summaryrefslogtreecommitdiff
path: root/compiler/codeGen/CgUtils.hs
blob: 13de2136f59cb6c5afb37b282482e6a3db9bf6e0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
-----------------------------------------------------------------------------
--
-- Code generator utilities; mostly monadic
--
-- (c) The University of Glasgow 2004-2006
--
-----------------------------------------------------------------------------

module CgUtils (
	addIdReps,
	cgLit,
	emitDataLits, mkDataLits,
        emitRODataLits, mkRODataLits,
        emitIf, emitIfThenElse,
	emitRtsCall, emitRtsCallWithVols, emitRtsCallWithResult,
	assignNonPtrTemp, newNonPtrTemp,
	assignPtrTemp, newPtrTemp,
	emitSimultaneously,
	emitSwitch, emitLitSwitch,
	tagToClosure,

	cmmAndWord, cmmOrWord, cmmNegate, cmmEqWord, cmmNeWord,
	cmmOffsetExprW, cmmOffsetExprB,
	cmmRegOffW, cmmRegOffB,
	cmmLabelOffW, cmmLabelOffB,
	cmmOffsetW, cmmOffsetB,
	cmmOffsetLitW, cmmOffsetLitB,
	cmmLoadIndexW,

	addToMem, addToMemE,
	mkWordCLit,
	mkStringCLit, mkByteStringCLit,
	packHalfWordsCLit,
	blankWord,

	getSRTInfo
  ) where

#include "HsVersions.h"

import CgMonad
import TyCon
import Id
import Constants
import SMRep
import PprCmm		( {- instances -} )
import Cmm
import CLabel
import CmmUtils
import MachOp
import ForeignCall
import ClosureInfo
import StgSyn (SRT(..))
import Literal
import Digraph
import ListSetOps
import Util
import DynFlags
import FastString
import PackageConfig
import Outputable

import MachRegs (callerSaveVolatileRegs)
  -- HACK: this is part of the NCG so we shouldn't use this, but we need
  -- it for now to eliminate the need for saved regs to be in CmmCall.
  -- The long term solution is to factor callerSaveVolatileRegs
  -- from nativeGen into codeGen

import Data.Char
import Data.Bits
import Data.Word
import Data.Maybe

-------------------------------------------------------------------------
--
--	Random small functions
--
-------------------------------------------------------------------------

addIdReps :: [Id] -> [(CgRep, Id)]
addIdReps ids = [(idCgRep id, id) | id <- ids]

-------------------------------------------------------------------------
--
--	Literals
--
-------------------------------------------------------------------------

cgLit :: Literal -> FCode CmmLit
cgLit (MachStr s) = mkByteStringCLit (bytesFS s)
 -- not unpackFS; we want the UTF-8 byte stream.
cgLit other_lit   = return (mkSimpleLit other_lit)

mkSimpleLit :: Literal -> CmmLit
mkSimpleLit (MachChar	c)    = CmmInt (fromIntegral (ord c)) wordRep
mkSimpleLit MachNullAddr      = zeroCLit
mkSimpleLit (MachInt i)       = CmmInt i wordRep
mkSimpleLit (MachInt64 i)     = CmmInt i I64
mkSimpleLit (MachWord i)      = CmmInt i wordRep
mkSimpleLit (MachWord64 i)    = CmmInt i I64
mkSimpleLit (MachFloat r)     = CmmFloat r F32
mkSimpleLit (MachDouble r)    = CmmFloat r F64
mkSimpleLit (MachLabel fs ms) = CmmLabel (mkForeignLabel fs ms is_dyn)
			      where
				is_dyn = False	-- ToDo: fix me
	
mkLtOp :: Literal -> MachOp
-- On signed literals we must do a signed comparison
mkLtOp (MachInt _)    = MO_S_Lt wordRep
mkLtOp (MachFloat _)  = MO_S_Lt F32
mkLtOp (MachDouble _) = MO_S_Lt F64
mkLtOp lit	      = MO_U_Lt (cmmLitRep (mkSimpleLit lit))


---------------------------------------------------
--
--	Cmm data type functions
--
---------------------------------------------------

