1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[CgHeapery]{Heap management functions}
\begin{code}
module CgHeapery (
initHeapUsage, getVirtHp, setVirtHp, setRealHp,
getHpRelOffset, hpRel,
funEntryChecks, thunkEntryChecks,
altHeapCheck, unbxTupleHeapCheck,
hpChkGen, hpChkNodePointsAssignSp0,
stkChkGen, stkChkNodePoints,
layOutDynConstr, layOutStaticConstr,
mkVirtHeapOffsets, mkStaticClosureFields, mkStaticClosure,
allocDynClosure, emitSetDynHdr
) where
#include "HsVersions.h"
import StgSyn
import CLabel
import CgUtils
import CgMonad
import CgProf
import CgTicky
import CgParallel
import CgStackery
import CgCallConv
import ClosureInfo
import SMRep
import Cmm
import CmmUtils
import Id
import DataCon
import TyCon
import CostCentre
import Util
import Module
import Constants
import Outputable
import FastString
import Data.List
\end{code}
%************************************************************************
%* *
\subsection[CgUsages-heapery]{Monad things for fiddling with heap usage}
%* *
%************************************************************************
The heap always grows upwards, so hpRel is easy
\begin{code}
hpRel :: VirtualHpOffset -- virtual offset of Hp
-> VirtualHpOffset -- virtual offset of The Thing
-> WordOff -- integer word offset
hpRel hp off = off - hp
\end{code}
@initHeapUsage@ applies a function to the amount of heap that it uses.
It initialises the heap usage to zeros, and passes on an unchanged
heap usage.
It is usually a prelude to performing a GC check, so everything must
be in a tidy and consistent state.
rje: Note the slightly suble fixed point behaviour needed here
\begin{code}
initHeapUsage :: (VirtualHpOffset -> Code) -> Code
initHeapUsage fcode
= do { orig_hp_usage <- getHpUsage
; setHpUsage initHpUsage
; fixC_(\heap_usage2 -> do
{ fcode (heapHWM heap_usage2)
; getHpUsage })
; setHpUsage orig_hp_usage }
setVirtHp :: VirtualHpOffset -> Code
setVirtHp new_virtHp
= do { hp_usage <- getHpUsage
; setHpUsage (hp_usage {virtHp = new_virtHp}) }
getVirtHp :: FCode VirtualHpOffset
getVirtHp
= do { hp_usage <- getHpUsage
; return (virtHp hp_usage) }
setRealHp :: VirtualHpOffset -> Code
setRealHp new_realHp
= do { hp_usage <- getHpUsage
; setHpUsage (hp_usage {realHp = new_realHp}) }
getHpRelOffset :: VirtualHpOffset -> FCode CmmExpr
getHpRelOffset virtual_offset
= do { hp_usg <- getHpUsage
; return (cmmRegOffW hpReg (hpRel (realHp hp_usg) virtual_offset)) }
\end{code}
%************************************************************************
%* *
Layout of heap objects
%* *
%************************************************************************
\begin{code}
layOutDynConstr, layOutStaticConstr
:: DataCon
-> [(CgRep,a)]
-> (ClosureInfo,
[(a,VirtualHpOffset)])
layOutDynConstr = layOutConstr False
layOutStaticConstr = layOutConstr True
layOutConstr :: Bool -> DataCon -> [(CgRep, a)]
-> (ClosureInfo, [(a, VirtualHpOffset)])
layOutConstr is_static data_con args
= (mkConInfo is_static data_con tot_wds ptr_wds,
things_w_offsets)
where
(tot_wds, -- #ptr_wds + #nonptr_wds
ptr_wds, -- #ptr_wds
things_w_offsets) = mkVirtHeapOffsets False{-not a thunk-} args
\end{code}
@mkVirtHeapOffsets@ always returns boxed things with smaller offsets
than the unboxed things, and furthermore, the offsets in the result
list
\begin{code}
mkVirtHeapOffsets
:: Bool -- True <=> is a thunk
-> [(CgRep,a)] -- Things to make offsets for
-> (WordOff, -- _Total_ number of words allocated
WordOff, -- Number of words allocated for *pointers*
[(a, VirtualHpOffset)])
-- Things with their offsets from start of
-- object in order of increasing offset
-- First in list gets lowest offset, which is initial offset + 1.
