1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
|
-----------------------------------------------------------------------------
--
-- Building info tables.
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
-- http://hackage.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details
module CgInfoTbls (
emitClosureCodeAndInfoTable,
emitInfoTableAndCode,
emitReturnTarget, emitAlgReturnTarget,
emitReturnInstr,
stdInfoTableSizeB,
entryCode, closureInfoPtr,
getConstrTag,
cmmGetClosureType,
infoTable, infoTableClosureType,
infoTablePtrs, infoTableNonPtrs,
funInfoTable
) where
#include "HsVersions.h"
import ClosureInfo
import SMRep
import CgBindery
import CgCallConv
import CgUtils
import CgMonad
import CmmBuildInfoTables
import OldCmm
import CLabel
import Name
import Unique
import StaticFlags
import Constants
import DynFlags
import Util
import Outputable
-------------------------------------------------------------------------
--
-- Generating the info table and code for a closure
--
-------------------------------------------------------------------------
-- Here we make an info table of type 'CmmInfo'. The concrete
-- representation as a list of 'CmmAddr' is handled later
-- in the pipeline by 'cmmToRawCmm'.
emitClosureCodeAndInfoTable :: ClosureInfo -> [CmmFormal] -> CgStmts -> Code
emitClosureCodeAndInfoTable cl_info args body
= do { blks <- cgStmtsToBlocks body
; info <- mkCmmInfo cl_info
; emitInfoTableAndCode (entryLabelFromCI cl_info) info args blks }
-- Convert from 'ClosureInfo' to 'CmmInfo'.
-- Not used for return points. (The 'smRepClosureTypeInt' call would panic.)
mkCmmInfo :: ClosureInfo -> FCode CmmInfo
mkCmmInfo cl_info
= return (CmmInfo gc_target Nothing $
CmmInfoTable { cit_lbl = infoTableLabelFromCI cl_info,
cit_rep = closureSMRep cl_info,
cit_prof = prof,
cit_srt = closureSRT cl_info })
where
prof | not opt_SccProfilingOn = NoProfilingInfo
| otherwise = ProfilingInfo ty_descr_w8 val_descr_w8
ty_descr_w8 = stringToWord8s (closureTypeDescr cl_info)
val_descr_w8 = stringToWord8s (closureValDescr cl_info)
-- The gc_target is to inform the CPS pass when it inserts a stack check.
-- Since that pass isn't used yet we'll punt for now.
-- When the CPS pass is fully integrated, this should
-- be replaced by the label that any heap check jumped to,
-- so that branch can be shared by both the heap (from codeGen)
-- and stack checks (from the CPS pass).
gc_target = panic "TODO: gc_target"
-------------------------------------------------------------------------
--
-- Generating the info table and code for a return point
--
-------------------------------------------------------------------------
-- The concrete representation as a list of 'CmmAddr' is handled later
-- in the pipeline by 'cmmToRawCmm'.
emitReturnTarget
:: Name
-> CgStmts -- The direct-return code (if any)
-> FCode CLabel
emitReturnTarget name stmts
= do { srt_info <- getSRTInfo
; blks <- cgStmtsToBlocks stmts
; frame <- mkStackLayout
; let smrep = mkStackRep (mkLiveness frame)
info = CmmInfo gc_target Nothing info_tbl
info_tbl = CmmInfoTable { cit_lbl = info_lbl
, cit_prof = NoProfilingInfo
, cit_rep = smrep
, cit_srt = srt_info }
; emitInfoTableAndCode entry_lbl info args blks
; return info_lbl }
where
args = {- trace "emitReturnTarget: missing args" -} []
uniq = getUnique name
info_lbl = mkReturnInfoLabel uniq
entry_lbl = mkReturnPtLabel uniq
-- The gc_target is to inform the CPS pass when it inserts a stack check.
-- Since that pass isn't used yet we'll punt for now.
-- When the CPS pass is fully integrated, this should
-- be replaced by the label that any heap check jumped to,
-- so that branch can be shared by both the heap (from codeGen)
-- and stack checks (from the CPS pass).
gc_target = panic "TODO: gc_target"
-- Build stack layout information from the state of the 'FCode' monad.
-- Should go away once 'codeGen' starts using the CPS conversion
-- pass to handle the stack. Until then, this is really just
-- here to convert from the 'codeGen' representation of the stack
-- to the 'CmmInfo' representation of the stack.
--
-- See 'CmmInfo.mkLiveness' for where this is converted to a bitmap.
{-
This seems to be a very error prone part of the code.
It is surprisingly prone to off-by-one errors, because
it converts between offset form (codeGen) and list form (CmmInfo).
Thus a bit of explanation is in order.
Fortunately, this code should go away once the code generator
starts using the CPS conversion pass to handle the stack.
