1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
\section[CgMonad]{The code generation monad}
See the beginning of the top-level @CodeGen@ module, to see how this
monadic stuff fits into the Big Picture.
\begin{code}
module CgMonad (
Code, -- type
FCode, -- type
initC, thenC, thenFC, listCs, listFCs, mapCs, mapFCs,
returnFC, fixC, checkedAbsC,
stmtC, stmtsC, labelC, emitStmts, nopC, whenC, newLabelC,
newUnique, newUniqSupply,
CgStmts, emitCgStmts, forkCgStmts, cgStmtsToBlocks,
getCgStmts', getCgStmts,
noCgStmts, oneCgStmt, consCgStmt,
getCmm,
emitData, emitProc, emitSimpleProc,
forkLabelledCode,
forkClosureBody, forkStatics, forkAlts, forkEval,
forkEvalHelp, forkProc, codeOnly,
SemiTaggingStuff, ConTagZ,
EndOfBlockInfo(..),
setEndOfBlockInfo, getEndOfBlockInfo,
setSRT, getSRT,
setSRTLabel, getSRTLabel,
setTickyCtrLabel, getTickyCtrLabel,
StackUsage(..), HeapUsage(..),
VirtualSpOffset, VirtualHpOffset,
initStkUsage, initHpUsage,
getHpUsage, setHpUsage,
heapHWM,
getModuleName,
Sequel(..), -- ToDo: unabstract?
-- ideally we wouldn't export these, but some other modules access internal state
getState, setState, getInfoDown, getDynFlags, getThisPackage,
-- more localised access to monad state
getStkUsage, setStkUsage,
getBinds, setBinds, getStaticBinds,
-- out of general friendliness, we also export ...
CgInfoDownwards(..), CgState(..) -- non-abstract
) where
#include "HsVersions.h"
import {-# SOURCE #-} CgBindery ( CgBindings, nukeVolatileBinds )
import DynFlags
import PackageConfig
import Cmm
import CmmUtils
import CLabel
import StgSyn (SRT)
import SMRep
import Module
import Id
import VarEnv
import OrdList
import Unique
import Util
import UniqSupply
import FastString
import Outputable
import Control.Monad
infixr 9 `thenC` -- Right-associative!
infixr 9 `thenFC`
\end{code}
%************************************************************************
%* *
\subsection[CgMonad-environment]{Stuff for manipulating environments}
%* *
%************************************************************************
This monadery has some information that it only passes {\em
downwards}, as well as some ``state'' which is modified as we go
along.
\begin{code}
data CgInfoDownwards -- information only passed *downwards* by the monad
= MkCgInfoDown {
cgd_dflags :: DynFlags,
cgd_mod :: Module, -- Module being compiled
cgd_statics :: CgBindings, -- [Id -> info] : static environment
cgd_srt_lbl :: CLabel, -- label of the current SRT
cgd_srt :: SRT, -- the current SRT
cgd_ticky :: CLabel, -- current destination for ticky counts
cgd_eob :: EndOfBlockInfo -- Info for stuff to do at end of basic block:
}
initCgInfoDown :: DynFlags -> Module -> CgInfoDownwards
initCgInfoDown dflags mod
= MkCgInfoDown { cgd_dflags = dflags,
cgd_mod = mod,
cgd_statics = emptyVarEnv,
cgd_srt_lbl = error "initC: srt_lbl",
cgd_srt = error "initC: srt",
cgd_ticky = mkTopTickyCtrLabel,
cgd_eob = initEobInfo }
data CgState
= MkCgState {
cgs_stmts :: OrdList CgStmt, -- Current proc
cgs_tops :: OrdList CmmTop,
-- Other procedures and data blocks in this compilation unit
-- Both the latter two are ordered only so that we can
-- reduce forward references, when it's easy to do so
cgs_binds :: CgBindings, -- [Id -> info] : *local* bindings environment
-- Bindings for top-level things are given in
-- the info-down part
cgs_stk_usg :: StackUsage,
cgs_hp_usg :: HeapUsage,
cgs_uniqs :: UniqSupply }
initCgState :: UniqSupply -> CgState
initCgState uniqs
= MkCgState { cgs_stmts = nilOL, cgs_tops = nilOL,
cgs_binds = emptyVarEnv,
cgs_stk_usg = initStkUsage,
cgs_hp_usg = initHpUsage,
cgs_uniqs = uniqs }
\end{code}
@EndOfBlockInfo@ tells what to do at the end of this block of code or,
if the expression is a @case@, what to do at the end of each
alternative.
\begin{code}
data EndOfBlockInfo
= EndOfBlockInfo
VirtualSpOffset -- Args Sp: trim the stack to this point at a
-- return; push arguments starting just
-- above this point on a tail call.