mkVirtHeapOffsets is_thunk things
= let non_void_things = filterOut (isVoidArg . fst) things
(ptrs, non_ptrs) = separateByPtrFollowness non_void_things
(wds_of_ptrs, ptrs_w_offsets) = mapAccumL computeOffset 0 ptrs
(tot_wds, non_ptrs_w_offsets) = mapAccumL computeOffset wds_of_ptrs non_ptrs
in
(tot_wds, wds_of_ptrs, ptrs_w_offsets ++ non_ptrs_w_offsets)
where
hdr_size | is_thunk = thunkHdrSize
| otherwise = fixedHdrSize
computeOffset wds_so_far (rep, thing)
= (wds_so_far + cgRepSizeW rep, (thing, hdr_size + wds_so_far))
\end{code}
%************************************************************************
%* *
Lay out a static closure
%* *
%************************************************************************
Make a static closure, adding on any extra padding needed for CAFs,
and adding a static link field if necessary.
\begin{code}
mkStaticClosureFields
:: ClosureInfo
-> CostCentreStack
-> Bool -- Has CAF refs
-> [CmmLit] -- Payload
-> [CmmLit] -- The full closure
mkStaticClosureFields cl_info ccs caf_refs payload
= mkStaticClosure info_lbl ccs payload padding_wds
static_link_field saved_info_field
where
info_lbl = infoTableLabelFromCI cl_info $ clHasCafRefs cl_info
-- CAFs must have consistent layout, regardless of whether they
-- are actually updatable or not. The layout of a CAF is:
--
-- 3 saved_info
-- 2 static_link
-- 1 indirectee
-- 0 info ptr
--
-- the static_link and saved_info fields must always be in the same
-- place. So we use closureNeedsUpdSpace rather than
-- closureUpdReqd here:
is_caf = closureNeedsUpdSpace cl_info
padding_wds
| not is_caf = []
| otherwise = ASSERT(null payload) [mkIntCLit 0]
static_link_field
| is_caf || staticClosureNeedsLink cl_info = [static_link_value]
| otherwise = []
saved_info_field
| is_caf = [mkIntCLit 0]
| otherwise = []
-- for a static constructor which has NoCafRefs, we set the
-- static link field to a non-zero value so the garbage
-- collector will ignore it.
static_link_value
| caf_refs = mkIntCLit 0
| otherwise = mkIntCLit 1
mkStaticClosure :: CLabel -> CostCentreStack -> [CmmLit]
-> [CmmLit] -> [CmmLit] -> [CmmLit] -> [CmmLit]
mkStaticClosure info_lbl ccs payload padding_wds static_link_field saved_info_field
= [CmmLabel info_lbl]
++ variable_header_words
++ concatMap padLitToWord payload
++ padding_wds
++ static_link_field
++ saved_info_field
where
variable_header_words
= staticGranHdr
++ staticParHdr
++ staticProfHdr ccs
++ staticTickyHdr
padLitToWord :: CmmLit -> [CmmLit]
padLitToWord lit = lit : padding pad_length
where width = typeWidth (cmmLitType lit)
pad_length = wORD_SIZE - widthInBytes width :: Int
padding n | n <= 0 = []
| n `rem` 2 /= 0 = CmmInt 0 W8 : padding (n-1)
| n `rem` 4 /= 0 = CmmInt 0 W16 : padding (n-2)
| n `rem` 8 /= 0 = CmmInt 0 W32 : padding (n-4)
| otherwise = CmmInt 0 W64 : padding (n-8)
\end{code}
%************************************************************************
%* *
\subsection[CgHeapery-heap-overflow]{Heap overflow checking}
%* *
%************************************************************************
The new code for heapChecks. For GrAnSim the code for doing a heap check
and doing a context switch has been separated. Especially, the HEAP_CHK
macro only performs a heap check. THREAD_CONTEXT_SWITCH should be used for
doing a context switch. GRAN_FETCH_AND_RESCHEDULE must be put at the
beginning of every slow entry code in order to simulate the fetching of
closures. If fetching is necessary (i.e. current closure is not local) then
an automatic context switch is done.