-----------------------
-- The "B" variants take byte offsets
cmmRegOffB :: CmmReg -> ByteOff -> CmmExpr
cmmRegOffB = cmmRegOff

cmmOffsetB :: CmmExpr -> ByteOff -> CmmExpr
cmmOffsetB = cmmOffset

cmmOffsetExprB :: CmmExpr -> CmmExpr -> CmmExpr
cmmOffsetExprB = cmmOffsetExpr

cmmLabelOffB :: CLabel -> ByteOff -> CmmLit
cmmLabelOffB = cmmLabelOff

cmmOffsetLitB :: CmmLit -> ByteOff -> CmmLit
cmmOffsetLitB = cmmOffsetLit

-----------------------
-- The "W" variants take word offsets
cmmOffsetExprW :: CmmExpr -> CmmExpr -> CmmExpr
-- The second arg is a *word* offset; need to change it to bytes
cmmOffsetExprW e (CmmLit (CmmInt n _)) = cmmOffsetW e (fromInteger n)
cmmOffsetExprW e wd_off = cmmIndexExpr wordRep e wd_off

cmmOffsetW :: CmmExpr -> WordOff -> CmmExpr
cmmOffsetW e n = cmmOffsetB e (wORD_SIZE * n)

cmmRegOffW :: CmmReg -> WordOff -> CmmExpr
cmmRegOffW reg wd_off = cmmRegOffB reg (wd_off * wORD_SIZE)

cmmOffsetLitW :: CmmLit -> WordOff -> CmmLit
cmmOffsetLitW lit wd_off = cmmOffsetLitB lit (wORD_SIZE * wd_off)

cmmLabelOffW :: CLabel -> WordOff -> CmmLit
cmmLabelOffW lbl wd_off = cmmLabelOffB lbl (wORD_SIZE * wd_off)

cmmLoadIndexW :: CmmExpr -> Int -> CmmExpr
cmmLoadIndexW base off
  = CmmLoad (cmmOffsetW base off) wordRep

-----------------------
cmmNeWord, cmmEqWord, cmmOrWord, cmmAndWord :: CmmExpr -> CmmExpr -> CmmExpr
cmmOrWord  e1 e2 = CmmMachOp mo_wordOr  [e1, e2]
cmmAndWord e1 e2 = CmmMachOp mo_wordAnd [e1, e2]
cmmNeWord  e1 e2 = CmmMachOp mo_wordNe  [e1, e2]
cmmEqWord  e1 e2 = CmmMachOp mo_wordEq  [e1, e2]
cmmULtWord e1 e2 = CmmMachOp mo_wordULt [e1, e2]
cmmUGeWord e1 e2 = CmmMachOp mo_wordUGe [e1, e2]
cmmUGtWord e1 e2 = CmmMachOp mo_wordUGt [e1, e2]

cmmNegate :: CmmExpr -> CmmExpr
cmmNegate (CmmLit (CmmInt n rep)) = CmmLit (CmmInt (-n) rep)
cmmNegate e			  = CmmMachOp (MO_S_Neg (cmmExprRep e)) [e]

blankWord :: CmmStatic
blankWord = CmmUninitialised wORD_SIZE

-----------------------
--	Making literals

mkWordCLit :: StgWord -> CmmLit
mkWordCLit wd = CmmInt (fromIntegral wd) wordRep

packHalfWordsCLit :: (Integral a, Integral b) => a -> b -> CmmLit
-- Make a single word literal in which the lower_half_word is
-- at the lower address, and the upper_half_word is at the 
-- higher address
-- ToDo: consider using half-word lits instead
-- 	 but be careful: that's vulnerable when reversed
packHalfWordsCLit lower_half_word upper_half_word
#ifdef WORDS_BIGENDIAN
   = mkWordCLit ((fromIntegral lower_half_word `shiftL` hALF_WORD_SIZE_IN_BITS)
		 .|. fromIntegral upper_half_word)
#else 
   = mkWordCLit ((fromIntegral lower_half_word) 
		 .|. (fromIntegral upper_half_word `shiftL` hALF_WORD_SIZE_IN_BITS))
#endif