-- This is therefore the stk ptr as seen
-- by a case alternative.
Sequel
initEobInfo = EndOfBlockInfo 0 OnStack
\end{code}
Any addressing modes inside @Sequel@ must be ``robust,'' in the sense
that it must survive stack pointer adjustments at the end of the
block.
\begin{code}
data Sequel
= OnStack -- Continuation is on the stack
| UpdateCode -- Continuation is update
| CaseAlts
CLabel -- Jump to this; if the continuation is for a vectored
-- case this might be the label of a return vector
SemiTaggingStuff
Id -- The case binder, only used to see if it's dead
type SemiTaggingStuff
= Maybe -- Maybe[1] we don't have any semi-tagging stuff...
([(ConTagZ, CmmLit)], -- Alternatives
CmmLit) -- Default (will be a can't happen RTS label if can't happen)
type ConTagZ = Int -- A *zero-indexed* contructor tag
-- The case branch is executed only from a successful semitagging
-- venture, when a case has looked at a variable, found that it's
-- evaluated, and wants to load up the contents and go to the join
-- point.
\end{code}
%************************************************************************
%* *
CgStmt type
%* *
%************************************************************************
The CgStmts type is what the code generator outputs: it is a tree of
statements, including in-line labels. The job of flattenCgStmts is to
turn this into a list of basic blocks, each of which ends in a jump
statement (either a local branch or a non-local jump).
\begin{code}
type CgStmts = OrdList CgStmt
data CgStmt
= CgStmt CmmStmt
| CgLabel BlockId
| CgFork BlockId CgStmts
flattenCgStmts :: BlockId -> CgStmts -> [CmmBasicBlock]
flattenCgStmts id stmts =
case flatten (fromOL stmts) of
([],blocks) -> blocks
(block,blocks) -> BasicBlock id block : blocks
where
flatten [] = ([],[])
-- A label at the end of a function or fork: this label must not be reachable,
-- but it might be referred to from another BB that also isn't reachable.
-- Eliminating these has to be done with a dead-code analysis. For now,
-- we just make it into a well-formed block by adding a recursive jump.
flatten [CgLabel id]
= ( [CmmBranch id], [BasicBlock id [CmmBranch id]] )
-- A jump/branch: throw away all the code up to the next label, because
-- it is unreachable. Be careful to keep forks that we find on the way.
flatten (CgStmt stmt : stmts)
| isJump stmt
= case dropWhile isOrdinaryStmt stmts of
[] -> ( [stmt], [] )
[CgLabel id] -> ( [stmt], [BasicBlock id [CmmBranch id]])
(CgLabel id : stmts) -> ( [stmt], BasicBlock id block : blocks )
where (block,blocks) = flatten stmts
(CgFork fork_id stmts : ss) ->
flatten (CgFork fork_id stmts : CgStmt stmt : ss)
flatten (s:ss) =
case s of
CgStmt stmt -> (stmt:block,blocks)
CgLabel id -> ([CmmBranch id],BasicBlock id block:blocks)
CgFork fork_id stmts ->
(block, BasicBlock fork_id fork_block : fork_blocks ++ blocks)
where (fork_block, fork_blocks) = flatten (fromOL stmts)
where (block,blocks) = flatten ss
isJump (CmmJump _ _) = True
isJump (CmmBranch _) = True
isJump (CmmSwitch _ _) = True
isJump _ = False
isOrdinaryStmt (CgStmt _) = True
isOrdinaryStmt _ = False
\end{code}
%************************************************************************
%* *
Stack and heap models
%* *
%************************************************************************
\begin{code}
type VirtualHpOffset = WordOff -- Both are in
type VirtualSpOffset = WordOff -- units of words
data StackUsage
= StackUsage {
virtSp :: VirtualSpOffset,
-- Virtual offset of topmost allocated slot
frameSp :: VirtualSpOffset,
-- Virtual offset of the return address of the enclosing frame.