--------------------------------------------------------------
A heap/stack check at a function or thunk entry point.
\begin{code}
funEntryChecks :: ClosureInfo -> CmmStmts -> Code -> Code
funEntryChecks cl_info reg_save_code code
= hpStkCheck cl_info True reg_save_code code
thunkEntryChecks :: ClosureInfo -> Code -> Code
thunkEntryChecks cl_info code
= hpStkCheck cl_info False noStmts code
hpStkCheck :: ClosureInfo -- Function closure
-> Bool -- Is a function? (not a thunk)
-> CmmStmts -- Register saves
-> Code
-> Code
hpStkCheck cl_info is_fun reg_save_code code
= getFinalStackHW $ \ spHw -> do
{ sp <- getRealSp
; let stk_words = spHw - sp
; initHeapUsage $ \ hpHw -> do
{ -- Emit heap checks, but be sure to do it lazily so
-- that the conditionals on hpHw don't cause a black hole
codeOnly $ do
{ do_checks stk_words hpHw full_save_code rts_label
; tickyAllocHeap hpHw }
; setRealHp hpHw
; code }
}
where
node_asst
| nodeMustPointToIt (closureLFInfo cl_info)
= noStmts
| otherwise
= oneStmt (CmmAssign nodeReg (CmmLit (CmmLabel closure_lbl)))
-- Strictly speaking, we should tag node here. But if
-- node doesn't point to the closure, the code for the closure
-- cannot depend on the value of R1 anyway, so we're safe.
closure_lbl = closureLabelFromCI cl_info (clHasCafRefs cl_info)
full_save_code = node_asst `plusStmts` reg_save_code
rts_label | is_fun = CmmReg (CmmGlobal GCFun)
-- Function entry point
| otherwise = CmmReg (CmmGlobal GCEnter1)
-- Thunk or case return
-- In the thunk/case-return case, R1 points to a closure
-- which should be (re)-entered after GC
\end{code}
Heap checks in a case alternative are nice and easy, provided this is
a bog-standard algebraic case. We have in our hand:
* one return address, on the stack,
* one return value, in Node.
the canned code for this heap check failure just pushes Node on the
stack, saying 'EnterGHC' to return. The scheduler will return by
entering the top value on the stack, which in turn will return through
the return address, getting us back to where we were. This is
therefore only valid if the return value is *lifted* (just being
boxed isn't good enough).
For primitive returns, we have an unlifted value in some register
(either R1 or FloatReg1 or DblReg1). This means using specialised
heap-check code for these cases.
\begin{code}
altHeapCheck
:: AltType -- PolyAlt, PrimAlt, AlgAlt, but *not* UbxTupAlt
-- (Unboxed tuples are dealt with by ubxTupleHeapCheck)
-> Code -- Continuation
-> Code
altHeapCheck alt_type code
= initHeapUsage $ \ hpHw -> do
{ codeOnly $ do
{ do_checks 0 {- no stack chk -} hpHw
noStmts {- nothign to save -}
(rts_label alt_type)
; tickyAllocHeap hpHw }
; setRealHp hpHw
; code }
where
rts_label PolyAlt = CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_unpt_r1")))
-- Do *not* enter R1 after a heap check in
-- a polymorphic case. It might be a function
-- and the entry code for a function (currently)
-- applies it
--
-- However R1 is guaranteed to be a pointer
rts_label (AlgAlt _) = stg_gc_enter1
-- Enter R1 after the heap check; it's a pointer
rts_label (PrimAlt tc)
= CmmLit $ CmmLabel $
case primRepToCgRep (tyConPrimRep tc) of
VoidArg -> mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_noregs")
FloatArg -> mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_f1")
DoubleArg -> mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_d1")
LongArg -> mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_l1")
-- R1 is boxed but unlifted:
PtrArg -> mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_unpt_r1")
-- R1 is unboxed:
NonPtrArg -> mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_unbx_r1")
rts_label (UbxTupAlt _) = panic "altHeapCheck"
\end{code}
Unboxed tuple alternatives and let-no-escapes (the two most annoying
constructs to generate code for!) For unboxed tuple returns, there
are an arbitrary number of possibly unboxed return values, some of
which will be in registers, and the others will be on the stack. We
always organise the stack-resident fields into pointers &
non-pointers, and pass the number of each to the heap check code.
\begin{code}
unbxTupleHeapCheck
:: [(Id, GlobalReg)] -- Live registers
-> WordOff -- no. of stack slots containing ptrs
-> WordOff -- no. of stack slots containing nonptrs
-> CmmStmts -- code to insert in the failure path
-> Code
-> Code
unbxTupleHeapCheck regs ptrs nptrs fail_code code
-- We can't manage more than 255 pointers/non-pointers
-- in a generic heap check.
| ptrs > 255 || nptrs > 255 = panic "altHeapCheck"
| otherwise
= initHeapUsage $ \ hpHw -> do
{ codeOnly $ do { do_checks 0 {- no stack check -} hpHw
full_fail_code rts_label
; tickyAllocHeap hpHw }
; setRealHp hpHw
; code }
where
full_fail_code = fail_code `plusStmts` oneStmt assign_liveness
assign_liveness = CmmAssign (CmmGlobal (VanillaReg 9 VNonGcPtr)) -- Ho ho ho!
