summaryrefslogtreecommitdiff
path: root/compiler/codeGen/CgCase.lhs
blob: 859b2208fefd52bcd8cb4b7f5ca2a65cc89af1fc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%

\begin{code}
{-# OPTIONS -w #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and fix
-- any warnings in the module. See
--     http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#Warnings
-- for details

module CgCase (	cgCase, saveVolatileVarsAndRegs, 
		restoreCurrentCostCentre
	) where

#include "HsVersions.h"

import {-# SOURCE #-} CgExpr  ( cgExpr )

import CgMonad
import CgBindery
import CgCon
import CgHeapery
import CgCallConv
import CgStackery
import CgTailCall
import CgPrimOp
import CgForeignCall
import CgUtils
import CgProf
import CgInfoTbls

import ClosureInfo
import SMRep
import CmmUtils
import Cmm

import StgSyn
import StaticFlags
import Id
import ForeignCall
import VarSet
import CoreSyn
import PrimOp
import TyCon
import Util
import Outputable
\end{code}

\begin{code}
data GCFlag
  = GCMayHappen	-- The scrutinee may involve GC, so everything must be
		-- tidy before the code for the scrutinee.

  | NoGC	-- The scrutinee is a primitive value, or a call to a
		-- primitive op which does no GC.  Hence the case can
		-- be done inline, without tidying up first.
\end{code}

It is quite interesting to decide whether to put a heap-check
at the start of each alternative.  Of course we certainly have
to do so if the case forces an evaluation, or if there is a primitive
op which can trigger GC.

A more interesting situation is this:

 \begin{verbatim}
	!A!;
	...A...
	case x# of
	  0#      -> !B!; ...B...
	  default -> !C!; ...C...
 \end{verbatim}

where \tr{!x!} indicates a possible heap-check point. The heap checks
in the alternatives {\em can} be omitted, in which case the topmost
heapcheck will take their worst case into account.

In favour of omitting \tr{!B!}, \tr{!C!}:

 - {\em May} save a heap overflow test,
	if ...A... allocates anything.  The other advantage
	of this is that we can use relative addressing
	from a single Hp to get at all the closures so allocated.

 - No need to save volatile vars etc across the case

Against:

  - May do more allocation than reqd.  This sometimes bites us
	badly.  For example, nfib (ha!)  allocates about 30\% more space if the
	worst-casing is done, because many many calls to nfib are leaf calls
	which don't need to allocate anything.

	This never hurts us if there is only one alternative.

\begin{code}
cgCase	:: StgExpr
	-> StgLiveVars
	-> StgLiveVars
	-> Id
	-> AltType
	-> [StgAlt]
	-> Code
\end{code}

Special case #1: case of literal.

\begin{code}
cgCase (StgLit lit) live_in_whole_case live_in_alts bndr
       alt_type@(PrimAlt tycon) alts
  = do	{ tmp_reg <- bindNewToTemp bndr
	; cm_lit <- cgLit lit
	; stmtC (CmmAssign (CmmLocal tmp_reg) (CmmLit cm_lit))
	; cgPrimAlts NoGC alt_type (CmmLocal tmp_reg) alts }
\end{code}

Special case #2: scrutinising a primitive-typed variable.	No
evaluation required.  We don't save volatile variables, nor do we do a
heap-check in the alternatives.	 Instead, the heap usage of the
alternatives is worst-cased and passed upstream.  This can result in
allocating more heap than strictly necessary, but it will sometimes
eliminate a heap check altogether.

\begin{code}
cgCase (StgApp v []) live_in_whole_case live_in_alts bndr
       alt_type@(PrimAlt tycon) alts
  = do	{ -- Careful! we can't just bind the default binder to the same thing
	  -- as the scrutinee, since it might be a stack location, and having
	  -- two bindings pointing at the same stack locn doesn't work (it
	  -- confuses nukeDeadBindings).  Hence, use a new temp.
	  v_info <- getCgIdInfo v
	; amode <- idInfoToAmode v_info
	; tmp_reg <- bindNewToTemp bndr
	; stmtC (CmmAssign (CmmLocal tmp_reg) amode)
	; cgPrimAlts NoGC alt_type (CmmLocal tmp_reg) alts }
\end{code}