-- This RA describes the liveness/pointedness of
-- all the stack from frameSp downwards
-- INVARIANT: less than or equal to virtSp
freeStk :: [VirtualSpOffset],
-- List of free slots, in *increasing* order
-- INVARIANT: all <= virtSp
-- All slots <= virtSp are taken except these ones
realSp :: VirtualSpOffset,
-- Virtual offset of real stack pointer register
hwSp :: VirtualSpOffset
} -- Highest value ever taken by virtSp
-- INVARIANT: The environment contains no Stable references to
-- stack slots below (lower offset) frameSp
-- It can contain volatile references to this area though.
data HeapUsage =
HeapUsage {
virtHp :: VirtualHpOffset, -- Virtual offset of highest-allocated word
realHp :: VirtualHpOffset -- realHp: Virtual offset of real heap ptr
}
\end{code}
The heap high water mark is the larger of virtHp and hwHp. The latter is
only records the high water marks of forked-off branches, so to find the
heap high water mark you have to take the max of virtHp and hwHp. Remember,
virtHp never retreats!
Note Jan 04: ok, so why do we only look at the virtual Hp??
\begin{code}
heapHWM :: HeapUsage -> VirtualHpOffset
heapHWM = virtHp
\end{code}
Initialisation.
\begin{code}
initStkUsage :: StackUsage
initStkUsage = StackUsage {
virtSp = 0,
frameSp = 0,
freeStk = [],
realSp = 0,
hwSp = 0
}
initHpUsage :: HeapUsage
initHpUsage = HeapUsage {
virtHp = 0,
realHp = 0
}
\end{code}
@stateIncUsage@$~e_1~e_2$ incorporates in $e_1$ the stack and heap high water
marks found in $e_2$.
\begin{code}
stateIncUsage :: CgState -> CgState -> CgState
stateIncUsage s1 s2@(MkCgState { cgs_stk_usg = stk_usg, cgs_hp_usg = hp_usg })
= s1 { cgs_hp_usg = cgs_hp_usg s1 `maxHpHw` virtHp hp_usg,
cgs_stk_usg = cgs_stk_usg s1 `maxStkHw` hwSp stk_usg }
`addCodeBlocksFrom` s2
stateIncUsageEval :: CgState -> CgState -> CgState
stateIncUsageEval s1 s2
= s1 { cgs_stk_usg = cgs_stk_usg s1 `maxStkHw` hwSp (cgs_stk_usg s2) }
`addCodeBlocksFrom` s2
-- We don't max the heap high-watermark because stateIncUsageEval is
-- used only in forkEval, which in turn is only used for blocks of code
-- which do their own heap-check.
addCodeBlocksFrom :: CgState -> CgState -> CgState
-- Add code blocks from the latter to the former
-- (The cgs_stmts will often be empty, but not always; see codeOnly)
s1 `addCodeBlocksFrom` s2
= s1 { cgs_stmts = cgs_stmts s1 `appOL` cgs_stmts s2,
cgs_tops = cgs_tops s1 `appOL` cgs_tops s2 }
maxHpHw :: HeapUsage -> VirtualHpOffset -> HeapUsage
hp_usg `maxHpHw` hw = hp_usg { virtHp = virtHp hp_usg `max` hw }
maxStkHw :: StackUsage -> VirtualSpOffset -> StackUsage
stk_usg `maxStkHw` hw = stk_usg { hwSp = hwSp stk_usg `max` hw }
\end{code}
%************************************************************************
%* *
The FCode monad
%* *
%************************************************************************
\begin{code}
newtype FCode a = FCode (CgInfoDownwards -> CgState -> (a, CgState))
type Code = FCode ()
instance Monad FCode where
(>>=) = thenFC
return = returnFC
{-# INLINE thenC #-}
{-# INLINE thenFC #-}
{-# INLINE returnFC #-}
\end{code}
The Abstract~C is not in the environment so as to improve strictness.
