summaryrefslogtreecommitdiff
path: root/compiler/codeGen/CgCon.lhs
blob: bfb55bf46ee6f936c533c79c84a3bb59e85de166 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
%
% (c) The GRASP Project, Glasgow University, 1992-1998
%
\section[CgCon]{Code generation for constructors}

This module provides the support code for @StgToAbstractC@ to deal
with {\em constructors} on the RHSs of let(rec)s.  See also
@CgClosure@, which deals with closures.

\begin{code}
module CgCon (
	cgTopRhsCon, buildDynCon,
	bindConArgs, bindUnboxedTupleComponents,
	cgReturnDataCon,
	cgTyCon
    ) where

#include "HsVersions.h"

import CgMonad
import StgSyn

import CgBindery	( getArgAmodes, bindNewToNode,
			  bindArgsToRegs, idInfoToAmode, stableIdInfo,
			  heapIdInfo, CgIdInfo, bindArgsToStack
			)
import CgStackery	( mkVirtStkOffsets, freeStackSlots,
			  getRealSp, getVirtSp, setRealAndVirtualSp )
import CgUtils		( addIdReps, cmmLabelOffW, emitRODataLits, emitDataLits )
import CgCallConv	( assignReturnRegs )
import Constants	( mAX_INTLIKE, mIN_INTLIKE, mAX_CHARLIKE, mIN_CHARLIKE )
import CgHeapery	( allocDynClosure, layOutDynConstr, 
			  layOutStaticConstr, mkStaticClosureFields )
import CgTailCall	( performReturn, emitKnownConReturnCode, returnUnboxedTuple )
import CgProf		( mkCCostCentreStack, ldvEnter, curCCS )
import CgTicky
import CgInfoTbls	( emitClosureCodeAndInfoTable, dataConTagZ )
import CLabel
import ClosureInfo	( mkConLFInfo, mkLFArgument )
import CmmUtils		( mkLblExpr )
import Cmm
import SMRep		( WordOff, CgRep, separateByPtrFollowness,
			  fixedHdrSize, typeCgRep )
import CostCentre	( currentOrSubsumedCCS, dontCareCCS, CostCentreStack,
			  currentCCS )
import Constants	( mIN_INTLIKE, mAX_INTLIKE, mIN_CHARLIKE, mAX_CHARLIKE )
import TyCon		( TyCon, tyConDataCons, isEnumerationTyCon, tyConName )
import DataCon		( DataCon, dataConRepArgTys, isNullaryRepDataCon,
			  isUnboxedTupleCon, dataConWorkId, 
			  dataConName, dataConRepArity
			)
import Id		( Id, idName, isDeadBinder )
import Type		( Type )
import PrelInfo		( maybeCharLikeCon, maybeIntLikeCon )
import Outputable
import Util		( lengthIs )
import ListSetOps	( assocMaybe )
\end{code}


%************************************************************************
%*									*
\subsection[toplevel-constructors]{Top-level constructors}
%*									*
%************************************************************************

\begin{code}
cgTopRhsCon :: Id		-- Name of thing bound to this RHS
	    -> DataCon		-- Id
	    -> [StgArg]		-- Args
	    -> FCode (Id, CgIdInfo)
cgTopRhsCon id con args
  = do { 
	; hmods <- getHomeModules
#if mingw32_TARGET_OS
        -- Windows DLLs have a problem with static cross-DLL refs.
        ; ASSERT( not (isDllConApp hmods con args) ) return ()
#endif
	; ASSERT( args `lengthIs` dataConRepArity con ) return ()

	-- LAY IT OUT
	; amodes <- getArgAmodes args

	; let
	    name          = idName id
	    lf_info	  = mkConLFInfo con
    	    closure_label = mkClosureLabel hmods name
	    caffy         = any stgArgHasCafRefs args
	    (closure_info, amodes_w_offsets) = layOutStaticConstr hmods con amodes
	    closure_rep = mkStaticClosureFields
	    		     closure_info
	    		     dontCareCCS		-- Because it's static data
	    		     caffy			-- Has CAF refs
			     payload

	    payload = map get_lit amodes_w_offsets	
	    get_lit (CmmLit lit, _offset) = lit
	    get_lit other = pprPanic "CgCon.get_lit" (ppr other)
		-- NB1: amodes_w_offsets is sorted into ptrs first, then non-ptrs
		-- NB2: all the amodes should be Lits!