--------------------------------------------------------------------------
--
-- Incrementing a memory location
--
--------------------------------------------------------------------------

addToMem :: MachRep 	-- rep of the counter
	 -> CmmExpr	-- Address
	 -> Int		-- What to add (a word)
	 -> CmmStmt
addToMem rep ptr n = addToMemE rep ptr (CmmLit (CmmInt (toInteger n) rep))

addToMemE :: MachRep 	-- rep of the counter
	  -> CmmExpr	-- Address
	  -> CmmExpr	-- What to add (a word-typed expression)
	  -> CmmStmt
addToMemE rep ptr n
  = CmmStore ptr (CmmMachOp (MO_Add rep) [CmmLoad ptr rep, n])

-------------------------------------------------------------------------
--
--	Converting a closure tag to a closure for enumeration types
--      (this is the implementation of tagToEnum#).
--
-------------------------------------------------------------------------

tagToClosure :: PackageId -> TyCon -> CmmExpr -> CmmExpr
tagToClosure this_pkg tycon tag
  = CmmLoad (cmmOffsetExprW closure_tbl tag) wordRep
  where closure_tbl = CmmLit (CmmLabel lbl)
	lbl = mkClosureTableLabel this_pkg (tyConName tycon)

-------------------------------------------------------------------------
--
--	Conditionals and rts calls
--
-------------------------------------------------------------------------

emitIf :: CmmExpr 	-- Boolean
       -> Code		-- Then part
       -> Code		
-- Emit (if e then x)
-- ToDo: reverse the condition to avoid the extra branch instruction if possible
-- (some conditionals aren't reversible. eg. floating point comparisons cannot
-- be inverted because there exist some values for which both comparisons
-- return False, such as NaN.)
emitIf cond then_part
  = do { then_id <- newLabelC
       ; join_id <- newLabelC
       ; stmtC (CmmCondBranch cond then_id)
       ; stmtC (CmmBranch join_id)
       ; labelC then_id
       ; then_part
       ; labelC join_id
       }

emitIfThenElse :: CmmExpr 	-- Boolean
       		-> Code		-- Then part
       		-> Code		-- Else part
       		-> Code		
-- Emit (if e then x else y)
emitIfThenElse cond then_part else_part
  = do { then_id <- newLabelC
       ; else_id <- newLabelC
       ; join_id <- newLabelC
       ; stmtC (CmmCondBranch cond then_id)
       ; else_part
       ; stmtC (CmmBranch join_id)
       ; labelC then_id
       ; then_part
       ; labelC join_id
       }

emitRtsCall :: LitString -> [(CmmExpr,MachHint)] -> Code
emitRtsCall fun args = emitRtsCall' [] fun args Nothing
   -- The 'Nothing' says "save all global registers"

emitRtsCallWithVols :: LitString -> [(CmmExpr,MachHint)] -> [GlobalReg] -> Code
emitRtsCallWithVols fun args vols
   = emitRtsCall' [] fun args (Just vols)

emitRtsCallWithResult :: LocalReg -> MachHint -> LitString
	-> [(CmmExpr,MachHint)] -> Code
emitRtsCallWithResult res hint fun args
   = emitRtsCall' [(res,hint)] fun args Nothing

-- Make a call to an RTS C procedure
emitRtsCall'
   :: CmmHintFormals
   -> LitString
   -> [(CmmExpr,MachHint)]
   -> Maybe [GlobalReg]
   -> Code
emitRtsCall' res fun args vols = do
    srt <- getSRTInfo
    stmtsC caller_save
    stmtC (CmmCall target res args srt)
    stmtsC caller_load
  where
    (caller_save, caller_load) = callerSaveVolatileRegs vols
    target   = CmmForeignCall fun_expr CCallConv
    fun_expr = mkLblExpr (mkRtsCodeLabel fun)