The stack looks like this:
| |
|-------------|
frame_sp --> | return addr |
|-------------|
| dead slot |
|-------------|
| live ptr b |
|-------------|
| live ptr a |
|-------------|
real_sp --> | return addr |
+-------------+
Both 'frame_sp' and 'real_sp' are measured downwards
(i.e. larger frame_sp means smaller memory address).
For that frame we want a result like: [Just a, Just b, Nothing]
Note that the 'head' of the list is the top
of the stack, and that the return address
is not present in the list (it is always assumed).
-}
mkStackLayout :: FCode [Maybe LocalReg]
mkStackLayout = do
dflags <- getDynFlags
let platform = targetPlatform dflags
StackUsage { realSp = real_sp,
frameSp = frame_sp } <- getStkUsage
binds <- getLiveStackBindings
let frame_size = real_sp - frame_sp - retAddrSizeW
rel_binds = reverse $ sortWith fst
[(offset - frame_sp - retAddrSizeW, b)
| (offset, b) <- binds]
WARN( not (all (\bind -> fst bind >= 0) rel_binds),
pprPlatform platform binds $$ pprPlatform platform rel_binds $$
ppr frame_size $$ ppr real_sp $$ ppr frame_sp )
return $ stack_layout rel_binds frame_size
stack_layout :: [(VirtualSpOffset, CgIdInfo)]
-> WordOff
-> [Maybe LocalReg]
stack_layout [] sizeW = replicate sizeW Nothing
stack_layout ((off, bind):binds) sizeW | off == sizeW - 1 =
(Just stack_bind) : (stack_layout binds (sizeW - rep_size))
where
rep_size = cgRepSizeW (cgIdInfoArgRep bind)
stack_bind = LocalReg unique machRep
unique = getUnique (cgIdInfoId bind)
machRep = argMachRep (cgIdInfoArgRep bind)
stack_layout binds@(_:_) sizeW | otherwise =
Nothing : (stack_layout binds (sizeW - 1))
{- Another way to write the function that might be less error prone (untested)
stack_layout offsets sizeW = result
where
y = map (flip lookup offsets) [0..]
-- offsets -> nothing and just (each slot is one word)
x = take sizeW y -- set the frame size
z = clip x -- account for multi-word slots
result = map mk_reg z
clip [] = []
clip list@(x : _) = x : clip (drop count list)
ASSERT(all isNothing (tail (take count list)))
count Nothing = 1
count (Just x) = cgRepSizeW (cgIdInfoArgRep x)
mk_reg Nothing = Nothing
mk_reg (Just x) = LocalReg unique machRep kind
where
unique = getUnique (cgIdInfoId x)
machRep = argMachrep (cgIdInfoArgRep bind)
kind = if isFollowableArg (cgIdInfoArgRep bind)
then GCKindPtr
else GCKindNonPtr
-}
emitAlgReturnTarget
:: Name -- Just for its unique
-> [(ConTagZ, CgStmts)] -- Tagged branches
-> Maybe CgStmts -- Default branch (if any)
-> Int -- family size
-> FCode (CLabel, SemiTaggingStuff)
emitAlgReturnTarget name branches mb_deflt fam_sz
= do { blks <- getCgStmts $
-- is the constructor tag in the node reg?
if isSmallFamily fam_sz
then do -- yes, node has constr. tag
let tag_expr = cmmConstrTag1 (CmmReg nodeReg)
branches' = [(tag+1,branch)|(tag,branch)<-branches]
emitSwitch tag_expr branches' mb_deflt 1 fam_sz
else do -- no, get tag from info table
let -- Note that ptr _always_ has tag 1
-- when the family size is big enough
untagged_ptr = cmmRegOffB nodeReg (-1)
tag_expr = getConstrTag (untagged_ptr)
emitSwitch tag_expr branches mb_deflt 0 (fam_sz - 1)
; lbl <- emitReturnTarget name blks
; return (lbl, Nothing) }
-- Nothing: the internal branches in the switch don't have
-- global labels, so we can't use them at the 'call site'
--------------------------------
emitReturnInstr :: Code
emitReturnInstr
= do { info_amode <- getSequelAmode
; stmtC (CmmJump (entryCode info_amode) []) }
-----------------------------------------------------------------------------
--
-- Info table offsets
--
-----------------------------------------------------------------------------
stdInfoTableSizeW :: WordOff
-- The size of a standard info table varies with profiling/ticky etc,
-- so we can't get it from Constants
-- It must vary in sync with mkStdInfoTable
stdInfoTableSizeW
= size_fixed + size_prof
where
size_fixed = 2 -- layout, type
size_prof | opt_SccProfilingOn = 2
| otherwise = 0
stdInfoTableSizeB :: ByteOff