		-- BUILD THE OBJECT
	; emitDataLits closure_label closure_rep

		-- RETURN
	; returnFC (id, stableIdInfo id (mkLblExpr closure_label) lf_info) }
\end{code}

%************************************************************************
%*									*
%* non-top-level constructors						*
%*									*
%************************************************************************
\subsection[code-for-constructors]{The code for constructors}

\begin{code}
buildDynCon :: Id		  -- Name of the thing to which this constr will
				  -- be bound
	    -> CostCentreStack	  -- Where to grab cost centre from;
				  -- current CCS if currentOrSubsumedCCS
	    -> DataCon		  -- The data constructor
	    -> [(CgRep,CmmExpr)] -- Its args
	    -> FCode CgIdInfo	  -- Return details about how to find it

-- We used to pass a boolean indicating whether all the
-- args were of size zero, so we could use a static
-- construtor; but I concluded that it just isn't worth it.
-- Now I/O uses unboxed tuples there just aren't any constructors
-- with all size-zero args.
--
-- The reason for having a separate argument, rather than looking at
-- the addr modes of the args is that we may be in a "knot", and
-- premature looking at the args will cause the compiler to black-hole!
\end{code}

First we deal with the case of zero-arity constructors.  Now, they
will probably be unfolded, so we don't expect to see this case much,
if at all, but it does no harm, and sets the scene for characters.

In the case of zero-arity constructors, or, more accurately, those
which have exclusively size-zero (VoidRep) args, we generate no code
at all.

\begin{code}
buildDynCon binder cc con []
  = do hmods <- getHomeModules
       returnFC (stableIdInfo binder
			   (mkLblExpr (mkClosureLabel hmods (dataConName con)))
    			   (mkConLFInfo con))
\end{code}

The following three paragraphs about @Char@-like and @Int@-like
closures are obsolete, but I don't understand the details well enough
to properly word them, sorry. I've changed the treatment of @Char@s to
be analogous to @Int@s: only a subset is preallocated, because @Char@
has now 31 bits. Only literals are handled here. -- Qrczak

Now for @Char@-like closures.  We generate an assignment of the
address of the closure to a temporary.  It would be possible simply to
generate no code, and record the addressing mode in the environment,
but we'd have to be careful if the argument wasn't a constant --- so
for simplicity we just always asssign to a temporary.

Last special case: @Int@-like closures.  We only special-case the
situation in which the argument is a literal in the range
@mIN_INTLIKE@..@mAX_INTLILKE@.  NB: for @Char@-like closures we can
work with any old argument, but for @Int@-like ones the argument has
to be a literal.  Reason: @Char@ like closures have an argument type
which is guaranteed in range.

Because of this, we use can safely return an addressing mode.

\begin{code}
buildDynCon binder cc con [arg_amode]
  | maybeIntLikeCon con 
  , (_, CmmLit (CmmInt val _)) <- arg_amode
  , let val_int = (fromIntegral val) :: Int
  , val_int <= mAX_INTLIKE && val_int >= mIN_INTLIKE
  = do 	{ let intlike_lbl   = mkRtsDataLabel SLIT("stg_INTLIKE_closure")
	      offsetW = (val_int - mIN_INTLIKE) * (fixedHdrSize + 1)
		-- INTLIKE closures consist of a header and one word payload
	      intlike_amode = CmmLit (cmmLabelOffW intlike_lbl offsetW)
	; returnFC (stableIdInfo binder intlike_amode (mkConLFInfo con)) }

buildDynCon binder cc con [arg_amode]
  | maybeCharLikeCon con 
  , (_, CmmLit (CmmInt val _)) <- arg_amode
  , let val_int = (fromIntegral val) :: Int
  , val_int <= mAX_CHARLIKE && val_int >= mIN_CHARLIKE
  = do 	{ let charlike_lbl   = mkRtsDataLabel SLIT("stg_CHARLIKE_closure")
	      offsetW = (val_int - mIN_CHARLIKE) * (fixedHdrSize + 1)
		-- CHARLIKE closures consist of a header and one word payload
	      charlike_amode = CmmLit (cmmLabelOffW charlike_lbl offsetW)
	; returnFC (stableIdInfo binder charlike_amode (mkConLFInfo con)) }
\end{code}

Now the general case.

\begin{code}
buildDynCon binder ccs con args
  = do	{ 
	; hmods <- getHomeModules
	; let
	    (closure_info, amodes_w_offsets) = layOutDynConstr hmods con args

	; hp_off <- allocDynClosure closure_info use_cc blame_cc amodes_w_offsets
 	; returnFC (heapIdInfo binder hp_off lf_info) }
  where
    lf_info = mkConLFInfo con

    use_cc	-- cost-centre to stick in the object
      | currentOrSubsumedCCS ccs = curCCS
      | otherwise		 = CmmLit (mkCCostCentreStack ccs)

    blame_cc = use_cc -- cost-centre on which to blame the alloc (same)
\end{code}


%************************************************************************
%*									*
%* constructor-related utility function:				*
%*		bindConArgs is called from cgAlt of a case		*
%*									*
%************************************************************************
\subsection[constructor-utilities]{@bindConArgs@: constructor-related utility}