-------------------------------------------------------------------------
--
--	Strings gnerate a top-level data block
--
-------------------------------------------------------------------------

emitDataLits :: CLabel -> [CmmLit] -> Code
-- Emit a data-segment data block
emitDataLits lbl lits
  = emitData Data (CmmDataLabel lbl : map CmmStaticLit lits)

mkDataLits :: CLabel -> [CmmLit] -> GenCmmTop CmmStatic info stmt
-- Emit a data-segment data block
mkDataLits lbl lits
  = CmmData Data (CmmDataLabel lbl : map CmmStaticLit lits)

emitRODataLits :: CLabel -> [CmmLit] -> Code
-- Emit a read-only data block
emitRODataLits lbl lits
  = emitData section (CmmDataLabel lbl : map CmmStaticLit lits)
  where section | any needsRelocation lits = RelocatableReadOnlyData
                | otherwise                = ReadOnlyData
        needsRelocation (CmmLabel _)      = True
        needsRelocation (CmmLabelOff _ _) = True
        needsRelocation _                 = False

mkRODataLits :: CLabel -> [CmmLit] -> GenCmmTop CmmStatic info stmt
mkRODataLits lbl lits
  = CmmData section (CmmDataLabel lbl : map CmmStaticLit lits)
  where section | any needsRelocation lits = RelocatableReadOnlyData
                | otherwise                = ReadOnlyData
        needsRelocation (CmmLabel _)      = True
        needsRelocation (CmmLabelOff _ _) = True
        needsRelocation _                 = False

mkStringCLit :: String -> FCode CmmLit
-- Make a global definition for the string,
-- and return its label
mkStringCLit str = mkByteStringCLit (map (fromIntegral.ord) str)

mkByteStringCLit :: [Word8] -> FCode CmmLit
mkByteStringCLit bytes
  = do 	{ uniq <- newUnique
	; let lbl = mkStringLitLabel uniq
	; emitData ReadOnlyData [CmmDataLabel lbl, CmmString bytes]
	; return (CmmLabel lbl) }

-------------------------------------------------------------------------
--
--	Assigning expressions to temporaries
--
-------------------------------------------------------------------------

assignNonPtrTemp :: CmmExpr -> FCode CmmExpr
-- For a non-trivial expression, e, create a local
-- variable and assign the expression to it
assignNonPtrTemp e 
  | isTrivialCmmExpr e = return e
  | otherwise 	       = do { reg <- newNonPtrTemp (cmmExprRep e) 
			    ; stmtC (CmmAssign (CmmLocal reg) e)
			    ; return (CmmReg (CmmLocal reg)) }

assignPtrTemp :: CmmExpr -> FCode CmmExpr
-- For a non-trivial expression, e, create a local
-- variable and assign the expression to it
assignPtrTemp e 
  | isTrivialCmmExpr e = return e
  | otherwise 	       = do { reg <- newPtrTemp (cmmExprRep e) 
			    ; stmtC (CmmAssign (CmmLocal reg) e)
			    ; return (CmmReg (CmmLocal reg)) }

newNonPtrTemp :: MachRep -> FCode LocalReg
newNonPtrTemp rep = do { uniq <- newUnique; return (LocalReg uniq rep KindNonPtr) }

newPtrTemp :: MachRep -> FCode LocalReg
newPtrTemp rep = do { uniq <- newUnique; return (LocalReg uniq rep KindPtr) }


-------------------------------------------------------------------------
--
--	Building case analysis
--
-------------------------------------------------------------------------

emitSwitch
	:: CmmExpr  		  -- Tag to switch on
	-> [(ConTagZ, CgStmts)]	  -- Tagged branches
	-> Maybe CgStmts	  -- Default branch (if any)
	-> ConTagZ -> ConTagZ	  -- Min and Max possible values; behaviour
				  -- 	outside this range is undefined
	-> Code

-- ONLY A DEFAULT BRANCH: no case analysis to do
emitSwitch tag_expr [] (Just stmts) _ _
  = emitCgStmts stmts

-- Right, off we go
emitSwitch tag_expr branches mb_deflt lo_tag hi_tag
  = 	-- Just sort the branches before calling mk_sritch
    do	{ mb_deflt_id <-
		case mb_deflt of
		  Nothing    -> return Nothing
		  Just stmts -> do id <- forkCgStmts stmts; return (Just id)

	; dflags <- getDynFlags
	; let via_C | HscC <- hscTarget dflags = True
		    | otherwise                = False

