1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
|
module DFMonad
( DataflowLattice(..) , DataflowAnalysis
, markFactsUnchanged, factsStatus, getFact, setFact, getExitFact, setExitFact
, forgetFact, botFact, setAllFacts, getAllFacts, factsEnv
, addLastOutFact, bareLastOutFacts, forgetLastOutFacts, checkFactMatch
, subAnalysis
, DFM, runDFM, liftToDFM
, markGraphRewritten, graphWasRewritten
, freshBlockId
, module OptimizationFuel
)
where
import BlockId
import CmmTx
import PprCmm()
import OptimizationFuel
import Control.Monad
import Maybes
import Outputable
import UniqFM
import UniqSupply
{-
A dataflow monad maintains a mapping from BlockIds to dataflow facts,
where a dataflow fact is a value of type [[a]]. Values of type [[a]]
must form a lattice, as described by type [[Fact a]].
The dataflow engine uses the lattice structure to compute a least
solution to a set of dataflow equations. To compute a greatest
solution, flip the lattice over.
The engine works by starting at the bottom and iterating to a fixed
point, so in principle we require the bottom element, a join (least
upper bound) operation, and a comparison to find out if a value has
changed (grown). In practice, the comparison is only ever used in
conjunction with the join, so we have [[fact_add_to]]:
fact_add_to new old =
let j = join new old in
if j <= old then noTx old -- nothing changed
else aTx j -- the fact changed
-}
data DataflowLattice a = DataflowLattice {
fact_name :: String, -- documentation
fact_bot :: a, -- lattice bottom element
fact_add_to :: a -> a -> TxRes a, -- lattice join and compare
-- ^ compute join of two args; something changed iff join is greater than 2nd arg
fact_do_logging :: Bool -- log changes
}
-- DFM is the monad of combined analysis and transformation,
-- which needs a UniqSupply and may consume optimization fuel
-- DFM is defined using a monad transformer, DFM', which is the general
-- case of DFM, parameterized over any monad.
-- In practice, we apply DFM' to the FuelMonad, which provides optimization fuel and
-- the unique supply.
data DFState f = DFState { df_rewritten :: ChangeFlag
, df_facts :: BlockEnv f
, df_exit_fact :: f
, df_last_outs :: [(BlockId, f)]
, df_facts_change :: ChangeFlag
}
newtype DFM' m fact a = DFM' (DataflowLattice fact -> DFState fact
-> m (a, DFState fact))
type DFM fact a = DFM' FuelMonad fact a
runDFM :: Monad m => DataflowLattice f -> DFM' m f a -> m a
runDFM lattice (DFM' f) =
(f lattice $ DFState NoChange emptyBlockEnv (fact_bot lattice)[] NoChange)
>>= return . fst
class DataflowAnalysis m where
markFactsUnchanged :: m f () -- ^ Useful for starting a new iteration
factsStatus :: m f ChangeFlag
subAnalysis :: m f a -> m f a -- ^ Do a new analysis and then throw away
-- /all/ the related state.
getFact :: BlockId -> m f f
setFact :: Outputable f => BlockId -> f -> m f ()
getExitFact :: m f f
setExitFact :: Outputable f => f -> m f ()
checkFactMatch :: Outputable f =>
BlockId -> f -> m f () -- ^ assert fact already at this val
botFact :: m f f
forgetFact :: BlockId -> m f ()
-- | It might be surprising these next two are needed in a pure analysis,
-- but for some problems we do a 'shallow' rewriting in which a rewritten
-- graph is not itself considered for further rewriting but merely undergoes
-- an analysis. In this case the results of a forward analysis might produce
-- new facts that go on BlockId's that reside outside the graph being analyzed.
-- Thus these 'lastOutFacts' need to be available even in a pure analysis.