stdInfoTableSizeB = stdInfoTableSizeW * wORD_SIZE
stdSrtBitmapOffset :: ByteOff
-- Byte offset of the SRT bitmap half-word which is
-- in the *higher-addressed* part of the type_lit
stdSrtBitmapOffset = stdInfoTableSizeB - hALF_WORD_SIZE
stdClosureTypeOffset :: ByteOff
-- Byte offset of the closure type half-word
stdClosureTypeOffset = stdInfoTableSizeB - wORD_SIZE
stdPtrsOffset, stdNonPtrsOffset :: ByteOff
stdPtrsOffset = stdInfoTableSizeB - 2*wORD_SIZE
stdNonPtrsOffset = stdInfoTableSizeB - 2*wORD_SIZE + hALF_WORD_SIZE
-------------------------------------------------------------------------
--
-- Accessing fields of an info table
--
-------------------------------------------------------------------------
closureInfoPtr :: CmmExpr -> CmmExpr
-- Takes a closure pointer and returns the info table pointer
closureInfoPtr e = CmmLoad e bWord
entryCode :: CmmExpr -> CmmExpr
-- Takes an info pointer (the first word of a closure)
-- and returns its entry code
entryCode e | tablesNextToCode = e
| otherwise = CmmLoad e bWord
getConstrTag :: CmmExpr -> CmmExpr
-- Takes a closure pointer, and return the *zero-indexed*
-- constructor tag obtained from the info table
-- This lives in the SRT field of the info table
-- (constructors don't need SRTs).
getConstrTag closure_ptr
= CmmMachOp (MO_UU_Conv halfWordWidth wordWidth) [infoTableConstrTag info_table]
where
info_table = infoTable (closureInfoPtr closure_ptr)
cmmGetClosureType :: CmmExpr -> CmmExpr
-- Takes a closure pointer, and return the closure type
-- obtained from the info table
cmmGetClosureType closure_ptr
= CmmMachOp (MO_UU_Conv halfWordWidth wordWidth) [infoTableClosureType info_table]
where
info_table = infoTable (closureInfoPtr closure_ptr)
infoTable :: CmmExpr -> CmmExpr
-- Takes an info pointer (the first word of a closure)
-- and returns a pointer to the first word of the standard-form
-- info table, excluding the entry-code word (if present)
infoTable info_ptr
| tablesNextToCode = cmmOffsetB info_ptr (- stdInfoTableSizeB)
| otherwise = cmmOffsetW info_ptr 1 -- Past the entry code pointer
infoTableConstrTag :: CmmExpr -> CmmExpr
-- Takes an info table pointer (from infoTable) and returns the constr tag
-- field of the info table (same as the srt_bitmap field)
infoTableConstrTag = infoTableSrtBitmap
infoTableSrtBitmap :: CmmExpr -> CmmExpr
-- Takes an info table pointer (from infoTable) and returns the srt_bitmap
-- field of the info table
infoTableSrtBitmap info_tbl
= CmmLoad (cmmOffsetB info_tbl stdSrtBitmapOffset) bHalfWord
infoTableClosureType :: CmmExpr -> CmmExpr
-- Takes an info table pointer (from infoTable) and returns the closure type
-- field of the info table.
infoTableClosureType info_tbl
= CmmLoad (cmmOffsetB info_tbl stdClosureTypeOffset) bHalfWord
infoTablePtrs :: CmmExpr -> CmmExpr
infoTablePtrs info_tbl
= CmmLoad (cmmOffsetB info_tbl stdPtrsOffset) bHalfWord
infoTableNonPtrs :: CmmExpr -> CmmExpr
infoTableNonPtrs info_tbl
= CmmLoad (cmmOffsetB info_tbl stdNonPtrsOffset) bHalfWord
funInfoTable :: CmmExpr -> CmmExpr
-- Takes the info pointer of a function,
-- and returns a pointer to the first word of the StgFunInfoExtra struct
-- in the info table.
funInfoTable info_ptr
| tablesNextToCode
= cmmOffsetB info_ptr (- stdInfoTableSizeB - sIZEOF_StgFunInfoExtraRev)
| otherwise
= cmmOffsetW info_ptr (1 + stdInfoTableSizeW)
-- Past the entry code pointer
-------------------------------------------------------------------------
--
-- Emit the code for a closure (or return address)
-- and its associated info table
--
-------------------------------------------------------------------------
-- The complication here concerns whether or not we can
-- put the info table next to the code
emitInfoTableAndCode
:: CLabel -- Label of entry or ret
-> CmmInfo -- ...the info table
-> [CmmFormal] -- ...args
-> [CmmBasicBlock] -- ...and body
-> Code
emitInfoTableAndCode entry_ret_lbl info args blocks
= emitProc info entry_ret_lbl args blocks
|