- to reduce register pressure.
data ExtendWithSpills m
= NotSpillOrReload m
| Spill RegSet
| Reload RegSet
type M = ExtendWithSpills Middle
-- A variable can be expected to be live in a register, live on the
-- stack, or both. This analysis ensures that spills and reloads are
-- inserted as needed to make sure that every live variable needed
-- after a call is available on the stack. Spills are pushed back to
-- their reaching definitions, but reloads are dropped wherever needed
-- and will have to be sunk by a later forward transformation.
data DualLive = DualLive { on_stack :: RegSet, in_regs :: RegSet }
dualUnion :: DualLive -> DualLive -> DualLive
dualUnion (DualLive s r) (DualLive s' r') =
DualLive (s `unionUniqSets` s') (r `unionUniqSets` r')
dualUnionList :: [DualLive] -> DualLive
dualUnionList ls = DualLive ss rs
where ss = unionManyUniqSets $ map on_stack ls
rs = unionManyUniqSets $ map in_regs ls
_changeStack, changeRegs :: (RegSet -> RegSet) -> DualLive -> DualLive
_changeStack f live = live { on_stack = f (on_stack live) }
changeRegs f live = live { in_regs = f (in_regs live) }
dualLiveLattice :: DataflowLattice DualLive
dualLiveLattice =
DataflowLattice "variables live in registers and on stack" empty add False
where empty = DualLive emptyRegSet emptyRegSet
-- | compute in the Tx monad to track whether anything has changed
add new old = do stack <- add1 (on_stack new) (on_stack old)
regs <- add1 (in_regs new) (in_regs old)
return $ DualLive stack regs
add1 = fact_add_to liveLattice
dualLivenessWithInsertion :: BPass M Last DualLive
dualLivenessWithInsertion = a_ft_b_unlimited dualLiveness insertSpillsAndReloads
dualLiveness :: BAnalysis M Last DualLive
dualLiveness = BComp "dual liveness" exit last middle first
where exit = empty
last = lastDualLiveness
middle = middleDualLiveness
first live _id = live
empty = fact_bot dualLiveLattice
-- ^ could take a proc-point set and choose to spill here,
-- but it's probably better to run this pass, choose
-- proc-point protocols, insert more CopyIn nodes, and run
-- this pass again
middleDualLiveness :: DualLive -> M -> DualLive
middleDualLiveness live (Spill regs) = live'
-- live-in on-stack requirements are satisfied;
-- live-out in-regs obligations are created
where live' = DualLive { on_stack = on_stack live `minusRegSet` regs
, in_regs = in_regs live `plusRegSet` regs }
middleDualLiveness live (Reload regs) = live'
-- live-in in-regs requirements are satisfied;
-- live-out on-stack obligations are created
where live' = DualLive { on_stack = on_stack live `plusRegSet` regs
, in_regs = in_regs live `minusRegSet` regs }
middleDualLiveness live (NotSpillOrReload m) = changeRegs (middleLiveness m) live
lastDualLiveness :: (BlockId -> DualLive) -> Last -> DualLive
lastDualLiveness env l = last l
where last (LastReturn) = empty
last (LastJump e) = changeRegs (gen e) empty
last (LastBranch id) = env id
last (LastCall tgt Nothing) = changeRegs (gen tgt) empty
last (LastCall tgt (Just k)) =
-- nothing can be live in registers at this point
let live = env k in
if isEmptyUniqSet (in_regs live) then
DualLive (on_stack live) (gen tgt emptyRegSet)
else
panic "live values in registers at call continuation"
last (LastCondBranch e t f) = changeRegs (gen e) $ dualUnion (env t) (env f)
last (LastSwitch e tbl) = changeRegs (gen e) $ dualUnionList $
map env (catMaybes tbl)
empty = fact_bot dualLiveLattice
gen, kill :: UserOfLocalRegs a => a -> RegSet -> RegSet
gen a live = foldRegsUsed extendRegSet live a
kill a live = foldRegsUsed delOneFromUniqSet live a
insertSpillsAndReloads :: BFunctionalTransformation M Last DualLive
insertSpillsAndReloads = BComp "CPS spiller" exit last middle first
where exit = Nothing
last = \_ _ -> Nothing
middle = middleInsertSpillsAndReloads
first _ _ = Nothing
-- ^ could take a proc-point set and choose to spill here,
-- but it's probably better to run this pass, choose
-- proc-point protocols, insert more CopyIn nodes, and run
-- this pass again
middleInsertSpillsAndReloads :: DualLive -> M -> Maybe (Graph M Last)
middleInsertSpillsAndReloads _ (Spill _) = Nothing