(CmmLit (mkWordCLit liveness))
liveness = mkRegLiveness regs ptrs nptrs
rts_label = CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_ut")))
\end{code}
%************************************************************************
%* *
Heap/Stack Checks.
%* *
%************************************************************************
When failing a check, we save a return address on the stack and
jump to a pre-compiled code fragment that saves the live registers
and returns to the scheduler.
The return address in most cases will be the beginning of the basic
block in which the check resides, since we need to perform the check
again on re-entry because someone else might have stolen the resource
in the meantime.
\begin{code}
do_checks :: WordOff -- Stack headroom
-> WordOff -- Heap headroom
-> CmmStmts -- Assignments to perform on failure
-> CmmExpr -- Rts address to jump to on failure
-> Code
do_checks 0 0 _ _ = nopC
do_checks _ hp _ _
| hp > bLOCKS_PER_MBLOCK * bLOCK_SIZE_W
= sorry (unlines [
"Trying to allocate more than " ++ show (bLOCKS_PER_MBLOCK * bLOCK_SIZE) ++ " bytes.",
"",
"See: http://hackage.haskell.org/trac/ghc/ticket/4505",
"Suggestion: read data from a file instead of having large static data",
"structures in the code."])
do_checks stk hp reg_save_code rts_lbl
= do_checks' (CmmLit (mkIntCLit (stk*wORD_SIZE)))
(CmmLit (mkIntCLit (hp*wORD_SIZE)))
(stk /= 0) (hp /= 0) reg_save_code rts_lbl
-- The offsets are now in *bytes*
do_checks' :: CmmExpr -> CmmExpr -> Bool -> Bool -> CmmStmts -> CmmExpr -> Code
do_checks' stk_expr hp_expr stk_nonzero hp_nonzero reg_save_code rts_lbl
= do { doGranAllocate hp_expr
-- The failure block: this saves the registers and jumps to
-- the appropriate RTS stub.
; exit_blk_id <- forkLabelledCode $ do {
; emitStmts reg_save_code
; stmtC (CmmJump rts_lbl []) }
-- In the case of a heap-check failure, we must also set
-- HpAlloc. NB. HpAlloc is *only* set if Hp has been
-- incremented by the heap check, it must not be set in the
-- event that a stack check failed, because the RTS stub will
-- retreat Hp by HpAlloc.
; hp_blk_id <- if hp_nonzero
then forkLabelledCode $ do
stmtC (CmmAssign (CmmGlobal HpAlloc) hp_expr)
stmtC (CmmBranch exit_blk_id)
else return exit_blk_id
-- Check for stack overflow *FIRST*; otherwise
-- we might bumping Hp and then failing stack oflo
; whenC stk_nonzero
(stmtC (CmmCondBranch stk_oflo exit_blk_id))
; whenC hp_nonzero
(stmtsC [CmmAssign hpReg
(cmmOffsetExprB (CmmReg hpReg) hp_expr),
CmmCondBranch hp_oflo hp_blk_id])
-- Bump heap pointer, and test for heap exhaustion
-- Note that we don't move the heap pointer unless the
-- stack check succeeds. Otherwise we might end up
-- with slop at the end of the current block, which can
-- confuse the LDV profiler.
}
where
-- Stk overflow if (Sp - stk_bytes < SpLim)
stk_oflo = CmmMachOp mo_wordULt
[CmmMachOp mo_wordSub [CmmReg spReg, stk_expr],
CmmReg (CmmGlobal SpLim)]
-- Hp overflow if (Hp > HpLim)
-- (Hp has been incremented by now)
-- HpLim points to the LAST WORD of valid allocation space.
hp_oflo = CmmMachOp mo_wordUGt
[CmmReg hpReg, CmmReg (CmmGlobal HpLim)]
\end{code}
%************************************************************************
%* *
Generic Heap/Stack Checks - used in the RTS
%* *
%************************************************************************
\begin{code}
hpChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> Code
hpChkGen bytes liveness reentry
= do_checks' (CmmLit (mkIntCLit 0)) bytes False True assigns stg_gc_gen
where
assigns = mkStmts [ mk_vanilla_assignment 9 liveness,
mk_vanilla_assignment 10 reentry ]
-- a heap check where R1 points to the closure to enter on return, and
-- we want to assign to Sp[0] on failure (used in AutoApply.cmm:BUILD_PAP).