	; stmts <- mk_switch tag_expr (sortLe le branches) 
			mb_deflt_id lo_tag hi_tag via_C
	; emitCgStmts stmts
	}
  where
    (t1,_) `le` (t2,_) = t1 <= t2


mk_switch :: CmmExpr -> [(ConTagZ, CgStmts)]
	  -> Maybe BlockId -> ConTagZ -> ConTagZ -> Bool
	  -> FCode CgStmts

-- SINGLETON TAG RANGE: no case analysis to do
mk_switch tag_expr [(tag,stmts)] _ lo_tag hi_tag via_C
  | lo_tag == hi_tag
  = ASSERT( tag == lo_tag )
    return stmts

-- SINGLETON BRANCH, NO DEFUALT: no case analysis to do
mk_switch tag_expr [(tag,stmts)] Nothing lo_tag hi_tag via_C
  = return stmts
	-- The simplifier might have eliminated a case
	-- 	 so we may have e.g. case xs of 
	--				 [] -> e
	-- In that situation we can be sure the (:) case 
	-- can't happen, so no need to test

-- SINGLETON BRANCH: one equality check to do
mk_switch tag_expr [(tag,stmts)] (Just deflt) lo_tag hi_tag via_C
  = return (CmmCondBranch cond deflt `consCgStmt` stmts)
  where
    cond  =  cmmNeWord tag_expr (CmmLit (mkIntCLit tag))
	-- We have lo_tag < hi_tag, but there's only one branch, 
	-- so there must be a default

-- ToDo: we might want to check for the two branch case, where one of
-- the branches is the tag 0, because comparing '== 0' is likely to be
-- more efficient than other kinds of comparison.

-- DENSE TAG RANGE: use a switch statment.
--
-- We also use a switch uncoditionally when compiling via C, because
-- this will get emitted as a C switch statement and the C compiler
-- should do a good job of optimising it.  Also, older GCC versions
-- (2.95 in particular) have problems compiling the complicated
-- if-trees generated by this code, so compiling to a switch every
-- time works around that problem.
--
mk_switch tag_expr branches mb_deflt lo_tag hi_tag via_C
  | use_switch 	-- Use a switch
  = do	{ branch_ids <- mapM forkCgStmts (map snd branches)
	; let 
		tagged_blk_ids = zip (map fst branches) (map Just branch_ids)

		find_branch :: ConTagZ -> Maybe BlockId
		find_branch i = assocDefault mb_deflt tagged_blk_ids i

		-- NB. we have eliminated impossible branches at
		-- either end of the range (see below), so the first
		-- tag of a real branch is real_lo_tag (not lo_tag).
		arms = [ find_branch i | i <- [real_lo_tag..real_hi_tag]]

	        switch_stmt = CmmSwitch (cmmOffset tag_expr (- real_lo_tag)) arms

	; ASSERT(not (all isNothing arms)) 
	  return (oneCgStmt switch_stmt)
	}

  -- if we can knock off a bunch of default cases with one if, then do so
  | Just deflt <- mb_deflt, (lowest_branch - lo_tag) >= n_branches
  = do { (assign_tag, tag_expr') <- assignNonPtrTemp' tag_expr
       ; let cond = cmmULtWord tag_expr' (CmmLit (mkIntCLit lowest_branch))
	     branch = CmmCondBranch cond deflt
       ; stmts <- mk_switch tag_expr' branches mb_deflt 
			lowest_branch hi_tag via_C
       ; return (assign_tag `consCgStmt` (branch `consCgStmt` stmts))
       }

  | Just deflt <- mb_deflt, (hi_tag - highest_branch) >= n_branches
  = do { (assign_tag, tag_expr') <- assignNonPtrTemp' tag_expr
       ; let cond = cmmUGtWord tag_expr' (CmmLit (mkIntCLit highest_branch))
	     branch = CmmCondBranch cond deflt
       ; stmts <- mk_switch tag_expr' branches mb_deflt 
			lo_tag highest_branch via_C
       ; return (assign_tag `consCgStmt` (branch `consCgStmt` stmts))
       }