middleInsertSpillsAndReloads _ (Reload _) = Nothing
middleInsertSpillsAndReloads live (NotSpillOrReload m) = middle m
where middle (MidAssign (CmmLocal reg') _) =
if reg' `elemRegSet` on_stack live then -- must spill
my_trace "Spilling" (f4sep [text "spill" <+> ppr reg',
text "after", ppr m]) $
Just $ graphOfMiddles [NotSpillOrReload m, Spill $ mkRegSet [reg']]
else
Nothing
middle (CopyIn _ formals _) =
-- only 'formals' can be in regs at this point
let regs' = kill formals (in_regs live) -- live in regs; must reload
is_stack_var r = elemRegSet r (on_stack live)
needs_spilling = -- a formal that is expected on the stack; must spill
foldRegsUsed (\rs r -> if is_stack_var r then extendRegSet rs r
else rs) emptyRegSet formals
in if isEmptyUniqSet regs' && isEmptyUniqSet needs_spilling then
Nothing
else
let reload = if isEmptyUniqSet regs' then []
else [Reload regs']
spill_reload = if isEmptyUniqSet needs_spilling then reload
else Spill needs_spilling : reload
middles = NotSpillOrReload m : spill_reload
in
my_trace "At CopyIn" (f4sep [text "Triggered by ", ppr live,
ppr (Reload regs' :: M),
ppr (Spill needs_spilling :: M),
text "after", ppr m]) $
Just $ graphOfMiddles middles
middle _ = Nothing
-- | For conversion back to vanilla C--
spillAndReloadComments :: M -> Middle
spillAndReloadComments (NotSpillOrReload m) = m
spillAndReloadComments (Spill regs) = show_regs "Spill" regs
spillAndReloadComments (Reload regs) = show_regs "Reload" regs
show_regs :: String -> RegSet -> Middle
show_regs s regs = MidComment $ mkFastString $ showSDoc $ ppr_regs s regs
----------------------------------------------------------------
--- sinking reloads
-- The idea is to compute at each point the set of registers such that
-- on every path to the point, the register is defined by a Reload
-- instruction. Then, if a use appears at such a point, we can safely
-- insert a Reload right before the use. Finally, we can eliminate
-- the early reloads along with other dead assignments.
data AvailRegs = UniverseMinus RegSet
| AvailRegs RegSet
availRegsLattice :: DataflowLattice AvailRegs
availRegsLattice = DataflowLattice "register gotten from reloads" empty add True
where empty = UniverseMinus emptyRegSet
-- | compute in the Tx monad to track whether anything has changed
add new old =
let join = interAvail new old in
if join `smallerAvail` old then aTx join else noTx join
interAvail :: AvailRegs -> AvailRegs -> AvailRegs
interAvail (UniverseMinus s) (UniverseMinus s') = UniverseMinus (s `plusRegSet` s')
interAvail (AvailRegs s) (AvailRegs s') = AvailRegs (s `timesRegSet` s')
interAvail (AvailRegs s) (UniverseMinus s') = AvailRegs (s `minusRegSet` s')
interAvail (UniverseMinus s) (AvailRegs s') = AvailRegs (s' `minusRegSet` s )
smallerAvail :: AvailRegs -> AvailRegs -> Bool
smallerAvail (AvailRegs _) (UniverseMinus _) = True
smallerAvail (UniverseMinus _) (AvailRegs _) = False
smallerAvail (AvailRegs s) (AvailRegs s') = sizeUniqSet s < sizeUniqSet s'
smallerAvail (UniverseMinus s) (UniverseMinus s') = sizeUniqSet s > sizeUniqSet s'
extendAvail :: AvailRegs -> LocalReg -> AvailRegs
extendAvail (UniverseMinus s) r = UniverseMinus (deleteFromRegSet s r)
extendAvail (AvailRegs s) r = AvailRegs (extendRegSet s r)
deleteFromAvail :: AvailRegs -> LocalReg -> AvailRegs
deleteFromAvail (UniverseMinus s) r = UniverseMinus (extendRegSet s r)
deleteFromAvail (AvailRegs s) r = AvailRegs (deleteFromRegSet s r)
elemAvail :: AvailRegs -> LocalReg -> Bool
elemAvail (UniverseMinus s) r = not $ elemRegSet r s
elemAvail (AvailRegs s) r = elemRegSet r s
cmmAvailableReloads :: LGraph M Last -> BlockEnv AvailRegs
cmmAvailableReloads g = env
where env = runDFA availRegsLattice $
do run_f_anal transfer (fact_bot availRegsLattice) g
allFacts
transfer :: FAnalysis M Last AvailRegs
transfer = FComp "available-reloads analysis" first middle last exit
exit _ = LastOutFacts []
first avail _ = avail
middle = flip middleAvail
last = lastAvail
-- | The transfer equations use the traditional 'gen' and 'kill'
-- notations, which should be familiar from the dragon book.