\begin{code}
initC :: DynFlags -> Module -> FCode a -> IO a
initC dflags mod (FCode code)
= do { uniqs <- mkSplitUniqSupply 'c'
; case code (initCgInfoDown dflags mod) (initCgState uniqs) of
(res, _) -> return res
}
returnFC :: a -> FCode a
returnFC val = FCode (\info_down state -> (val, state))
\end{code}
\begin{code}
thenC :: Code -> FCode a -> FCode a
thenC (FCode m) (FCode k) =
FCode (\info_down state -> let (_,new_state) = m info_down state in
k info_down new_state)
listCs :: [Code] -> Code
listCs [] = return ()
listCs (fc:fcs) = do
fc
listCs fcs
mapCs :: (a -> Code) -> [a] -> Code
mapCs = mapM_
\end{code}
\begin{code}
thenFC :: FCode a -> (a -> FCode c) -> FCode c
thenFC (FCode m) k = FCode (
\info_down state ->
let
(m_result, new_state) = m info_down state
(FCode kcode) = k m_result
in
kcode info_down new_state
)
listFCs :: [FCode a] -> FCode [a]
listFCs = sequence
mapFCs :: (a -> FCode b) -> [a] -> FCode [b]
mapFCs = mapM
\end{code}
And the knot-tying combinator:
\begin{code}
fixC :: (a -> FCode a) -> FCode a
fixC fcode = FCode (
\info_down state ->
let
FCode fc = fcode v
result@(v,_) = fc info_down state
-- ^--------^
in
result
)
\end{code}
%************************************************************************
%* *
Operators for getting and setting the state and "info_down".
%* *
%************************************************************************
\begin{code}
getState :: FCode CgState
getState = FCode $ \info_down state -> (state,state)
setState :: CgState -> FCode ()
setState state = FCode $ \info_down _ -> ((),state)
getStkUsage :: FCode StackUsage
getStkUsage = do
state <- getState
return $ cgs_stk_usg state
setStkUsage :: StackUsage -> Code
setStkUsage new_stk_usg = do
state <- getState
setState $ state {cgs_stk_usg = new_stk_usg}
getHpUsage :: FCode HeapUsage
getHpUsage = do
state <- getState
return $ cgs_hp_usg state
setHpUsage :: HeapUsage -> Code
setHpUsage new_hp_usg = do
state <- getState
setState $ state {cgs_hp_usg = new_hp_usg}
getBinds :: FCode CgBindings
getBinds = do
state <- getState
return $ cgs_binds state
setBinds :: CgBindings -> FCode ()
setBinds new_binds = do
state <- getState
setState $ state {cgs_binds = new_binds}
getStaticBinds :: FCode CgBindings
getStaticBinds = do
info <- getInfoDown
return (cgd_statics info)
withState :: FCode a -> CgState -> FCode (a,CgState)
withState (FCode fcode) newstate = FCode $ \info_down state ->
let (retval, state2) = fcode info_down newstate in ((retval,state2), state)
newUniqSupply :: FCode UniqSupply
newUniqSupply = do
state <- getState
let (us1, us2) = splitUniqSupply (cgs_uniqs state)
setState $ state { cgs_uniqs = us1 }
return us2
newUnique :: FCode Unique
newUnique = do
us <- newUniqSupply
return (uniqFromSupply us)
------------------
getInfoDown :: FCode CgInfoDownwards
getInfoDown = FCode $ \info_down state -> (info_down,state)
getDynFlags :: FCode DynFlags
getDynFlags = liftM cgd_dflags getInfoDown
getThisPackage :: FCode PackageId
getThisPackage = liftM thisPackage getDynFlags
withInfoDown :: FCode a -> CgInfoDownwards -> FCode a
withInfoDown (FCode fcode) info_down = FCode $ \_ state -> fcode info_down state
doFCode :: FCode a -> CgInfoDownwards -> CgState -> (a,CgState)
doFCode (FCode fcode) info_down state = fcode info_down state
\end{code}
%************************************************************************
%* *
Forking
%* *
%************************************************************************
@forkClosureBody@ takes a code, $c$, and compiles it in a completely
fresh environment, except that:
- compilation info and statics are passed in unchanged.