  | otherwise	-- Use an if-tree
  = do	{ (assign_tag, tag_expr') <- assignNonPtrTemp' tag_expr
		-- To avoid duplication
	; lo_stmts <- mk_switch tag_expr' lo_branches mb_deflt 
				lo_tag (mid_tag-1) via_C
	; hi_stmts <- mk_switch tag_expr' hi_branches mb_deflt 
				mid_tag hi_tag via_C
	; hi_id <- forkCgStmts hi_stmts
	; let cond = cmmUGeWord tag_expr' (CmmLit (mkIntCLit mid_tag))
	      branch_stmt = CmmCondBranch cond hi_id
	; return (assign_tag `consCgStmt` (branch_stmt `consCgStmt` lo_stmts)) 
	}
	-- we test (e >= mid_tag) rather than (e < mid_tag), because
	-- the former works better when e is a comparison, and there
	-- are two tags 0 & 1 (mid_tag == 1).  In this case, the code
	-- generator can reduce the condition to e itself without
	-- having to reverse the sense of the comparison: comparisons
	-- can't always be easily reversed (eg. floating
	-- pt. comparisons).
  where
    use_switch 	 = {- pprTrace "mk_switch" (
			ppr tag_expr <+> text "n_tags:" <+> int n_tags <+>
                        text "branches:" <+> ppr (map fst branches) <+>
			text "n_branches:" <+> int n_branches <+>
			text "lo_tag:" <+> int lo_tag <+>
			text "hi_tag:" <+> int hi_tag <+>
			text "real_lo_tag:" <+> int real_lo_tag <+>
			text "real_hi_tag:" <+> int real_hi_tag) $ -}
		   ASSERT( n_branches > 1 && n_tags > 1 ) 
		   n_tags > 2 && (via_C || (dense && big_enough))
		 -- up to 4 branches we use a decision tree, otherwise
                 -- a switch (== jump table in the NCG).  This seems to be
                 -- optimal, and corresponds with what gcc does.
    big_enough 	 = n_branches > 4
    dense      	 = n_branches > (n_tags `div` 2)
    n_branches   = length branches
    
    -- ignore default slots at each end of the range if there's 
    -- no default branch defined.
    lowest_branch  = fst (head branches)
    highest_branch = fst (last branches)

    real_lo_tag
	| isNothing mb_deflt = lowest_branch
	| otherwise          = lo_tag

    real_hi_tag
	| isNothing mb_deflt = highest_branch
	| otherwise          = hi_tag

    n_tags = real_hi_tag - real_lo_tag + 1

	-- INVARIANT: Provided hi_tag > lo_tag (which is true)
	--	lo_tag <= mid_tag < hi_tag
	--	lo_branches have tags <  mid_tag
	--	hi_branches have tags >= mid_tag

    (mid_tag,_) = branches !! (n_branches `div` 2)
	-- 2 branches => n_branches `div` 2 = 1
	--	      => branches !! 1 give the *second* tag
	-- There are always at least 2 branches here

    (lo_branches, hi_branches) = span is_lo branches
    is_lo (t,_) = t < mid_tag


assignNonPtrTemp' e
  | isTrivialCmmExpr e = return (CmmNop, e)
  | otherwise          = do { reg <- newNonPtrTemp (cmmExprRep e)
                            ; return (CmmAssign (CmmLocal reg) e, CmmReg (CmmLocal reg)) }

emitLitSwitch :: CmmExpr			-- Tag to switch on
	      -> [(Literal, CgStmts)]		-- Tagged branches
	      -> CgStmts			-- Default branch (always)
	      -> Code				-- Emit the code
-- Used for general literals, whose size might not be a word, 
-- where there is always a default case, and where we don't know
-- the range of values for certain.  For simplicity we always generate a tree.
--
-- ToDo: for integers we could do better here, perhaps by generalising
-- mk_switch and using that.  --SDM 15/09/2004
emitLitSwitch scrut [] deflt 
  = emitCgStmts deflt
emitLitSwitch scrut branches deflt_blk
  = do	{ scrut' <- assignNonPtrTemp scrut
	; deflt_blk_id <- forkCgStmts deflt_blk
	; blk <- mk_lit_switch scrut' deflt_blk_id (sortLe le branches)
	; emitCgStmts blk }
  where
    le (t1,_) (t2,_) = t1 <= t2