addLastOutFact :: (BlockId, f) -> m f ()
bareLastOutFacts :: m f [(BlockId, f)]
forgetLastOutFacts :: m f ()
getAllFacts :: m f (BlockEnv f)
setAllFacts :: BlockEnv f -> m f ()
factsEnv :: Monad (m f) => m f (BlockId -> f)
lattice :: m f (DataflowLattice f)
factsEnv = do { map <- getAllFacts
; bot <- botFact
; return $ \id -> lookupBlockEnv map id `orElse` bot }
instance Monad m => DataflowAnalysis (DFM' m) where
markFactsUnchanged = DFM' f
where f _ s = return ((), s {df_facts_change = NoChange})
factsStatus = DFM' f'
where f' _ s = return (df_facts_change s, s)
subAnalysis (DFM' f) = DFM' f'
where f' l s = do (a, _) <- f l (subAnalysisState s)
return (a, s)
getFact id = DFM' get
where get lattice s =
return (lookupBlockEnv (df_facts s) id `orElse` fact_bot lattice, s)
setFact id a = DFM' set
where set (DataflowLattice name bot add_fact log) s =
case add_fact a old of
TxRes NoChange _ -> if initialized then return ((), s) else update old old
TxRes SomeChange join -> update join old
where (old, initialized) =
case lookupBlockEnv (df_facts s) id of
Just f -> (f, True)
Nothing -> (bot, False)
update join old =
let facts' = extendBlockEnv (df_facts s) id join
debug = if log then pprTrace else \_ _ a -> a
in debug name (pprSetFact id old a join) $
return ((), s { df_facts = facts', df_facts_change = SomeChange })
getExitFact = DFM' get
where get _ s = return (df_exit_fact s, s)
setExitFact a =
do old <- getExitFact
DataflowLattice { fact_add_to = add_fact
, fact_name = name, fact_do_logging = log } <- lattice
case add_fact a old of
TxRes NoChange _ -> return ()
TxRes SomeChange join -> DFM' $ \_ s ->
let debug = if log then pprTrace else \_ _ a -> a
in debug name (pprSetFact "exit" old a join) $
return ((), s { df_exit_fact = join, df_facts_change = SomeChange })
getAllFacts = DFM' f
where f _ s = return (df_facts s, s)
setAllFacts env = DFM' f
where f _ s = return ((), s { df_facts = env})
botFact = DFM' f
where f lattice s = return (fact_bot lattice, s)
forgetFact id = DFM' f
where f _ s = return ((), s { df_facts = delFromUFM (df_facts s) id })
addLastOutFact pair = DFM' f
where f _ s = return ((), s { df_last_outs = pair : df_last_outs s })
bareLastOutFacts = DFM' f
where f _ s = return (df_last_outs s, s)
forgetLastOutFacts = DFM' f
where f _ s = return ((), s { df_last_outs = [] })
checkFactMatch id a =
do { fact <- lattice
; old_a <- getFact id
; case fact_add_to fact a old_a of
TxRes NoChange _ -> return ()
TxRes SomeChange new ->
do { facts <- getAllFacts
; pprPanic "checkFactMatch"
(f4sep [text (fact_name fact), text "at id" <+> ppr id,
text "changed from", nest 4 (ppr old_a), text "to",
nest 4 (ppr new),
text "after supposedly reaching fixed point;",
text "env is", pprFacts facts])
; setFact id a }
}
where pprFacts env = vcat (map pprFact (ufmToList env))
pprFact (id, a) = hang (ppr id <> colon) 4 (ppr a)
lattice = DFM' f
where f l s = return (l, s)
subAnalysisState :: DFState f -> DFState f
subAnalysisState s = s {df_facts_change = NoChange}
markGraphRewritten :: Monad m => DFM' m f ()
markGraphRewritten = DFM' f
where f _ s = return ((), s {df_rewritten = SomeChange})
graphWasRewritten :: DFM f ChangeFlag
graphWasRewritten = DFM' f
where f _ s = return (df_rewritten s, s)
freshBlockId :: String -> DFM f BlockId
freshBlockId _s = getUniqueM >>= return . BlockId
instance Monad m => Monad (DFM' m f) where
DFM' f >>= k = DFM' (\l s -> do (a, s') <- f l s
let DFM' f' = k a in f' l s')
return a = DFM' (\_ s -> return (a, s))
instance FuelUsingMonad (DFM' FuelMonad f) where
fuelRemaining = liftToDFM' fuelRemaining
lastFuelPass = liftToDFM' lastFuelPass
fuelExhausted = liftToDFM' fuelExhausted
fuelDecrement p f f' = liftToDFM' (fuelDecrement p f f')
fuelDec1 = liftToDFM' fuelDec1
instance MonadUnique (DFM' FuelMonad f) where
getUniqueSupplyM = liftToDFM' getUniqueSupplyM
getUniqueM = liftToDFM' getUniqueM
getUniquesM = liftToDFM' getUniquesM
liftToDFM' :: Monad m => m x -> DFM' m f x
liftToDFM' m = DFM' (\ _ s -> m >>= (\a -> return (a, s)))
liftToDFM :: FuelMonad x -> DFM f x
liftToDFM m = DFM' (\ _ s -> m >>= (\a -> return (a, s)))
pprSetFact :: (Show a, Outputable f) => a -> f -> f -> f -> SDoc
pprSetFact id old a join =
f4sep [text "at" <+> text (show id),
text "added" <+> ppr a, text "to" <+> ppr old,
text "yielding" <+> ppr join]
f4sep :: [SDoc] -> SDoc
f4sep [] = fsep []
f4sep (d:ds) = fsep (d : map (nest 4) ds)
|