hpChkNodePointsAssignSp0 :: CmmExpr -> CmmExpr -> Code
hpChkNodePointsAssignSp0 bytes sp0
= do_checks' (CmmLit (mkIntCLit 0)) bytes False True assign stg_gc_enter1
where assign = oneStmt (CmmStore (CmmReg spReg) sp0)
stkChkGen :: CmmExpr -> CmmExpr -> CmmExpr -> Code
stkChkGen bytes liveness reentry
= do_checks' bytes (CmmLit (mkIntCLit 0)) True False assigns stg_gc_gen
where
assigns = mkStmts [ mk_vanilla_assignment 9 liveness,
mk_vanilla_assignment 10 reentry ]
mk_vanilla_assignment :: Int -> CmmExpr -> CmmStmt
mk_vanilla_assignment n e
= CmmAssign (CmmGlobal (VanillaReg n (vgcFlag (cmmExprType e)))) e
stkChkNodePoints :: CmmExpr -> Code
stkChkNodePoints bytes
= do_checks' bytes (CmmLit (mkIntCLit 0)) True False noStmts stg_gc_enter1
stg_gc_gen :: CmmExpr
stg_gc_gen = CmmLit (CmmLabel (mkCmmCodeLabel rtsPackageId (fsLit "stg_gc_gen")))
stg_gc_enter1 :: CmmExpr
stg_gc_enter1 = CmmReg (CmmGlobal GCEnter1)
\end{code}
%************************************************************************
%* *
\subsection[initClosure]{Initialise a dynamic closure}
%* *
%************************************************************************
@allocDynClosure@ puts the thing in the heap, and modifies the virtual Hp
to account for this.
\begin{code}
allocDynClosure
:: ClosureInfo
-> CmmExpr -- Cost Centre to stick in the object
-> CmmExpr -- Cost Centre to blame for this alloc
-- (usually the same; sometimes "OVERHEAD")
-> [(CmmExpr, VirtualHpOffset)] -- Offsets from start of the object
-- ie Info ptr has offset zero.
-> FCode VirtualHpOffset -- Returns virt offset of object
allocDynClosure cl_info use_cc _blame_cc amodes_with_offsets
= do { virt_hp <- getVirtHp
-- FIND THE OFFSET OF THE INFO-PTR WORD
; let info_offset = virt_hp + 1
-- info_offset is the VirtualHpOffset of the first
-- word of the new object
-- Remember, virtHp points to last allocated word,
-- ie 1 *before* the info-ptr word of new object.
info_ptr = CmmLit (CmmLabel (infoTableLabelFromCI cl_info
(clHasCafRefs cl_info)))
hdr_w_offsets = initDynHdr info_ptr use_cc `zip` [0..]
-- SAY WHAT WE ARE ABOUT TO DO
; profDynAlloc cl_info use_cc
-- ToDo: This is almost certainly wrong
-- We're ignoring blame_cc. But until we've
-- fixed the boxing hack in chooseDynCostCentres etc,
-- we're worried about making things worse by "fixing"
-- this part to use blame_cc!
; tickyDynAlloc cl_info
-- ALLOCATE THE OBJECT
; base <- getHpRelOffset info_offset
; hpStore base (hdr_w_offsets ++ amodes_with_offsets)
-- BUMP THE VIRTUAL HEAP POINTER
; setVirtHp (virt_hp + closureSize cl_info)
-- RETURN PTR TO START OF OBJECT
; returnFC info_offset }
initDynHdr :: CmmExpr
-> CmmExpr -- Cost centre to put in object
-> [CmmExpr]
initDynHdr info_ptr cc
= [info_ptr]
-- ToDo: Gransim stuff
-- ToDo: Parallel stuff
++ dynProfHdr cc
-- No ticky header
hpStore :: CmmExpr -> [(CmmExpr, VirtualHpOffset)] -> Code
-- Store the item (expr,off) in base[off]
hpStore base es
= stmtsC [ CmmStore (cmmOffsetW base off) val
| (val, off) <- es ]
emitSetDynHdr :: CmmExpr -> CmmExpr -> CmmExpr -> Code
emitSetDynHdr base info_ptr ccs
= hpStore base (zip (initDynHdr info_ptr ccs) [0..])
\end{code}
|