mk_lit_switch :: CmmExpr -> BlockId 
 	      -> [(Literal,CgStmts)]
	      -> FCode CgStmts
mk_lit_switch scrut deflt_blk_id [(lit,blk)] 
  = return (consCgStmt if_stmt blk)
  where
    cmm_lit = mkSimpleLit lit
    rep     = cmmLitRep cmm_lit
    cond    = CmmMachOp (MO_Ne rep) [scrut, CmmLit cmm_lit]
    if_stmt = CmmCondBranch cond deflt_blk_id

mk_lit_switch scrut deflt_blk_id branches
  = do	{ hi_blk <- mk_lit_switch scrut deflt_blk_id hi_branches
 	; lo_blk <- mk_lit_switch scrut deflt_blk_id lo_branches
	; lo_blk_id <- forkCgStmts lo_blk
	; let if_stmt = CmmCondBranch cond lo_blk_id
	; return (if_stmt `consCgStmt` hi_blk) }
  where
    n_branches = length branches
    (mid_lit,_) = branches !! (n_branches `div` 2)
	-- See notes above re mid_tag

    (lo_branches, hi_branches) = span is_lo branches
    is_lo (t,_) = t < mid_lit

    cond    = CmmMachOp (mkLtOp mid_lit) 
			[scrut, CmmLit (mkSimpleLit mid_lit)]

-------------------------------------------------------------------------
--
--	Simultaneous assignment
--
-------------------------------------------------------------------------


emitSimultaneously :: CmmStmts -> Code
-- Emit code to perform the assignments in the
-- input simultaneously, using temporary variables when necessary.
--
-- The Stmts must be:
--	CmmNop, CmmComment, CmmAssign, CmmStore
-- and nothing else


-- We use the strongly-connected component algorithm, in which
--	* the vertices are the statements
--	* an edge goes from s1 to s2 iff
--		s1 assigns to something s2 uses
--	  that is, if s1 should *follow* s2 in the final order

type CVertex = (Int, CmmStmt)	-- Give each vertex a unique number,
				-- for fast comparison

emitSimultaneously stmts
  = codeOnly $
    case filterOut isNopStmt (stmtList stmts) of 
	-- Remove no-ops
      []     	-> nopC
      [stmt] 	-> stmtC stmt	-- It's often just one stmt
      stmt_list -> doSimultaneously1 (zip [(1::Int)..] stmt_list)

doSimultaneously1 :: [CVertex] -> Code
doSimultaneously1 vertices
  = let
	edges = [ (vertex, key1, edges_from stmt1)
		| vertex@(key1, stmt1) <- vertices
		]
	edges_from stmt1 = [ key2 | (key2, stmt2) <- vertices, 
				    stmt1 `mustFollow` stmt2
			   ]
	components = stronglyConnComp edges

	-- do_components deal with one strongly-connected component
	-- Not cyclic, or singleton?  Just do it
	do_component (AcyclicSCC (n,stmt))  = stmtC stmt
	do_component (CyclicSCC [(n,stmt)]) = stmtC stmt

		-- Cyclic?  Then go via temporaries.  Pick one to
		-- break the loop and try again with the rest.
	do_component (CyclicSCC ((n,first_stmt) : rest))
	  = do	{ from_temp <- go_via_temp first_stmt
		; doSimultaneously1 rest
		; stmtC from_temp }

	go_via_temp (CmmAssign dest src)
	  = do	{ tmp <- newNonPtrTemp (cmmRegRep dest) -- TODO FIXME NOW if the pair of assignments move across a call this will be wrong
		; stmtC (CmmAssign (CmmLocal tmp) src)
		; return (CmmAssign dest (CmmReg (CmmLocal tmp))) }
	go_via_temp (CmmStore dest src)
	  = do	{ tmp <- newNonPtrTemp (cmmExprRep src) -- TODO FIXME NOW if the pair of assignemnts move across a call this will be wrong
		; stmtC (CmmAssign (CmmLocal tmp) src)
		; return (CmmStore dest (CmmReg (CmmLocal tmp))) }
    in
    mapCs do_component components