@bindConArgs@ $con args$ augments the environment with bindings for the
binders $args$, assuming that we have just returned from a @case@ which
found a $con$.

\begin{code}
bindConArgs :: DataCon -> [Id] -> Code
bindConArgs con args
  = do hmods <- getHomeModules
       let
	  bind_arg (arg, offset) = bindNewToNode arg offset (mkLFArgument arg)
	  (_, args_w_offsets)    = layOutDynConstr hmods con (addIdReps args)
	--
       ASSERT(not (isUnboxedTupleCon con)) return ()
       mapCs bind_arg args_w_offsets
\end{code}

Unboxed tuples are handled slightly differently - the object is
returned in registers and on the stack instead of the heap.

\begin{code}
bindUnboxedTupleComponents
	:: [Id]				-- Args
	-> FCode ([(Id,GlobalReg)],	-- Regs assigned
		  WordOff,		-- Number of pointer stack slots
		  WordOff,		-- Number of non-pointer stack slots
		  VirtualSpOffset)	-- Offset of return address slot
					-- (= realSP on entry)

bindUnboxedTupleComponents args
 =  do	{   
	  vsp <- getVirtSp
	; rsp <- getRealSp

	   -- Assign as many components as possible to registers
	; let (reg_args, stk_args) = assignReturnRegs (addIdReps args)

		-- Separate the rest of the args into pointers and non-pointers
	      (ptr_args, nptr_args) = separateByPtrFollowness stk_args
  
		-- Allocate the rest on the stack
		-- The real SP points to the return address, above which any 
	 	-- leftover unboxed-tuple components will be allocated
	      (ptr_sp,  ptr_offsets)  = mkVirtStkOffsets rsp    ptr_args
	      (nptr_sp, nptr_offsets) = mkVirtStkOffsets ptr_sp nptr_args
              ptrs  = ptr_sp  - rsp
	      nptrs = nptr_sp - ptr_sp

	    -- The stack pointer points to the last stack-allocated component
    	; setRealAndVirtualSp nptr_sp

	    -- We have just allocated slots starting at real SP + 1, and set the new
	    -- virtual SP to the topmost allocated slot.  
	    -- If the virtual SP started *below* the real SP, we've just jumped over
	    -- some slots that won't be in the free-list, so put them there
	    -- This commonly happens because we've freed the return-address slot
	    -- (trimming back the virtual SP), but the real SP still points to that slot
	; freeStackSlots [vsp+1,vsp+2 .. rsp]

	; bindArgsToRegs reg_args
	; bindArgsToStack ptr_offsets
	; bindArgsToStack nptr_offsets

	; returnFC (reg_args, ptrs, nptrs, rsp) }
\end{code}

%************************************************************************
%*									*
	Actually generate code for a constructor return
%*									*
%************************************************************************


Note: it's the responsibility of the @cgReturnDataCon@ caller to be
sure the @amodes@ passed don't conflict with each other.
\begin{code}
cgReturnDataCon :: DataCon -> [(CgRep, CmmExpr)] -> Code

cgReturnDataCon con amodes
  = ASSERT( amodes `lengthIs` dataConRepArity con )
    do	{ EndOfBlockInfo _ sequel <- getEndOfBlockInfo
	; case sequel of
	    CaseAlts _ (Just (alts, deflt_lbl)) bndr _ 
	      ->    -- Ho! We know the constructor so we can
		    -- go straight to the right alternative
		 case assocMaybe alts (dataConTagZ con) of {
		    Just join_lbl -> build_it_then (jump_to join_lbl);
		    Nothing
			-- Special case!  We're returning a constructor to the default case
			-- of an enclosing case.  For example:
			--
			--	case (case e of (a,b) -> C a b) of
			--	  D x -> ...
			--	  y   -> ...<returning here!>...
			--
			-- In this case,
			--	if the default is a non-bind-default (ie does not use y),
			--  	then we should simply jump to the default join point;
    
			| isDeadBinder bndr -> performReturn (jump_to deflt_lbl)
			| otherwise	    -> build_it_then (jump_to deflt_lbl) }
    
	    other_sequel	-- The usual case
	      | isUnboxedTupleCon con -> returnUnboxedTuple amodes
              | otherwise -> build_it_then (emitKnownConReturnCode con)
	}
  where
    jump_to lbl = stmtC (CmmJump (CmmLit lbl) [])
    build_it_then return_code
      = do { 	-- BUILD THE OBJECT IN THE HEAP
	   	-- The first "con" says that the name bound to this
		-- closure is "con", which is a bit of a fudge, but it only
		-- affects profiling