Special case #3: inline PrimOps and foreign calls.

\begin{code}
cgCase (StgOpApp op@(StgPrimOp primop) args _) 
       live_in_whole_case live_in_alts bndr alt_type alts
  | not (primOpOutOfLine primop)
  = cgInlinePrimOp primop args bndr alt_type live_in_alts alts
\end{code}

TODO: Case-of-case of primop can probably be done inline too (but
maybe better to translate it out beforehand).  See
ghc/lib/misc/PackedString.lhs for examples where this crops up (with
4.02).

Special case #4: inline foreign calls: an unsafe foreign call can be done
right here, just like an inline primop.

\begin{code}
cgCase (StgOpApp op@(StgFCallOp fcall _) args _) 
       live_in_whole_case live_in_alts bndr alt_type alts
  | unsafe_foreign_call
  = ASSERT( isSingleton alts )
    do	--  *must* be an unboxed tuple alt.
	-- exactly like the cgInlinePrimOp case for unboxed tuple alts..
	{ res_tmps <- mapFCs bindNewToTemp non_void_res_ids
	; let res_hints = map (typeForeignHint.idType) non_void_res_ids
	; cgForeignCall (zipWith CmmHinted res_tmps res_hints) fcall args live_in_alts
	; cgExpr rhs }
  where
   (_, res_ids, _, rhs) = head alts
   non_void_res_ids = filter (nonVoidArg . idCgRep) res_ids

   unsafe_foreign_call
	 = case fcall of
	 	CCall (CCallSpec _ _ s) -> not (playSafe s)
		_other			-> False
\end{code}

Special case: scrutinising a non-primitive variable.
This can be done a little better than the general case, because
we can reuse/trim the stack slot holding the variable (if it is in one).

\begin{code}
cgCase (StgApp fun args)
	live_in_whole_case live_in_alts bndr alt_type alts
  = do	{ fun_info <- getCgIdInfo fun
	; arg_amodes <- getArgAmodes args

	-- Nuking dead bindings *before* calculating the saves is the
	-- value-add here.  We might end up freeing up some slots currently
	-- occupied by variables only required for the call.
	-- NOTE: we need to look up the variables used in the call before
	-- doing this, because some of them may not be in the environment
	-- afterward.
	; nukeDeadBindings live_in_alts	
	; (save_assts, alts_eob_info, maybe_cc_slot)
		<- saveVolatileVarsAndRegs live_in_alts

	; scrut_eob_info
	    <- forkEval alts_eob_info 
			(allocStackTop retAddrSizeW >> nopC)
			(do { deAllocStackTop retAddrSizeW
			    ; cgEvalAlts maybe_cc_slot bndr alt_type alts })

	; setEndOfBlockInfo scrut_eob_info
			    (performTailCall fun_info arg_amodes save_assts) }
\end{code}

Note about return addresses: we *always* push a return address, even
if because of an optimisation we end up jumping direct to the return
code (not through the address itself).  The alternatives always assume
that the return address is on the stack.  The return address is
required in case the alternative performs a heap check, since it
encodes the liveness of the slots in the activation record.

On entry to the case alternative, we can re-use the slot containing
the return address immediately after the heap check.  That's what the
deAllocStackTop call is doing above.