mustFollow :: CmmStmt -> CmmStmt -> Bool
CmmAssign reg _  `mustFollow` stmt = anySrc (reg `regUsedIn`) stmt
CmmStore loc e   `mustFollow` stmt = anySrc (locUsedIn loc (cmmExprRep e)) stmt
CmmNop           `mustFollow` stmt = False
CmmComment _     `mustFollow` stmt = False


anySrc :: (CmmExpr -> Bool) -> CmmStmt -> Bool
-- True if the fn is true of any input of the stmt
anySrc p (CmmAssign _ e)    = p e
anySrc p (CmmStore e1 e2)   = p e1 || p e2	-- Might be used in either side
anySrc p (CmmComment _)	    = False
anySrc p CmmNop		    = False
anySrc p other		    = True		-- Conservative

regUsedIn :: CmmReg -> CmmExpr -> Bool
reg `regUsedIn` CmmLit _ 	 = False
reg `regUsedIn` CmmLoad e  _ 	 = reg `regUsedIn` e
reg `regUsedIn` CmmReg reg' 	 = reg == reg'
reg `regUsedIn` CmmRegOff reg' _ = reg == reg'
reg `regUsedIn` CmmMachOp _ es   = any (reg `regUsedIn`) es

locUsedIn :: CmmExpr -> MachRep -> CmmExpr -> Bool
-- (locUsedIn a r e) checks whether writing to r[a] could affect the value of
-- 'e'.  Returns True if it's not sure.
locUsedIn loc rep (CmmLit _) 	     = False
locUsedIn loc rep (CmmLoad e ld_rep) = possiblySameLoc loc rep e ld_rep
locUsedIn loc rep (CmmReg reg')      = False
locUsedIn loc rep (CmmRegOff reg' _) = False
locUsedIn loc rep (CmmMachOp _ es)   = any (locUsedIn loc rep) es

possiblySameLoc :: CmmExpr -> MachRep -> CmmExpr -> MachRep -> Bool
-- Assumes that distinct registers (eg Hp, Sp) do not 
-- point to the same location, nor any offset thereof.
possiblySameLoc (CmmReg r1)       rep1 (CmmReg r2)      rep2  = r1==r2
possiblySameLoc (CmmReg r1)       rep1 (CmmRegOff r2 0) rep2  = r1==r2
possiblySameLoc (CmmRegOff r1 0)  rep1 (CmmReg r2)      rep2  = r1==r2
possiblySameLoc (CmmRegOff r1 start1) rep1 (CmmRegOff r2 start2) rep2 
  = r1==r2 && end1 > start2 && end2 > start1
  where
    end1 = start1 + machRepByteWidth rep1
    end2 = start2 + machRepByteWidth rep2

possiblySameLoc l1 rep1 (CmmLit _) rep2 = False
possiblySameLoc l1 rep1 l2	   rep2 = True	-- Conservative

-------------------------------------------------------------------------
--
--	Static Reference Tables
--
-------------------------------------------------------------------------

-- There is just one SRT for each top level binding; all the nested
-- bindings use sub-sections of this SRT.  The label is passed down to
-- the nested bindings via the monad.

getSRTInfo :: FCode C_SRT
getSRTInfo = do
  srt_lbl <- getSRTLabel
  srt <- getSRT
  case srt of
    -- TODO: Should we panic in this case?
    -- Someone obviously thinks there should be an SRT
    NoSRT -> return NoC_SRT
    SRT off len bmp
      | len > hALF_WORD_SIZE_IN_BITS || bmp == [fromIntegral srt_escape]
      -> do id <- newUnique
            let srt_desc_lbl = mkLargeSRTLabel id
	    emitRODataLits srt_desc_lbl
             ( cmmLabelOffW srt_lbl off
	       : mkWordCLit (fromIntegral len)
	       : map mkWordCLit bmp)
	    return (C_SRT srt_desc_lbl 0 srt_escape)

    SRT off len bmp
      | otherwise 
      -> return (C_SRT srt_lbl off (fromIntegral (head bmp)))
		-- The fromIntegral converts to StgHalfWord

srt_escape = (-1) :: StgHalfWord