The current environment is passed on completely unaltered, except that
abstract C from the fork is incorporated.
@forkProc@ takes a code and compiles it in the current environment,
returning the basic blocks thus constructed. The current environment
is passed on completely unchanged. It is pretty similar to
@getBlocks@, except that the latter does affect the environment.
@forkStatics@ $fc$ compiles $fc$ in an environment whose statics come
from the current bindings, but which is otherwise freshly initialised.
The Abstract~C returned is attached to the current state, but the
bindings and usage information is otherwise unchanged.
\begin{code}
forkClosureBody :: Code -> Code
forkClosureBody body_code
= do { info <- getInfoDown
; us <- newUniqSupply
; state <- getState
; let body_info_down = info { cgd_eob = initEobInfo }
((),fork_state) = doFCode body_code body_info_down
(initCgState us)
; ASSERT( isNilOL (cgs_stmts fork_state) )
setState $ state `addCodeBlocksFrom` fork_state }
forkStatics :: FCode a -> FCode a
forkStatics body_code
= do { info <- getInfoDown
; us <- newUniqSupply
; state <- getState
; let rhs_info_down = info { cgd_statics = cgs_binds state,
cgd_eob = initEobInfo }
(result, fork_state_out) = doFCode body_code rhs_info_down
(initCgState us)
; ASSERT( isNilOL (cgs_stmts fork_state_out) )
setState (state `addCodeBlocksFrom` fork_state_out)
; return result }
forkProc :: Code -> FCode CgStmts
forkProc body_code
= do { info_down <- getInfoDown
; us <- newUniqSupply
; state <- getState
; let fork_state_in = (initCgState us)
{ cgs_binds = cgs_binds state,
cgs_stk_usg = cgs_stk_usg state,
cgs_hp_usg = cgs_hp_usg state }
-- ToDo: is the hp usage necesary?
(code_blks, fork_state_out) = doFCode (getCgStmts body_code)
info_down fork_state_in
; setState $ state `stateIncUsageEval` fork_state_out
; return code_blks }
codeOnly :: Code -> Code
-- Emit any code from the inner thing into the outer thing
-- Do not affect anything else in the outer state
-- Used in almost-circular code to prevent false loop dependencies
codeOnly body_code
= do { info_down <- getInfoDown
; us <- newUniqSupply
; state <- getState
; let fork_state_in = (initCgState us) { cgs_binds = cgs_binds state,
cgs_stk_usg = cgs_stk_usg state,
cgs_hp_usg = cgs_hp_usg state }
((), fork_state_out) = doFCode body_code info_down fork_state_in
; setState $ state `addCodeBlocksFrom` fork_state_out }
\end{code}
@forkAlts@ $bs~d$ takes fcodes $bs$ for the branches of a @case@, and
an fcode for the default case $d$, and compiles each in the current
environment. The current environment is passed on unmodified, except
that
- the worst stack high-water mark is incorporated
- the virtual Hp is moved on to the worst virtual Hp for the branches
\begin{code}
forkAlts :: [FCode a] -> FCode [a]
forkAlts branch_fcodes
= do { info_down <- getInfoDown
; us <- newUniqSupply
; state <- getState
; let compile us branch
= (us2, doFCode branch info_down branch_state)
where
(us1,us2) = splitUniqSupply us
branch_state = (initCgState us1) {
cgs_binds = cgs_binds state,
cgs_stk_usg = cgs_stk_usg state,
cgs_hp_usg = cgs_hp_usg state }
(_us, results) = mapAccumL compile us branch_fcodes
(branch_results, branch_out_states) = unzip results
; setState $ foldl stateIncUsage state branch_out_states
-- NB foldl. state is the *left* argument to stateIncUsage
; return branch_results }
\end{code}
@forkEval@ takes two blocks of code.
- The first meddles with the environment to set it up as expected by
the alternatives of a @case@ which does an eval (or gc-possible primop).
- The second block is the code for the alternatives.
(plus info for semi-tagging purposes)
@forkEval@ picks up the virtual stack pointer and returns a suitable
@EndOfBlockInfo@ for the caller to use, together with whatever value
is returned by the second block.