Finally, here is the general case.

\begin{code}
cgCase expr live_in_whole_case live_in_alts bndr alt_type alts
  = do	{	-- Figure out what volatile variables to save
	  nukeDeadBindings live_in_whole_case
    
	; (save_assts, alts_eob_info, maybe_cc_slot)
		<- saveVolatileVarsAndRegs live_in_alts

	     -- Save those variables right now!
	; emitStmts save_assts

	    -- generate code for the alts
	; scrut_eob_info
	       <- forkEval alts_eob_info
		      	   (do 	{ nukeDeadBindings live_in_alts
				; allocStackTop retAddrSizeW   -- space for retn address 
				; nopC })
			   (do	{ deAllocStackTop retAddrSizeW
				; cgEvalAlts maybe_cc_slot bndr alt_type alts })

	; setEndOfBlockInfo scrut_eob_info (cgExpr expr)
    }
\end{code}

There's a lot of machinery going on behind the scenes to manage the
stack pointer here.  forkEval takes the virtual Sp and free list from
the first argument, and turns that into the *real* Sp for the second
argument.  It also uses this virtual Sp as the args-Sp in the EOB info
returned, so that the scrutinee will trim the real Sp back to the
right place before doing whatever it does.  
  --SDM (who just spent an hour figuring this out, and didn't want to 
	 forget it).

Why don't we push the return address just before evaluating the
scrutinee?  Because the slot reserved for the return address might
contain something useful, so we wait until performing a tail call or
return before pushing the return address (see
CgTailCall.pushReturnAddress).  

This also means that the environment doesn't need to know about the
free stack slot for the return address (for generating bitmaps),
because we don't reserve it until just before the eval.

TODO!!  Problem: however, we have to save the current cost centre
stack somewhere, because at the eval point the current CCS might be
different.  So we pick a free stack slot and save CCCS in it.  One
consequence of this is that activation records on the stack don't
follow the layout of closures when we're profiling.  The CCS could be
anywhere within the record).

%************************************************************************
%*									*
		Inline primops
%*									*
%************************************************************************

\begin{code}
cgInlinePrimOp primop args bndr (PrimAlt tycon) live_in_alts alts
  | isVoidArg (idCgRep bndr)
  = ASSERT( con == DEFAULT && isSingleton alts && null bs )
    do	{ 	-- VOID RESULT; just sequencing, 
		-- so get in there and do it
	  cgPrimOp [] primop args live_in_alts
	; cgExpr rhs }
  where
    (con,bs,_,rhs) = head alts

cgInlinePrimOp primop args bndr (PrimAlt tycon) live_in_alts alts
  = do	{ 	-- PRIMITIVE ALTS, with non-void result
	  tmp_reg <- bindNewToTemp bndr
	; cgPrimOp [tmp_reg] primop args live_in_alts
	; cgPrimAlts NoGC (PrimAlt tycon) (CmmLocal tmp_reg) alts }

cgInlinePrimOp primop args bndr (UbxTupAlt tycon) live_in_alts alts
  = ASSERT( isSingleton alts )
    do	{  	-- UNBOXED TUPLE ALTS
	 	-- No heap check, no yield, just get in there and do it.
		-- NB: the case binder isn't bound to anything; 
		--     it has a unboxed tuple type
	  
	  res_tmps <- mapFCs bindNewToTemp non_void_res_ids
	; cgPrimOp res_tmps primop args live_in_alts
	; cgExpr rhs }
  where
   (_, res_ids, _, rhs) = head alts
   non_void_res_ids = filter (nonVoidArg . idCgRep) res_ids

cgInlinePrimOp primop args bndr (AlgAlt tycon) live_in_alts alts
  = do 	{ 	-- ENUMERATION TYPE RETURN
		-- Typical: case a ># b of { True -> ..; False -> .. }
		-- The primop itself returns an index into the table of
		-- closures for the enumeration type.
	   tag_amode <- ASSERT( isEnumerationTyCon tycon )
			do_enum_primop primop

	 	-- Bind the default binder if necessary
		-- (avoiding it avoids the assignment)
		-- The deadness info is set by StgVarInfo
	; this_pkg <- getThisPackage
	; whenC (not (isDeadBinder bndr))
		(do { tmp_reg <- bindNewToTemp bndr
		    ; stmtC (CmmAssign
                             (CmmLocal tmp_reg)
                             (tagToClosure tycon tag_amode)) })

		-- Compile the alts
	; (branches, mb_deflt) <- cgAlgAlts NoGC Nothing{-cc_slot-}
				   	    (AlgAlt tycon) alts