agen, akill :: UserOfLocalRegs a => a -> AvailRegs -> AvailRegs
agen a live = foldRegsUsed extendAvail live a
akill a live = foldRegsUsed deleteFromAvail live a
middleAvail :: M -> AvailRegs -> AvailRegs
middleAvail (Spill _) = id
middleAvail (Reload regs) = agen regs
middleAvail (NotSpillOrReload m) = middle m
where middle (MidComment {}) = id
middle (MidAssign lhs _expr) = akill lhs
middle (MidStore {}) = id
middle (MidUnsafeCall _tgt ress _args) = akill ress
middle (CopyIn _ formals _) = akill formals
middle (CopyOut {}) = id
lastAvail :: AvailRegs -> Last -> LastOutFacts AvailRegs
lastAvail _ (LastCall _ (Just k)) = LastOutFacts [(k, AvailRegs emptyRegSet)]
lastAvail avail l = LastOutFacts $ map (\id -> (id, avail)) $ succs l
insertLateReloads :: LGraph M Last -> DFTx (LGraph M Last)
insertLateReloads g = mapM_blocks insertM g
where env = cmmAvailableReloads g
avail id = lookupBlockEnv env id `orElse` AvailRegs emptyRegSet
insertM b = functionalDFTx "late reloads" (insert b)
insert (Block id tail) fuel = propagate (ZFirst id) (avail id) tail fuel
propagate h avail (ZTail m t) fuel =
let (h', fuel') = maybe_add_reload h avail m fuel in
propagate (ZHead h' m) (middleAvail m avail) t fuel'
propagate h avail (ZLast l) fuel =
let (h', fuel') = maybe_add_reload h avail l fuel in
(zipht h' (ZLast l), fuel')
maybe_add_reload h avail node fuel =
let used = foldRegsUsed
(\u r -> if elemAvail avail r then extendRegSet u r else u)
emptyRegSet node
in if fuel == 0 || isEmptyUniqSet used then (h, fuel)
else (ZHead h (Reload used), fuel-1)
removeDeadAssignmentsAndReloads :: BPass M Last DualLive
removeDeadAssignmentsAndReloads = a_ft_b dualLiveness remove_deads
where remove_deads = BComp "dead-assignment & -reload elim" exit last middle first
exit = Nothing
last = \_ _ -> Nothing
middle = middleRemoveDeads
first _ _ = Nothing
middleRemoveDeads :: DualLive -> M -> Maybe (Graph M Last)
middleRemoveDeads _ (Spill _) = Nothing
middleRemoveDeads live (Reload s) =
if sizeUniqSet worth_reloading < sizeUniqSet s then
Just $ if isEmptyUniqSet worth_reloading then emptyGraph
else graphOfMiddles [Reload worth_reloading]
else
Nothing
where worth_reloading = intersectUniqSets s (in_regs live)
middleRemoveDeads live (NotSpillOrReload m) = middle m
where middle (MidAssign (CmmLocal reg') _)
| not (reg' `elemRegSet` in_regs live) = Just emptyGraph
middle _ = Nothing
---------------------
-- register usage
instance UserOfLocalRegs m => UserOfLocalRegs (ExtendWithSpills m) where
foldRegsUsed f z (Spill regs) = foldRegsUsed f z regs
foldRegsUsed _f z (Reload _) = z
foldRegsUsed f z (NotSpillOrReload m) = foldRegsUsed f z m
---------------------
-- prettyprinting
instance Outputable m => Outputable (ExtendWithSpills m) where
ppr (Spill regs) = ppr_regs "Spill" regs
ppr (Reload regs) = ppr_regs "Reload" regs
ppr (NotSpillOrReload m) = ppr m
instance Outputable (LGraph M Last) where
ppr = pprLgraph
instance DebugNodes M Last
ppr_regs :: String -> RegSet -> SDoc
ppr_regs s regs = text s <+> commafy (map ppr $ uniqSetToList regs)
where commafy xs = hsep $ punctuate comma xs
instance Outputable DualLive where
ppr (DualLive {in_regs = regs, on_stack = stack}) =
if isEmptyUniqSet regs && isEmptyUniqSet stack then
text "<nothing-live>"
else
nest 2 $ fsep [if isEmptyUniqSet regs then PP.empty
else (ppr_regs "live in regs =" regs),
if isEmptyUniqSet stack then PP.empty
else (ppr_regs "live on stack =" stack)]
instance Outputable AvailRegs where
ppr (UniverseMinus s) = if isEmptyUniqSet s then text "<everything available>"
else ppr_regs "available = all but" s
ppr (AvailRegs s) = if isEmptyUniqSet s then text "<nothing available>"
else ppr_regs "available = " s
my_trace :: String -> SDoc -> a -> a
my_trace = if False then pprTrace else \_ _ a -> a
f4sep :: [SDoc] -> SDoc
f4sep [] = fsep []
f4sep (d:ds) = fsep (d : map (nest 4) ds)
|