It uses @initEnvForAlternatives@ to initialise the environment, and
@stateIncUsageAlt@ to incorporate usage; the latter ignores the heap
usage.
\begin{code}
forkEval :: EndOfBlockInfo -- For the body
-> Code -- Code to set environment
-> FCode Sequel -- Semi-tagging info to store
-> FCode EndOfBlockInfo -- The new end of block info
forkEval body_eob_info env_code body_code
= do { (v, sequel) <- forkEvalHelp body_eob_info env_code body_code
; returnFC (EndOfBlockInfo v sequel) }
forkEvalHelp :: EndOfBlockInfo -- For the body
-> Code -- Code to set environment
-> FCode a -- The code to do after the eval
-> FCode (VirtualSpOffset, -- Sp
a) -- Result of the FCode
-- A disturbingly complicated function
forkEvalHelp body_eob_info env_code body_code
= do { info_down <- getInfoDown
; us <- newUniqSupply
; state <- getState
; let { info_down_for_body = info_down {cgd_eob = body_eob_info}
; (_, env_state) = doFCode env_code info_down_for_body
(state {cgs_uniqs = us})
; state_for_body = (initCgState (cgs_uniqs env_state))
{ cgs_binds = binds_for_body,
cgs_stk_usg = stk_usg_for_body }
; binds_for_body = nukeVolatileBinds (cgs_binds env_state)
; stk_usg_from_env = cgs_stk_usg env_state
; virtSp_from_env = virtSp stk_usg_from_env
; stk_usg_for_body = stk_usg_from_env {realSp = virtSp_from_env,
hwSp = virtSp_from_env}
; (value_returned, state_at_end_return)
= doFCode body_code info_down_for_body state_for_body
}
; ASSERT( isNilOL (cgs_stmts state_at_end_return) )
-- The code coming back should consist only of nested declarations,
-- notably of the return vector!
setState $ state `stateIncUsageEval` state_at_end_return
; return (virtSp_from_env, value_returned) }
-- ----------------------------------------------------------------------------
-- Combinators for emitting code
nopC :: Code
nopC = return ()
whenC :: Bool -> Code -> Code
whenC True code = code
whenC False code = nopC
stmtC :: CmmStmt -> Code
stmtC stmt = emitCgStmt (CgStmt stmt)
labelC :: BlockId -> Code
labelC id = emitCgStmt (CgLabel id)
newLabelC :: FCode BlockId
newLabelC = do { id <- newUnique; return (BlockId id) }
checkedAbsC :: CmmStmt -> Code
-- Emit code, eliminating no-ops
checkedAbsC stmt = emitStmts (if isNopStmt stmt then nilOL
else unitOL stmt)
stmtsC :: [CmmStmt] -> Code
stmtsC stmts = emitStmts (toOL stmts)
-- Emit code; no no-op checking
emitStmts :: CmmStmts -> Code
emitStmts stmts = emitCgStmts (fmap CgStmt stmts)
-- forkLabelledCode is for emitting a chunk of code with a label, outside
-- of the current instruction stream.
forkLabelledCode :: Code -> FCode BlockId
forkLabelledCode code = getCgStmts code >>= forkCgStmts
emitCgStmt :: CgStmt -> Code
emitCgStmt stmt
= do { state <- getState
; setState $ state { cgs_stmts = cgs_stmts state `snocOL` stmt }
}
emitData :: Section -> [CmmStatic] -> Code
emitData sect lits
= do { state <- getState
; setState $ state { cgs_tops = cgs_tops state `snocOL` data_block } }
where
data_block = CmmData sect lits
emitProc :: CmmInfo -> CLabel -> CmmFormals -> [CmmBasicBlock] -> Code
emitProc info lbl args blocks
= do { let proc_block = CmmProc info lbl args blocks
; state <- getState
; setState $ state { cgs_tops = cgs_tops state `snocOL` proc_block } }
emitSimpleProc :: CLabel -> Code -> Code
-- Emit a procedure whose body is the specified code; no info table
emitSimpleProc lbl code
= do { stmts <- getCgStmts code
; blks <- cgStmtsToBlocks stmts
; emitProc (CmmNonInfo Nothing) lbl [] blks }
getCmm :: Code -> FCode Cmm
-- Get all the CmmTops (there should be no stmts)
getCmm code
= do { state1 <- getState
; ((), state2) <- withState code (state1 { cgs_tops = nilOL })
; setState $ state2 { cgs_tops = cgs_tops state1 }
; return (Cmm (fromOL (cgs_tops state2))) }
-- ----------------------------------------------------------------------------
-- CgStmts
-- These functions deal in terms of CgStmts, which is an abstract type
-- representing the code in the current proc.