		-- Do the switch
	; emitSwitch tag_amode branches mb_deflt 0 (tyConFamilySize tycon - 1)
	}
  where

    do_enum_primop :: PrimOp -> FCode CmmExpr	-- Returns amode for result
    do_enum_primop TagToEnumOp	-- No code!
       | [arg] <- args = do
         (_,e) <- getArgAmode arg
	 return e
    do_enum_primop primop
      = do tmp <- newTemp bWord
	   cgPrimOp [tmp] primop args live_in_alts
    	   returnFC (CmmReg (CmmLocal tmp))

cgInlinePrimOp primop arg_amodes bndr PolyAlt live_in_alts alts
  = pprPanic "cgCase: case of primop has polymorphic type" (ppr bndr)
\end{code}

%************************************************************************
%*									*
\subsection[CgCase-alts]{Alternatives}
%*									*
%************************************************************************

@cgEvalAlts@ returns an addressing mode for a continuation for the
alternatives of a @case@, used in a context when there
is some evaluation to be done.

\begin{code}
cgEvalAlts :: Maybe VirtualSpOffset	-- Offset of cost-centre to be restored, if any
	   -> Id
	   -> AltType
	   -> [StgAlt]
	   -> FCode Sequel	-- Any addr modes inside are guaranteed
				-- to be a label so that we can duplicate it 
				-- without risk of duplicating code

cgEvalAlts cc_slot bndr alt_type@(PrimAlt tycon) alts
  = do	{ let   rep = tyConCgRep tycon
		reg = dataReturnConvPrim rep	-- Bottom for voidRep

	; abs_c <- forkProc $ do
		{ 	-- Bind the case binder, except if it's void
			-- (reg is bottom in that case)
		  whenC (nonVoidArg rep) $
		  bindNewToReg bndr reg (mkLFArgument bndr)
		; restoreCurrentCostCentre cc_slot True
		; cgPrimAlts GCMayHappen alt_type reg alts }

	; lbl <- emitReturnTarget (idName bndr) abs_c
	; returnFC (CaseAlts lbl Nothing bndr) }

cgEvalAlts cc_slot bndr (UbxTupAlt _) [(con,args,_,rhs)]
  =	-- Unboxed tuple case
	-- By now, the simplifier should have have turned it
	-- into 	case e of (# a,b #) -> e
	-- There shouldn't be a 
	--		case e of DEFAULT -> e
    ASSERT2( case con of { DataAlt _ -> True; other -> False },
	     text "cgEvalAlts: dodgy case of unboxed tuple type" )
    do	{ 	-- forkAbsC for the RHS, so that the envt is
		-- not changed for the emitReturn call
	  abs_c <- forkProc $ do 
		{ (live_regs, ptrs, nptrs, _) <- bindUnboxedTupleComponents args
			-- Restore the CC *after* binding the tuple components, 
			-- so that we get the stack offset of the saved CC right.
		; restoreCurrentCostCentre cc_slot True
			-- Generate a heap check if necessary
			-- and finally the code for the alternative
		; unbxTupleHeapCheck live_regs ptrs nptrs noStmts
				     (cgExpr rhs) }
	; lbl <- emitReturnTarget (idName bndr) abs_c
	; returnFC (CaseAlts lbl Nothing bndr) }

cgEvalAlts cc_slot bndr alt_type alts
  = 	-- Algebraic and polymorphic case
    do	{	-- Bind the default binder
	  bindNewToReg bndr nodeReg (mkLFArgument bndr)

	-- Generate sequel info for use downstream
	-- At the moment, we only do it if the type is vector-returnable.
	-- Reason: if not, then it costs extra to label the
	-- alternatives, because we'd get return code like:
	--
	--	switch TagReg { 0 : JMP(alt_1); 1 : JMP(alt_2) ..etc }
	--
	-- which is worse than having the alt code in the switch statement