		-- This Id is also used to get a unique for a
		-- temporary variable, if the closure is a CHARLIKE.
		-- funnily enough, this makes the unique always come
		-- out as '54' :-)
	     tickyReturnNewCon (length amodes)
	   ; idinfo <- buildDynCon (dataConWorkId con) currentCCS con amodes
	   ; amode <- idInfoToAmode idinfo
	   ; checkedAbsC (CmmAssign nodeReg amode)
	   ; performReturn return_code }
\end{code}


%************************************************************************
%*									*
	Generating static stuff for algebraic data types
%*									*
%************************************************************************

	[These comments are rather out of date]

\begin{tabular}{lll}
Info tbls &	 Macro  &     	     Kind of constructor \\
\hline
info & @CONST_INFO_TABLE@&    Zero arity (no info -- compiler uses static closure)\\
info & @CHARLIKE_INFO_TABLE@& Charlike   (no info -- compiler indexes fixed array)\\
info & @INTLIKE_INFO_TABLE@&  Intlike; the one macro generates both info tbls\\
info & @SPEC_INFO_TABLE@&     SPECish, and bigger than or equal to @MIN_UPD_SIZE@\\
info & @GEN_INFO_TABLE@&      GENish (hence bigger than or equal to @MIN_UPD_SIZE@)\\
\end{tabular}

Possible info tables for constructor con:

\begin{description}
\item[@_con_info@:]
Used for dynamically let(rec)-bound occurrences of
the constructor, and for updates.  For constructors
which are int-like, char-like or nullary, when GC occurs,
the closure tries to get rid of itself.

\item[@_static_info@:]
Static occurrences of the constructor
macro: @STATIC_INFO_TABLE@.
\end{description}

For zero-arity constructors, \tr{con}, we NO LONGER generate a static closure;
it's place is taken by the top level defn of the constructor.

For charlike and intlike closures there is a fixed array of static
closures predeclared.

\begin{code}
cgTyCon :: TyCon -> FCode [Cmm]  -- each constructor gets a separate Cmm
cgTyCon tycon
  = do	{ constrs <- mapM (getCmm . cgDataCon) (tyConDataCons tycon)

	    -- Generate a table of static closures for an enumeration type
	    -- Put the table after the data constructor decls, because the
	    -- datatype closure table (for enumeration types)
	    -- to (say) PrelBase_$wTrue_closure, which is defined in code_stuff
	; extra <- 
	   if isEnumerationTyCon tycon then do
	        tbl <- getCmm (emitRODataLits (mkLocalClosureTableLabel 
						(tyConName tycon))
			   [ CmmLabel (mkLocalClosureLabel (dataConName con))
    			   | con <- tyConDataCons tycon])
		return [tbl]
	   else
		return []

	; return (extra ++ constrs)
    }
\end{code}

Generate the entry code, info tables, and (for niladic constructor) the
static closure, for a constructor.

\begin{code}
cgDataCon :: DataCon -> Code
cgDataCon data_con
  = do	{     -- Don't need any dynamic closure code for zero-arity constructors
	  hmods <- getHomeModules

	; let
	    -- To allow the debuggers, interpreters, etc to cope with
	    -- static data structures (ie those built at compile
	    -- time), we take care that info-table contains the
	    -- information we need.
	    (static_cl_info, _) = 
		layOutStaticConstr hmods data_con arg_reps

	    (dyn_cl_info, arg_things) = 
		layOutDynConstr    hmods data_con arg_reps

	    emit_info cl_info ticky_code
		= do { code_blks <- getCgStmts the_code
		     ; emitClosureCodeAndInfoTable cl_info [] code_blks }
		where
		  the_code = do	{ ticky_code
				; ldvEnter (CmmReg nodeReg)
				; body_code }

	    arg_reps :: [(CgRep, Type)]
	    arg_reps = [(typeCgRep ty, ty) | ty <- dataConRepArgTys data_con]

	    body_code = do { 	
			-- NB: We don't set CC when entering data (WDP 94/06)
			     tickyReturnOldCon (length arg_things)
			   ; performReturn (emitKnownConReturnCode data_con) }
				-- noStmts: Ptr to thing already in Node

	; whenC (not (isNullaryRepDataCon data_con))
	 	(emit_info dyn_cl_info tickyEnterDynCon)

		-- Dynamic-Closure first, to reduce forward references
	; emit_info static_cl_info tickyEnterStaticCon }

  where
\end{code}