-- emit CgStmts into the current instruction stream
emitCgStmts :: CgStmts -> Code
emitCgStmts stmts
= do { state <- getState
; setState $ state { cgs_stmts = cgs_stmts state `appOL` stmts } }
-- emit CgStmts outside the current instruction stream, and return a label
forkCgStmts :: CgStmts -> FCode BlockId
forkCgStmts stmts
= do { id <- newLabelC
; emitCgStmt (CgFork id stmts)
; return id
}
-- turn CgStmts into [CmmBasicBlock], for making a new proc.
cgStmtsToBlocks :: CgStmts -> FCode [CmmBasicBlock]
cgStmtsToBlocks stmts
= do { id <- newLabelC
; return (flattenCgStmts id stmts)
}
-- collect the code emitted by an FCode computation
getCgStmts' :: FCode a -> FCode (a, CgStmts)
getCgStmts' fcode
= do { state1 <- getState
; (a, state2) <- withState fcode (state1 { cgs_stmts = nilOL })
; setState $ state2 { cgs_stmts = cgs_stmts state1 }
; return (a, cgs_stmts state2) }
getCgStmts :: FCode a -> FCode CgStmts
getCgStmts fcode = do { (_,stmts) <- getCgStmts' fcode; return stmts }
-- Simple ways to construct CgStmts:
noCgStmts :: CgStmts
noCgStmts = nilOL
oneCgStmt :: CmmStmt -> CgStmts
oneCgStmt stmt = unitOL (CgStmt stmt)
consCgStmt :: CmmStmt -> CgStmts -> CgStmts
consCgStmt stmt stmts = CgStmt stmt `consOL` stmts
-- ----------------------------------------------------------------------------
-- Get the current module name
getModuleName :: FCode Module
getModuleName = do { info <- getInfoDown; return (cgd_mod info) }
-- ----------------------------------------------------------------------------
-- Get/set the end-of-block info
setEndOfBlockInfo :: EndOfBlockInfo -> Code -> Code
setEndOfBlockInfo eob_info code = do
info <- getInfoDown
withInfoDown code (info {cgd_eob = eob_info})
getEndOfBlockInfo :: FCode EndOfBlockInfo
getEndOfBlockInfo = do
info <- getInfoDown
return (cgd_eob info)
-- ----------------------------------------------------------------------------
-- Get/set the current SRT label
-- There is just one SRT for each top level binding; all the nested
-- bindings use sub-sections of this SRT. The label is passed down to
-- the nested bindings via the monad.
getSRTLabel :: FCode CLabel -- Used only by cgPanic
getSRTLabel = do info <- getInfoDown
return (cgd_srt_lbl info)
setSRTLabel :: CLabel -> FCode a -> FCode a
setSRTLabel srt_lbl code
= do info <- getInfoDown
withInfoDown code (info { cgd_srt_lbl = srt_lbl})
getSRT :: FCode SRT
getSRT = do info <- getInfoDown
return (cgd_srt info)
setSRT :: SRT -> FCode a -> FCode a
setSRT srt code
= do info <- getInfoDown
withInfoDown code (info { cgd_srt = srt})
-- ----------------------------------------------------------------------------
-- Get/set the current ticky counter label
getTickyCtrLabel :: FCode CLabel
getTickyCtrLabel = do
info <- getInfoDown
return (cgd_ticky info)
setTickyCtrLabel :: CLabel -> Code -> Code
setTickyCtrLabel ticky code = do
info <- getInfoDown
withInfoDown code (info {cgd_ticky = ticky})
\end{code}
|