	; (alts, mb_deflt) <- cgAlgAlts GCMayHappen cc_slot alt_type alts

	; (lbl, branches) <- emitAlgReturnTarget (idName bndr) 
				alts mb_deflt fam_sz

	; returnFC (CaseAlts lbl branches bndr) }
  where
    fam_sz = case alt_type of
    		AlgAlt tc -> tyConFamilySize tc
    		PolyAlt   -> 0
\end{code}


HWL comment on {\em GrAnSim\/}  (adding GRAN_YIELDs for context switch): If
we  do  an inlining of the  case  no separate  functions  for returning are
created, so we don't have to generate a GRAN_YIELD in that case.  This info
must be  propagated  to cgAlgAltRhs (where the  GRAN_YIELD  macro might  be
emitted). Hence, the new Bool arg to cgAlgAltRhs.

%************************************************************************
%*									*
\subsection[CgCase-alg-alts]{Algebraic alternatives}
%*									*
%************************************************************************

In @cgAlgAlts@, none of the binders in the alternatives are
assumed to be yet bound.

HWL comment on {\em GrAnSim\/} (adding GRAN_YIELDs for context switch): The
last   arg of  cgAlgAlts  indicates  if we  want  a context   switch at the
beginning of  each alternative. Normally we  want that. The  only exception
are inlined alternatives.

\begin{code}
cgAlgAlts :: GCFlag
       -> Maybe VirtualSpOffset
       -> AltType				--  ** AlgAlt or PolyAlt only **
       -> [StgAlt]				-- The alternatives
       -> FCode ( [(ConTagZ, CgStmts)], -- The branches
		  Maybe CgStmts )	-- The default case

cgAlgAlts gc_flag cc_slot alt_type alts
  = do alts <- forkAlts [ cgAlgAlt gc_flag cc_slot alt_type alt | alt <- alts]
       let
	    mb_deflt = case alts of -- DEFAULT is always first, if present
			 ((DEFAULT,blks) : _) -> Just blks
			 other		      -> Nothing

	    branches = [(dataConTagZ con, blks) 
	   	       | (DataAlt con, blks) <- alts]
       -- in
       return (branches, mb_deflt)


cgAlgAlt :: GCFlag
      	 -> Maybe VirtualSpOffset	-- Turgid state
      	 -> AltType			--  ** AlgAlt or PolyAlt only **
      	 -> StgAlt
      	 -> FCode (AltCon, CgStmts)

cgAlgAlt gc_flag cc_slot alt_type (con, args, use_mask, rhs)
  = do	{ abs_c <- getCgStmts $ do
		{ bind_con_args con args
		; restoreCurrentCostCentre cc_slot True
		; maybeAltHeapCheck gc_flag alt_type (cgExpr rhs) }
	; return (con, abs_c) }
  where
    bind_con_args DEFAULT      args = nopC
    bind_con_args (DataAlt dc) args = bindConArgs dc args
\end{code}


%************************************************************************
%*									*
\subsection[CgCase-prim-alts]{Primitive alternatives}
%*									*
%************************************************************************

@cgPrimAlts@ generates suitable a @CSwitch@
for dealing with the alternatives of a primitive @case@, given an
addressing mode for the thing to scrutinise.  It also keeps track of
the maximum stack depth encountered down any branch.

As usual, no binders in the alternatives are yet bound.

\begin{code}
cgPrimAlts :: GCFlag
	   -> AltType	-- Always PrimAlt, but passed to maybeAltHeapCheck
	   -> CmmReg	-- Scrutinee
	   -> [StgAlt]	-- Alternatives
	   -> Code
-- NB: cgPrimAlts emits code that does the case analysis.
-- It's often used in inline situations, rather than to genearte
-- a labelled return point.  That's why its interface is a little
-- different to cgAlgAlts
--
-- INVARIANT: the default binder is already bound
cgPrimAlts gc_flag alt_type scrutinee alts
  = do	{ tagged_absCs <- forkAlts (map (cgPrimAlt gc_flag alt_type) alts)
	; let ((DEFAULT, deflt_absC) : others) = tagged_absCs	-- There is always a default
	      alt_absCs = [(lit,rhs) | (LitAlt lit, rhs) <- others]
 	; emitLitSwitch (CmmReg scrutinee) alt_absCs deflt_absC }

cgPrimAlt :: GCFlag
	  -> AltType
	  -> StgAlt				-- The alternative
	  -> FCode (AltCon, CgStmts)	-- Its compiled form

cgPrimAlt gc_flag alt_type (con, [], [], rhs)
  = ASSERT( case con of { DEFAULT -> True; LitAlt _ -> True; other -> False } )
    do	{ abs_c <- getCgStmts (maybeAltHeapCheck gc_flag alt_type (cgExpr rhs)) 
	; returnFC (con, abs_c) }
\end{code}


%************************************************************************
%*									*
\subsection[CgCase-tidy]{Code for tidying up prior to an eval}
%*									*
%************************************************************************

\begin{code}
maybeAltHeapCheck 
	:: GCFlag 
	-> AltType	-- PolyAlt, PrimAlt, AlgAlt, but *not* UbxTupAlt
	-> Code		-- Continuation
	-> Code
maybeAltHeapCheck NoGC	      _        code = code
maybeAltHeapCheck GCMayHappen alt_type code = altHeapCheck alt_type code

saveVolatileVarsAndRegs
    :: StgLiveVars                    -- Vars which should be made safe
    -> FCode (CmmStmts,  	      -- Assignments to do the saves
	      EndOfBlockInfo,	      -- sequel for the alts
              Maybe VirtualSpOffset)  -- Slot for current cost centre

saveVolatileVarsAndRegs vars
  = do	{ var_saves <- saveVolatileVars vars
	; (maybe_cc_slot, cc_save) <- saveCurrentCostCentre
	; eob_info <- getEndOfBlockInfo
	; returnFC (var_saves `plusStmts` cc_save,
		    eob_info,
		    maybe_cc_slot) }


saveVolatileVars :: StgLiveVars		-- Vars which should be made safe
		 -> FCode CmmStmts	-- Assignments to to the saves

saveVolatileVars vars
  = do	{ stmts_s <- mapFCs save_it (varSetElems vars)
	; return (foldr plusStmts noStmts stmts_s) }
  where
    save_it var
      = do { v <- getCAddrModeIfVolatile var
	   ; case v of
		Nothing	        -> return noStmts 	   -- Non-volatile
		Just vol_amode  -> save_var var vol_amode  -- Aha! It's volatile
	}

    save_var var vol_amode
      = do { slot <- allocPrimStack (idCgRep var)
	   ; rebindToStack var slot
	   ; sp_rel <- getSpRelOffset slot
	   ; returnFC (oneStmt (CmmStore sp_rel vol_amode)) }
\end{code}

---------------------------------------------------------------------------

When we save the current cost centre (which is done for lexical
scoping), we allocate a free stack location, and return (a)~the
virtual offset of the location, to pass on to the alternatives, and
(b)~the assignment to do the save (just as for @saveVolatileVars@).

\begin{code}
saveCurrentCostCentre ::
	FCode (Maybe VirtualSpOffset,	-- Where we decide to store it
	       CmmStmts)		-- Assignment to save it

saveCurrentCostCentre
  | not opt_SccProfilingOn 
  = returnFC (Nothing, noStmts)
  | otherwise
  = do	{ slot <- allocPrimStack PtrArg
	; sp_rel <- getSpRelOffset slot
	; returnFC (Just slot,
		    oneStmt (CmmStore sp_rel curCCS)) }

-- Sometimes we don't free the slot containing the cost centre after restoring it
-- (see CgLetNoEscape.cgLetNoEscapeBody).
restoreCurrentCostCentre :: Maybe VirtualSpOffset -> Bool -> Code
restoreCurrentCostCentre Nothing     _freeit = nopC
restoreCurrentCostCentre (Just slot) freeit
 = do 	{ sp_rel <- getSpRelOffset slot
	; whenC freeit (freeStackSlots [slot])
	; stmtC (CmmStore curCCSAddr (CmmLoad sp_rel bWord)) }
\end{code}